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Chronic lymphocytic leukemia (CLL) has become one of the most common

hematological diseases in western countries, with an annual incidence of 42/

100,000. Conventional chemotherapy and targeted therapeutic drugs showed

limitations in prognosis or in efficiency in high-risk patients. Immunotherapy

represented is one of the most effective therapeutic approaches with the

potential of better effect and prognosis. Natural killer (NK) cells are good

options for immunotherapy as they can effectively mediate anti-tumor

activity of immune system by expressing activating and inhibiting receptors

and recognizing specific ligands on various tumor cells. NK cells are critical in

the immunotherapy of CLL by enhancing self-mediated antibody-dependent

cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-

natural killer (CAR-NK) cell therapy. In this article, we reviewed the features,

working mechanisms, and receptors of NK cells, and the available evidence of

the advantages and disadvantages of NK cell-based immunotherapies, and put

forward future study directions in this field.
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Introduction

Chronic lymphocytic leukemia (CLL) has become one of the most common

hematological diseases in western countries, with an annual incidence of 42/100,000.

Its incidence rate has reached 30/100000/year in people over 80 years old (1). Starting

with the standard treatment methods based on chemotherapy, including purine

analogues and alkylating agents, the treatment methods for patients with CLL are also

constantly innovating and developing recently (2, 3). Despite the strong antitumor

activity of conventional chemotherapy, there was no improