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Role of cuproptosis-related
gene in lung adenocarcinoma
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Backgrounds: Lung adenocarcinoma (LUAD) is the most common subtype of

lung cancer, which is the leading cause of cancer death. Dysregulation of cell

proliferation and death plays a crucial role in the development of LUAD. As of

recently, the role of a new form of cell death, cuproptosis, and it has attracted

more and more attention. As of yet, it is not clear whether cuproptosis is

involved in the progression of LUAD.

Methods: An integrated set of bioinformatics tools was utilized to analyze the

expression and prognostic significance of cuproptosis-related genes.

Meanwhile, a robust risk signature was developed using machine learning

based on prognostic cuproptosis-related genes and explored the value of

prognostic cuproptosis-related signature for clinical applications, functional

enrichment and immune landscape. Lastly, the dysregulation of the

cuproptosis-related genes in LUAD was validated by in vitro experiment.

Results: In this study, first, cuproptosis-related genes were found to be

differentially expressed in LUAD patients of public databases, and nine of

them had prognostic value. Next, a cuproptosis-related model with five

features (DLTA, MTF1, GLS, PDHB and PDHA1) was constructed to separate

the patients into high- and low-risk groups based onmedian risk score. Internal

validation set and external validation set were used for model validation and

evaluation. What’s more, Enrichment analysis of differential genes and the

WGCNA identified that cuproptosis-related signatures affected tumor

prognosis by influencing tumor immunity. Small molecule compounds were

predicted based on differential expressed genes to improve poor prognosis in

the high-risk group and a nomogram was constructed to further advance

clinical applications. In closing, our data showed that FDX1 affected the

prognosis of lung cancer by altering the expression of cuproptosis-related

signature.

Conclusion: A new cuproptosis-related signature for survival prediction was

constructed and validated by machine learning algorithm and in vitro
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experiments to reflect tumor immune infiltration in LUAD patients. The

purpose of this article was to provide a potential diagnostic and therapeutic

strategy for LUAD.
KEYWORDS

cuproptosis, lung adenocarcinoma, immune infiltration, prognostic signature,
immune microenvironment
1 Introduction

As the highest mortality rate and incidence of the second

highest rate in the world, lung cancer has a 5-year survival rate of

only 26% (1). Lung adenocarcinoma (LUAD), one of the most

prevalent subtype in non-small cell lung cancer (NSCLC),

accounts for approximately 40% of lung cancers (2). Despite

rapid advances in treatment options including chemotherapy,

radiotherapy and surgery, the prognosis for LUAD-patients

remains unsatisfactory. Over the past few years, immune

checkpoint inhibitor (ICI) therapy has emerged as a

revolutionary form of cancer treatment that works by targeting

immune checkpoints (3). And yet, only a fraction of patients had

achieved expected benefit from ICI therapy. To optimize the

prognosis and benefit of LUAD pharmacotherapy, reliable

biomarkers are required in the era of individualized therapy.

Classical clinical models predict the prognosis of LUAD

predicted by tumor extension, performance status, TNM

staging and pathological staging indicators, but the

heterogeneity of LUAD had prevented these models from

achieving satisfactory results (4). Therefore, new models need

to be constructed for the treatment and prognosis of LUAD.

Proliferation and death of cells are dysregulated in LUAD.

Massive cell death is often a precursor to disease progression,

followed by an imbalance between cell proliferation and death

resulting in tumor growth (5). According to a recent research in

Science, an accumulation of intracellular copper ions triggered

the aggregation of Fe-S cluster proteins and destabilization of

mitochondrial lipidated proteins, leading to a unique type of cell

death called cuproptosis (6). On the one hand, elevated copper

levels in LUAD patients could promote tumor angiogenesis,

progression and metastasis (7). On the other hand,

mitochondria could influence cancer drug resistance, leading

to poorer chemotherapy outcomes in LUAD patients (8).

The current prevailing doctrine is that treatment failure in

lung adenocarcinoma is the result of resistance to apoptosis (9).

Although several studies have validated the ability of

cuproptosis-related genes to affect the prognosis of lung

adenocarcinoma patients by bioinformatics techniques, the
02
mechanism has not been fully elucidated (10–13). Therefore, it

might be important to explore the role of cuproptosis-related

genes in LUAD.

In the current work, five prognostic cuproptosis-related genes

(PCRGs) were identified in LUAD. A signature based on PCRGs

was constructed and validated for clinical applications and related

mechanisms by machine learning algorithm and in vitro

experiments. Our findings were expected to provide a valuable

diagnostic and therapeutic strategies for LUAD patients.
2 Materials and methods

2.1 Data collection and sample pre-
processing for LUAD patients

RNA sequencing, survival data, and clinical phenotypes were

collected from The Cancer Genome Atlas (TCGA) database in

University of California Santa Cruz (UCSC) Xena platform

(http://www.genome.ucsc.edu/). After data cleaning and

normalization, a total of 442 tumor tissues and 49

paracancerous tissues were enrolled. Meanwhile, the normal

tissues from Genotype-Tissue Expression (GTEx) (https://

www.gtexportal.org) were obtained. In addition, a total of 332

patients with survival time and mRNA expression matrix were

download from GSE31210 (246) and GSE30219 (86) in Gene

Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.

gov/geo/), and 301 patients with survival time clinical data were

collected from Affiliated Tumor Hospital of Nantong University.
2.2 Consensus clustering

Unsupervised clustering was performed using The

“ConsensusClusterPlus” R package. A consensus clustering

approach (Euclidean distance) was run by K-means clustering

algorithm for 1000 times with a resampling rate of 80%. An

empirical cumulative distribution function plot was used to

Identified the optimal number of clusters.
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2.3 Construction of cuproptosis-related
signature

First, univariate Cox regression identified PCRGs in the

TCGA-LUAD cohort. Subsequently, least absolute shrinkage

and selection operator (LASSO) algorithm were performed on

the PCRGs in TCGA-LUAD cohort. Finally, the cuproptosis-

related signature was constructed by the stepwise Cox regression

algorithm. Risk score =on
i=1 =Coef (Gene) × Expr (Gene). Coef

is the coefficient, Expr is the Fragments Per Kilobase of exon

Model per million mapped fragments (FPKM) of each gene.

LUAD patients with risk-score above the median were

categorized as the high-risk subgroup, and the rest were

included in the low-risk subgroup. For model, the time-

dependent receiver operating characteristic (ROC) was

calculated across validation datasets. Survival analysis was used

“survival”, “survminer” and “timeROC” packages, and the

nomogram was used “rms” package. The ROC curve, the

Harrell’s concordance index (C-index), calibration curve and

detrended correspondence analysis (DCA) were performed to

evaluate the performance of the nomogram.
2.4 Identification of differentially
expressed genes

The threshold value for screening differential genes was set

to |log2FC| > 1 and adjusted P < 0.05. The threshold for

stepwise-Cox analysis was set to P < 0.1 to screen the final

pcrg. Paired samples of cancer tissue and paraneoplastic tissue

from TCGA were used to test spatial differences in gene

expression in the same individual. Human Protein Atlas

database was used for the purpose of examining the expression

of cuproptosis-related signature at the protein level (https://

www.proteinatlas.org/).
2.5 Weighted correlation network
analysis

The co-expression network of TCGA-LUAD was generated

using the weighted gene weighted gene co-expression network

analysis (WGCNA) package. A suitable soft threshold b is

calculated based on the criteria for scale-free networks. In the

following step, the weighted adjacency matrix was converted

into a topological overlap matrix (TOM), and the corresponding

dissimilarity (1-TOM) was calculated. Module identification was

conducted using the dynamic tree cutting approach. The

modules most relevant to the clinical phenotype of the risk

score were selected for subsequent analysis.
Frontiers in Oncology 03
2.6 Gene network and enrichment
analysis of PCRGs

The gene network analysis was performed using

GENEMANIA to analyze potential interactions between these

genes (http://genemania.org/). In order to explore the potential

mechanisms and pathways between the riskscore subgroups and

two clusters, the Gene ontology (GO), Kyotoencyclopedia of

genes and genomes (KEGG) functional enrichment analysis, and

gene set enrichment analysis (GSEA), gene set variation analysis

(GSVA) were conducted among DEGs between the riskscore

subgroups and clusters using the R packages “clusterProfiler”,

“enrichplot”, “limma”, “ggplot2”, and “org.Hs.eg.db”.
2.7 Analysis of immune infiltration

“CIBERSORT” algorithm was used to assess the infiltration of

22 immune cells. Four other algorithms such as xcell, MCP-counter,

GSVA, and ESTIMATE, were used to verify the robustness of

CIBERSOR algorithm. The immune checkpoints were based on

published research (14). The expression of HLA gene were used to

assess the capabilities of antigen-presentation response.
2.8 Therapeutic response and drug
prediction

In order to estimate the likelihood of drug interactions, the

DEGs was identified from the high- and low-risk subgroups.

L1000FWD (https://maayanlab.cloud/L1000FWD/) database

was used to detect the signaling pathways affected by small

molecule drugs. PubChem database was used for visualizing the

structure of drugs (https://pubchem.ncbi.nlm.nih.gov).
2.9 Clinical specimens

Written informed consent was obtained from all patients

involved in this study. The ethics committee of the Affiliated

Tumor Hospital of Nantong University approved this study.

2.9.1 Quantitative real time PCR
The LUAD and paired para-cancerous samples were

collected from 4 patients who underwent lobectomy between

August 2022 and October 2022 at Affiliated Tumor Hospital of

Nantong University. RNA were extracted and reverse

transcription as previously described (15). After reverse

transcription, quantitative real time PCR (qRT-PCR) was

performed. The primer sequences were shown in Table 1.
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2.9.2 Tissue microarray construction and
immunohistochemistry

Tumor and paracancer tissue microarray from Affiliated

Tumor Hospital of Nantong University was used for the

validation cohort. Primary Anti-FDX1 antibody (1:200; 12592-

1 -AP , pro t e in t e ch , Ch ina) were app l i ed fo r the

immunohistochemical (IHC) staining. A microscopy system

(Nikon, Japan) was used to scan immunohistochemistry

sections. We measured the density of positive staining. The H-

score was evaluated by two independent pathologists without the

knowledge of clinicopathological information.
2.10 Molecular docking

The 3D structures of mitoxantrone were downloaded from

PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The

3D structure of FDX1 was downloaded from the PDB protein

database (https://www.rcsb.org/). Further, the protein was

dehydrated and ligand extracted. Then, we conduct molecular

simulation docking for the mitoxantrone and FDX1.
2.11 Statistical analysis

A complete set of data processing, statistical analysis, and

plotting was carried out in R 4.0.3 software. In the case of

normally distributed data, the unpaired Student t-test was used,

while in the case of non-normally distributed data, the Wilcoxon

test was used. An assessment of the correlation between two

continuous variables was conducted using Pearson’s correlation

coefficients. Univariate Cox regression and multivariate Cox

regression were used to detect the effect of factors on
Frontiers in Oncology 04
prognos i s o f LUAD, . P < 0 .05 was rega rded as

statistically significant.
3 Results

The overall design of this study is displayed in Figure S1.
3.1 Expression of cuproptosis-related
genes in carcinoma and adjacent tissues

As described in the literature, 12 genes including FDX1,

LIAS, LIPT1, DLD,DLAT, PDHA1, PDHB, MTF1, GLS,

CDKN2A, SLC31A1, and ATP7B, were confirmed to be

associated with cuproptosis (6). These 12 genes were

confirmed in LUAD by comparing their expression patterns in

normal and tumor tissues from the TCGA and GTEx databases.

It turned out that the expression of these 12 genes was

significantly different in both tumor tissues and normal tissues

(Figures 1A, B). Kaplan-Meier plotter shows 9 genes associated

with lung adenocarcinoma prognosis and screened for

subsequent analysis (Figure S2). Co-expression analysis

combined with prognosis value indicated that the expression

of 4 cuproptosis-related genes (PDHB, DLAT, PDHB, DLD) was

positively co-expressed with each other, and 9 genes (FDX1,

LIPT1, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A and

SLC31A1) had prognostic value in LUAD (Figure 1C).

Thereafter, we found a significant correlation between the

expression of 12 cuproptosis-related genes in the TCGA

cohort of LUAD patients (Figure 1D). The protein-protein

interactions network among the cuproptosis-associated genes

were displayed in Figure 1E. In parallel, we mapped the
TABLE 1 Primers used qRT-PCR detection.

GENE PRIMER SEQUENCE (5’-3’)

PDHA
Forward tac agg atg atg cag act gta c

Reverse caa gtg aca gaa acc acg aat a

PDHB
Forward gac act ccc ata tca gag atg g

Reverse ctt ggc agc tga gtt tat aac c

GLS
Forward cac tca aat cag gat tgc g

Reverse cca gac tgc ttt tta gca ctt t

MTF1
Forward gtg cca act ctg tcc taa cta a

Reverse cta ctg gta ctg cag tgg taa a

DLAT
Forward ggg tta ttg cac agc gat taa a

Reverse gaa gaa ttt gct tcg gga act t

GAPDH
Forward act ccc att ctt cca cct ttg

Reverse ccc tgt tgc tgt agc cat att
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association of prognosis-related genes in the TCGA cohort with

the standardized mortality rates (Figure 2).
3.2 Consensus clustering analysis of
prognostic cuproptosis-related genes

In a consensus clustering analysis of 442 tumor specimens

from the TCGA cohort, 9 cuproptosis-associated genes were

compared to the expression of LUAD subtypes to investigate the

relationship between the two. Based on the cumulative

distribution function curves of the consensus score matrix

(CDF) (Figure 3A) and the proportion of ambiguous

clustering statistics (PAC) (Figures 3B, C), k=2 was the

optimal number. When a pair of samples has a high consensus

score, they are more inclined to be clustered into the same
Frontiers in Oncology 05
cluster in successive iterations. Consequently, the 442 patients

were divided into cluster 1 (n = 288) and cluster 2 (n = 154).

Subsequently, a significant difference in OS was observed

between patients in two clusters (Figure 3D). The expression

of CDKN2A, MTF1, PDHA1, PDHB, SLC31A1 was significantly

different between clusters 1 and 2 (Figure 3F). The distribution

patterns from PCA analysis showed that samples could

completely be distinguished into cluster1 and cluster 2

(Figure 3H). The heatmap showed the relationship between

the different expression of genes and clinical characters

(Figure 3E), and the volcano plot showed the logFC and FDR

value among these genes (Figure 3G). There were 169

upregulated genes as well as 137 downregulated genes between

the two clusters. The GSEA enrichment analysis found different

expressed genes of the two cluster were enriched in some

pathways, including signaling of antigen processing
D
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C

FIGURE 1

The expression of cuproptosis-related genes in LUAD patients and their prognostic value. Box plots (A) and heatmap (B) of cuproptosis-related
genes in LUAD when compared to normal tissues (with green and red signifying low and high expression levels, respectively). (C) Spearman
correlation and prognostic values of cuproptosis-related genes in LUAD patients. Red represents HR>1 whereas green represents HR<1. The
larger the circle, the smaller the log-rank p. (D) Correlation analysis between cuproptosis-related genes in LUAD patients. (E) Protein-protein
interactions among the cuproptosis-associated genes. The bigger the circle is, the most important gene it might be. *P<0.05, **P<0.01,
***P<0.001.
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presentation mediated by class I MHC, transcription regulation

of TP53, signaling of B cell receptor BCR and so on (Figure 3J).

In addition, the GO enrichment analysis of these genes showed

that they were also enriched in certain molecular processes,

including histone-serine phosphorylation, response to decreased

oxygen levels, multivesicular body, CXCR chemokine receptor

binding, etc. (Figure 3I).
3.3 Establishment, evaluation and
validation of prognostic signature based
on PCRG in TCGA-LUAD

A prognostic model was constructed based on cuproptosis-

related genes. In Cox univariate analysis, nine genes associated

with cuproptosis were found to be significantly associated with

overall survival (OS) in LUAD patients. Eight cuproptosis-

related genes were tested and screened out by LASSO analysis

(Figures 4A, B). Five genes were extracted using stepwise

regression to construct the model (Figure 4C). In order to
Frontiers in Oncology 06
develop a risk-score model, the following algorithm was used:

Risk score = (0.659854097) * DLAT + (-0.204720564) * GLS +

(-0.67817864) * MTF1 + (0.423421209) * PDHA1 +

(-0.805217147) * PDHB. The coefficients of the five PCRGs

were displayed in Figure 4D, and TCGA-LUAD patients was

divided into high-riskscore (n = 221) and low-riskscore (n =221)

subgroups according to the median to facilitate the next step of

study. As a measure of the signature’s specificity and sensitivity,

areas under curve (AUC) values were calculated for 1-, 3- and 5

years. They were 0.71, 0.68 and 0.63 in TCGA-training set

(Figure 4E). In addition, we found that the signature had not

only a prognostic value but also a good diagnostic value

(Figure 4F, AUC=0.899). We detected the MRNA expression

of cuproptosis-related signature in TCGA paired samples and

found the expression of DLAT, PDHB, PDHA1 were

significantly increased in cancer tissues when compared with

cancer-adjacent tissues, while the expression of GLS and MTF1

trended downward, the decrease was not significant between

paracancerous tissues and cancer tissues (Figure 4G). In the

Human Protein Atlas database, the expressions of GLS, MTF1
D
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FIGURE 2

Standardized mortality of 9 cuproptosis-related genes in the TCGA cohort. The standardized mortality of CDKN2A (A), DLAT (B), MTF1 (C),
PDHB (D), GLS (E), FDX1 (F), LIAS (G), LIPT1 (H), PDHA1 (I) in TCGA cohort. Blue dots correspond to events, and black dots indicate censor.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1080985
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.1080985
and PDHA1 in tumor tissues were lower compared with those in

normal tissues, while the expressions of DLAT and PDHB were

significantly higher in tumor tissues compared with those in

normal tissues (Figure 4H). Notably, all antibodies in the

database were used for each gene to avoid false positives.

The risk survival status charts and Kaplan–Meier (K-M)

survival analysis showed that survival time of LUAD patients in

the low-risk group was longer than that of LUAD patients in the

high-risk group, not only in TCGA training set (Figures 5A, E), but

also in TCGA internal testing set (Figures 5B, F) and external

verification set (GSE31210 and GSE30219) (Figures 5C, D, G, H).
Frontiers in Oncology 07
3.4 Distribution of prognostic riskscores
and prognosis stratified by clinical
characteristics

According to K-M curves, the OS of the high-risk set was

significantly worse than that of the low-risk group in age > 65

subgroups. In clinical subgroups of age ≤ 65, prognosis was not

significant after riskscore stratification (Figure 6A). After

stratifying for the characteristic variable of gender, it was

found that the OS of the high-risk set was worse than that of

the low-risk set in gender subgroups of patients (Figure 6B). In
D
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FIGURE 3

Characteristics of Cuproptosis-related Cluster in TCGA-LUAD cohort. (A) Delta area curve of consensus clustering indicated the relative change
in area under the cumulative distribution function (CDF) curve from k = 2 to 10. (B) The intragroup correlations were the highest and the inter-
group correlations were low when k = 2. (C) Cluster diagram for consensus clustering analysis (k = 2) of cuproptosis-related genes in 442 LUAD
samples in TCGA. (D) Kaplan-Meier curve showed survival probability of cluster1 and cluster2. (E) The heatmap showed the relationship between
clinical features and the expression of cuproptosis-related genes in two clusters. (F) The expression of 9 cuproptosis-related genes in two
clusters. (G) The volcano plot showed the different expression of genes between the two clusters. (H) PCA analysis for the two clusters. The
most significant GO enrichment (I) and multiple pathways by GSEA enrichment analysis (J) in two clusters.
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addition, stratification of pathological staging yielded resulted

that the OS of the high-set was significantly worse than that of

the low-risk set in stages III and IV subgroup (Figure 6C). Even

though there were no significant difference in the OS of low and

high risk sets in age ≤ 65, female, stage I and II subgroups, its

overall OS trend was consistent with that seen before

stratification. We speculated that this might be due to the

lower sample size after stratifying samples and resulting in less

statistical power.

Ultimately, even in different clinical subgroups, LUAD

patients in the high-risk group had a lower survival probability

than those in the low-risk group. In the subgroups after K-means

clustering, it showed a significant difference in the distribution of

riskscore, which proved the consistency of K-means clustering

resulted with cuproptosis-related signature results (Figures 5E-

H). Combining the analysis results of the K-means algorithm, we
Frontiers in Oncology 08
found that the riskscore was higher in Cluster 2 compared to the

Cluster 1 (Figure 6D). The distribution of riskscores differed

significantly between survival outcomes, suggesting that those

who occurring ending events were more likely to be from a high-

risk group (Figure 6E). There was no significant difference in the

distribution of the riskscore between the two subgroups (aged >

65 years or ≤ 65 years), implying that age was not a factor

affecting the distribution of the riskscore (Figure 6F). However,

gender affected the distribution of the riskscore, with female

patients having lower riskscore values compared to male patients

(Figure 6G). It was noteworthy that the riskscores were higher as

the tumor development and pathological stage changed

(Figure 6H). The above results suggest that after stratification

of clinical features, our riskscore distribution influenced

prognostic outcomes, and our signature has high specificity

and sensitivity in predicting the prognosis of LUAD patients.
D
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FIGURE 4

Identification of cuproptosis-related signature via LASSO-stepwise algorithms. (A, B) LASSO analysis with minimal lambda value. (C) Five genes
were screen out by stepwise Cox algorithm. (D) Coefficients of 5 cuproptosis-related genes finally obtained in stepwise Cox regression. (E) The
time-dependent ROC curve for Lasso-stepwise signature. (F) The ROC curve for LASSO-stepwise signature. (G) MRNA expression values in
paired samples in TCGA. (H) Protein expressions of 5 differentially expressed cuproptosis-related signature in the tumor and normal tissues from
the Human Protein Atlas platform.
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3.5 Identification of cuproptosis-related
modules derived from riskscore patterns

Setting the soft threshold b to 7 (unsigned, R = 0.86) in the

WGCNA could provide a suitable power value for the co-

expression network (Figures 7A, B). After identifying 8 different

modules, the correlation between different color modules and

clinical features was calculated separately (Figures 7C, D). Brown

module and riskscore subgroups exhibited the highest correlation of

module-trait relationships. For the brown module, the R value

between GS and MMwas reached 0.74 in riskscore (Figure 7E) and

0.44 in status (Figure 7F), which suggested that the cuproptosis-

related module was well constructed and the module was

significantly associated with prognosis. To identify Hub
Frontiers in Oncology 09
cuproptosis-related module derived from cuproptosis-related

patterns within the brown module, 167 genes with GS > 0.7 and

MM > 0.2 were considered hub cuproptosis-related genes. The GO

analysis of these hub genes was enriched into the lymphocyte

differentiation, T cell activation, lymphocyte proliferation, protein

complex involved in cell adhesion, inflammasome complex,

immunological synapse, guanyl−nucleotide exchange factor

activity, GTPase regulator activity and so on (Figure 7G). KEGG

analysis enriched these genes into Chemokine signaling pathway, B

cell receptor signaling pathway, PD−L1 expression and PD−1

checkpoint pathway in cancer and so on (Figure 7H). This

suggested that our modules closely related to the cuproptosis-

related signature and mainly affected the immunomodulation of

patients with LUAD.
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FIGURE 5

Evaluation and validation of prognostic signature. The risk-score, survival time, survival status and gene expression of the training set (A), testing
set (B), and external set GSE31210 (C) and GSE30219 (D). Kaplan-Meier analysis demonstrated the prognostic significance of the risk model in
TCGA training set (E), testing set (F) and GSE31210 (G), GSE30219 cohort (H).
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3.6 Immune infiltration analysis for
cuproptosis-signature

The heatmap showed the relationship between the riskscore

subgroups and clinical characters (Figure 8A). The volcano plot

showed the logFC and FDR value among these different

expressed genes (Figure 8B).

As part of this study, we performed enrichment analyses on GO

(Figure 8C), GSEA (Figure 8D), and GSVA (Figure 8E) to elucidate

the underlying functions and pathways associated with our

prognostic features. The results of GO, GSEA, GSVA, and

WGCNA all suggested that genes associated with our prognostic

features were associated with immune infiltration. Meanwhile, Risk-

scores were negatively correlated with CD274 (PD-L1) and CTLA4

expression (Figure 9A). We evaluated the differences in infiltration

of 22 immune cell types in the riskscore subgroup through the

Cibersort database (Figures 9B, C). The results showed that B cells

naive, Plasma cells, etc. were significantly higher while T cells CD4

memory resting, Macrophages M2, mast cells resting were

significantly lower in the high-risk group when compared to the

low-risk group. To demonstrate that the functions of the two
Frontiers in Oncology 10
subgroups were not biased by the analytical algorithm, Xcell

(Figure 9D), ESTIMATE (Figures 9E-H), and MCP-counter

(Figure 9I) algorithms were used to verify the stability and

robustness of the Cibersort result. We further found significant

differences in common immune checkpoints between the two

subgroups as well (Figure 9J). HLA genes are also closely related

to tumor immunity (16). Additionally, we examined whether HLA-

related genes were expressed differently in risk subgroups. High-risk

individuals tended to have lower HLA gene expression than low-

risk individuals (Figure 9K). Together, these results revealed a

higher tumor purity with lower immune cell infiltration in high-

risk subgroup, which may affect immunotherapy outcomes in

LUAD patients.
3.7 Clinical applications for cuproptosis-
signature

Identification of 20 important small molecules through the

L1000FWD database as drugs to improve poor prognosis in

high-risk groups (Figure 10A). Mitoxantrone was predicted to be
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FIGURE 6

Survival analysis after stratification of clinical characteristics and distribution of clinical characteristics after risk stratification. (A-C) Kaplan–Meier
curves and the log-rank test showed that the overall survival of the high-risk set was worse than that of the low-risk set in age and gender
subgroups of patients. (D-H) The distribution of riskscore in clusters, status, age, gender, as well as pathological stage.
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the most promising drug. We further visualized the 2D

(Figure 10B) and 3D (Figure 10C) structure of Mitoxantrone.

A nomogram was created by integrating clinical information and

genetic features from TCGA and performing multivariate Cox

regression models (Figure 10D). Calibration plots were applied

in OS outcomes, which demonstrated favorable concordance

between predicted and observed OS at 1-, 3- and 5-year survival

(Figure 10E). In terms of prediction, the C-index was 0.70 (0.67-

0.73), which reflects relatively good performance. Also, LUAD-

patients with high score had worse survival than those with low

score (Figure 10F). The AUC values of 1-, 3- and 5-year in

nomogram were 0.72, 0.74 and 0.74, respectively (Figure 10G).

Additionally, we evaluated the nomogram model in TCGA-

LUAD using decision curve analysis (DCA) (Figure 10H).

Altogether, risk score was an independent and good
Frontiers in Oncology 11
prognostic indicator, and LUAD patients could benefit more

after combining with pathological stage, T-stage and risk scores.
3.8 Validation of in vitro experiments and
molecular docking

To confirm the role of cuproptosis-signature in LUAD, we

further verified their differential expression in normal and tumor

samples by vitro experiments. qRT-PCR was performed in

paired samples of cancer and paracancer to detect mRNA

expression levels of the prognostic cuproptosis-signature. We

found that the expression of PDHA1, GLS, DLAT, PDHB and

MTF1 were differed between cancer and paracancer

(Figure 11A). We have deciphered that the small molecule
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FIGURE 7

Identification of cuproptosis-related signature via WGCNA. (A) The correlation between soft threshold and scale free topology model fit signed
R2. (B) The correlation between soft threshold and mean connectivity. (C) Clustering of module feature vectors. (D) The correlations between
modules and clinical traits were calculated. (E) The high correlation between GS and MM in the brown module in riskscore subgroups. (F) Genes
in the brown module were associated with survival status in TCGA. (G) GO enrichment analysis after screening out Hub gene from brown
module. (H) KEGG enrichnment analysis after screening out Hub gene from brown module.
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compound mitoxantrone could treat the risk of death due to

immune tolerance induced by cuproptosis-related signature.

FDX1 as an enzyme catalyzing cuproptosis-related signature

(17), we further used molecular docking to verify the direct

interaction of FDX1 with the small molecule compound

mitoxantrone (Figure 11B).
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Next, tissue microarray of 301 lung cancer patients from the

Nantong Cancer Hospital were used in a cohort study. FDX1

expression was identified by immunohistochemical staining in

301 lung cancer samples. We observed that FDX1 was located in

the cytoplasm of tumor cells (Figure 11C). Immunohistochemical

score (H-score) for immunostaining of tumor tissues also differed
D
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FIGURE 8

Identification of differentially expressed genes (DEGs) and potential signaling pathways in different isoforms. The heatmap (A) and volcano plot
(B) of the differential gene expression between high and low expressed cuproptosis-related signature in LUAD. GO enrichment (C) and GSEA (D)
analysis of the differential expressed genes. (E) GSVA enrichment analysis of the differential genes.
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in each sample (Figure 11D). 119 (39.5%) patients were classified

into FDX1 low expression subgroup while the FDX1 high

expression subgroup had 182 (60.5%) patients. In our cohort,

the patients with high FDX1 expression had significantly better

outcomes than those with low FDX1 expression (Figure 11E).

Stratification by pathological type revealed that the high

expression group of FDX1 had a better prognosis than the low

expression group in both LUAD and other lung cancer patients

(Figures 11F, G). Most importantly, we constructed Nomogram

and found that H-score was one of the most significant

independent predictors of OS (Figure 11H). The Harrell’ s c-

index for the nomogram model to predict the overall survival was

0.81. In a word, our study showed that FDX1, a key enzyme for
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cuproptosis, affected the prognosis of lung cancer patients by

influencing the expression of GLS, PDHA1, PDHB, DLAT,

and MTF1.
4 Discussion

Globally, lung cancer is the leading cause of death among

cancer patients. Approximately 40% of all the diagnosed cases

were LUADs (2). Immune escape and drug resistance are the

major drivers of cancer death and begin when cancer cells invade

surrounding tissues. With the recent advent of molecularly

targeted therapies and immunotherapies, survival in LUAD
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FIGURE 9

Immune infiltration analysis of signature. (A) The correlation analysis of PD-L1/CTL4 expression and riskscore distribution in LUAD. (B) The
percentage abundance of tumor-infiltrating immune cells showed the immune infiltration analysis between high risk-score and low risk-score in
LUAD patients. (C) The infiltrating levels of immune cells in high risk-score and low risk-score groups in LUAD patients. (D) Xcell algorithms
detected immune cell expression between the high-risk and low-risk subtypes. (E-H) Comparison of ESTIMATE, stromal, and immune scores
between the cluster 1 and cluster 2. (I) MCP-counter algorithm calculated the immune infiltrating cell score for each subgroups. (J) Comparison
of immune checkpoints between high-risk and low-risk subgroups. (K) The HLA genes between high-risk and low-risk subtypes. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
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has been highly improved. However, drug resistance and

recurrence remain the main causes of tumor progression in

patients with LUAD and are influenced by factors inherent to

immune cells, cancer cells, or both (18). The immune escape and

resisting tumor cell death are hallmarks of cancer as well as the

basis for acquiring resistance following immunotherapy (19, 20).

New discoveries of programmed cell death patterns and the

elucidation of related molecular mechanisms continually update

our knowledge of cell death in tumors. Recently, a new form of

cell death with copper-dependence, called cuproptosis, was first

proposed by Tsvetkov et al (17). There have been several studies
Frontiers in Oncology 14
showing an association between copper metabolism and

tumorigenesis, as well as a higher copper demand by cancer

cells than by normal cells, and that dysregulation of copper ions

is significantly associated with drug resistance (21). Liao et al.

considered that copper metabolism might be responsible for the

development of colorectal cancer with an immune response (7).

Currently, the specific mechanism of cuproptosis-related genes

in LUAD remains unclear.

In our study, we first found that 8 cuproptosis-related genes

were upregulated, while 4 genes were downregulated in LUADwhen

compared to normal tissues. Then, the K-means algorithm divided
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FIGURE 10

Clinical application of cuproptosis-related signature. (A) The potential drug for LUAD treatment. (B) The 2D structure of mitoxantrone. (C) The
3D structure of mitoxantrone. (D) The nomogram of the riskscore and clinical parameters (age, gender, T and pathological stage) of TCGA. (E)
The calibration curves displayed the accuracy of the nomogram in the 1-, 3-, and 5-years. (F) Kaplan-Meier curve in multiple Cox regression
analysis. (G) The time-ROC curve in multiple Cox regression analysis. (H) DCA curves to assess the ability of age, gender, risk score, T stage, and
their combination to predict overall survival of LUAD patients in TCGA-LUAD cohort. *P<0.05, ***P<0.001, ****P<0.0001.
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the cohort into two clusters, and the set of genes associated with

cuproptosis in LUAD was mainly enriched in MHC-I mediated

antigen processing expression, transcriptional regulation of TP53,

and signaling of the B cell receptor BCR in cluster 2, whose OS was

obviously poorer than that in cluster 1. These above results suggested

that the prognostic differences between cuproptosis-related clusters

were associated to immune response. There were five PCRGs

derived from univariate regression, LASSO, and stepwise

regression. Then after, five PCRGs were used to construct a novel
Frontiers in Oncology 15
prognostic risk signature, which stratified LUAD patients into high-

and low-risk subgroups. Differential cuproptosis-related mRNA

expression was verified in TCGA paired samples, and protein

expression of cuproptosis-related signature was further verified in

Human Protein Atlas platform. The prognostic signature integrated

5 PCRGs, including DLAT, MTF1, PDHB, GLS and PDHA1.

Among them, DLAT and PDHA1 were associated with poor

prognosis of LUAD while MTF1, PDHB and GLS were associated

with good prognosis of LUAD.
D

A B

E

F G H

C

FIGURE 11

Validation of vitro experiment and molecular docking. (A) Validation of mRNA expression in prognostic cuproptosis-related signature by qRT-
PCR. *P<0.05, **P<0.01. (B) The molecular docking between FDX1 and mitoxantrone. (C) The IHC results showed that FDX1 protein is highly
expressed in tumor tissues when compared with normal tissues. (D) Representative immunohistochemical microarray of FDX1. (E) Kaplan–Meier
curves showed that the overall survival of the low-risk set was worse than that of the high-risk set in Nantong cohort. (F, G) Kaplan–Meier
curves showed that the overall survival of the low-risk set was worse than that of the high-risk set in LUAD (F) and lung squamous cell (LUSC)
subgroups (G) of patients. (H) The nomogram of the H-score and clinical parameters (age, gender, smoking and T, N, M stage) of Nantong
cohort. ns, not significant.
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DLAT (dihydrolipoamide S-acetyltransferase) is expressed

in mitochondria which involved in cell glycolysis. A number of

malignancies, including lung cancer (22), gastric cancer (23) and

colon cancer (24), have been associated with high expression of

DLAT in various tumors. These studies suggested a potential

role of DLAT in abnormal cuproptosis metabolism in LUAD.

Similarly, copper-induced cell death was mediated by protein

lipoylation. PDHA1 (pyruvate dehydrogenase E1 subunit alpha

1) as a hub gene in Fatty acid metabolism pathway, played an

important role in cuproptosis. Chen et al. found that high

expression of PDHA1 in NSCLC promoted tumor progression

in vivo and in vitro (25). Notably, PDHA1 was highly expressed

in LUAD by Human Protein Atlas platform analysis, which was

opposite of mRNA expression in TCGA, indicating that PDHA1

might not regulated in mRNA level in LUAD. Interestingly,

MTF1, PDHB and GLS were reported to be highly expressed in

other tumor types, while in our study, we found that these genes

were strongly associated with good prognosis. MTF1 (metal

regulatory transcription factor 1) responds sensitively to both

metal excess and deficiency, protects cells from oxidative and

hypoxic stresses (26), is dysregulated in cancer and pain disease

(27). As a consequence of the mitochondrial respiratory and

functional impairment in LUAD, cells lacking MTF1 are more

sensitive to oxidative stress. PDHB (pyruvate dehydrogenase E1

subunit beta) encodes a subunit of the pyruvate dehydrogenase

complex, which converts pyruvate to acetyl-CoA in the

mitochondrion (28). Zhu et al. found that PDHB was

associated with tumor growth and metastasis and glycolysis

(29). GLS (glutaminase) is oncogenic and can influence the

metabolic reprogramming of cancer through its functional

selective genome and epigenome (30). A recent study showed

that in pancreatic ductal adenocarcinoma (PDAC), activated

GLS increased glutamine catabolism and production of

nicotinamide adenine dinucleotide phosphate (NADPH) and

glutathione, which prevented from being oxidative and

promoting tumor cell survival and tumor growth in mice (31).

Taken together, all of the five crucial genes were involved in

tumorigenesis and progression by regulating pathways

associated with tumor metabolism. Additionally, our data

further elucidated the important role of these 5 PCRGs in

LUAD, and the PCRGs for LUAD patients were highly

sensitive and specific.

Immunotherapy has been a powerful clinical strategy for

treating cancer (32). PD-1/PD-L1 checkpoint blockade

immunotherapy has joined chemotherapy as a standard

treatment for lung cancer (33). Unfortunately, the metabolic

reprogramming of tumors poses a considerable challenge for

cells to perform their immune functions as well as to cancer

immunotherapy (34). In particular, cells containing high lipid

acylated proteins are more sensitive to copper-induced cell

death. Thus, in tumors characterized by high lipid metabolism,

the induction of copper death in cells may be able to resolve drug

resistance caused by immune escape. As expected, our results of
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WGCNA algorithm, GO and KEGG analysis were significantly

associated with immune response related pathways, including T

cell receptor signaling pathway, PD-L1 expression and PD-1

checkpoint pathway in cancer, B cell receptor signaling pathway.

Similarly, Limma package further validated that the immune

pathways were enriched by cuproptosis-associated genes.

Notably, these pathways, such as the adaptive immune system,

signaling by GPCR and PI3K/AKT/mTOR signaling have been

widely confirmed to be involved in LUAD (35). Taken together,

the application of two machine learning algorithms revealed that

there was an inextricable connection between copper-dependent

cell death and tumor immune responses in LUAD (36).

A major finding of previous study found tumor purity was

negatively correlated with immune response and might be a

proxy for the level of immune response in the tumor

microenvironment (37). Consistent with the finding, in our

study, the tumor purity was higher and the immune

infiltration was lower in high-risk set when compared with the

low-risk one. The abundances of B cells, plasma cells, resting

memory T cells CD4, resting NK cells, monocytes, M2

macrophages, resting DCs, resting mast cells, and neutrophils

were substantially different between high and low riskscore

group. Ample evidence has shown that the infiltration of B

cells, especially naive B cells, memory B cells, and plasma cells is

associated with a good prognosis of LUAD (38). In contrast, we

found the high-risk subgroup had a poor prognosis while high

plasma cell expression. It is difficult to explain the discrepancy

between these data and our results. Considering the loss of an

HLA allele may be a mechanism of immune escape (39), we can

only speculate that the decreased expression of HLA genes as

well as immune checkpoint genes in the high-riskscore group is

likely to be associated with dysregulation of immune cells. More

data is needed in the future to support this conjecture.

Afterward, to verify the general applicability of the riskscore

subgroups, validation was performed on the internal validation set

and the external validation set GSE31210. The signature exhibited

good predictive performance for both the internal and external

validation sets. ROC curves and Kaplan-Meier curves showed that

PCRGs were good predictors of prognosis in LUAD patients. It is

worth noting that after stratified analysis of clinical characteristics,

the signature still produced significant prognostic differences in the

LUAD patients. In other words, the cuproptosis-related signature

had good predictive performance in OS and may serve as an

independent prognostic indicator for LUAD. Nomogram was

constructed to further advance clinical applications and the

accuracy of the maps was verified with calibration plots. Small

molecule drugs have been now commonly used in the treatment of

cancer and widely used in clinical practice (40). Our study identified

20 small molecule drugs thar were most significant for LUAD

treatment. The top 2 of them were mitoxantrone and 15-delta-

prostaglandin-j2. Mitoxantrone has been found to treat breast

cancer through blocking cellular autophagy (41). Whether

Mitoxantrone can inhibit tumor development by activating
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autophagy or copper death in LUAD needs to be further

investigated. In addition, 15-delta-prostaglandin-j2 was a natural

ligand for PPARg. Activation of PPARg is well known to be

beneficial in the treatment of breast and colon cancers (42).

PPARg plays a pivotal role in lipid metabolism (43) and protein

lipoylation is necessary for copper death. Thus, the role of PPARg in
LUAD deserves further elucidated.

Functionally, FDX1 catalyzes proteolipidylation of a battery of

substrates, as the most prominent marker of cuproptosis. Previous

bioinformatic analysis of cuproptosis-related genes is mainly at the

plane of RNA transcriptional regulation (44–46), ignoring the fact

that the function of proteases depends mainly on protein expression

and activity. As far as we know, our study was the first investigation

illustrating the correlation between FDX1 protein expression and

unfavorable prognosis of lung cancer patients by tissue microarray.

FDX1 as the bridge between unfavorable prognosis of lung cancer

patients and cuproptosis.

Mechanically, Mo. et al. found that lncRNA MIR31HG/miR-

193a-3p/TNFRSF21 axis may indirectly regulates the occurrence of

cuproptosis in lung adenocarcinoma. Wang et al. considered

lncUCA1/miR-1-3p/DLD axis leading to the occurrence of

cuproptosis (47). These studies involve in pre-transcriptional

regulation and lack direct favorable evidence for the role of

cuproptosis phenomenon in the prognostic outcome of lung

adenocarcinoma patients. Chen et al. discovered the alterations in

mRNAs such as BARX1, ENTP2 were found to be associated with

the influence of elesclomol (48). These experiments on these cells

lines only indirectly demonstrate the occurrence of possible

cuproptosis-related mRNA alterations at the cellular level. We

constructed a cuproptosis-related signature by bioinformatic

analysis, in which five genes serve as direct substrates of FDX1

and their alterations are themost significant markers of cuproptosis.

FDX1 affects the prognosis of lung cancer by altering the expression

of cuproptosis-related signature (GLS, PDHA1, PDHB, MTF1, and

DLAT), which more strongly confirms that the prognosis of lung

cancer patients is closely related to the occurrence of cuproptosis.

Several limitations are worth mentioning. Sincerely, the

hypothesis needs to be further validated by more research. To

begin with, the study only included cohorts from TCGA, GEO

and Nantong chort. It is not possible to fully assess the quality of

the data, to further evaluate the prognostic cuproptosis-

signature in the future, a prospective, multicenter study is

required. Lastly, to further clarify the mechanism and function

of the cuproptosis-signature in tumorigenesis and LUAD

progression, in vivo experiment might be conducted.

In conclusion, the purpose of this research was to develop a

prognostic cuproptosis-related signature, which could be used to

predict survival of LUAD patients, reflecting the tumor immune

infiltration. What’s more, it may be a key to improve the

prognosis for LUAD patients through immunotherapy. It is

expected that this research will provide new insights into how to

diagnose and treat LUAD patients with precision.
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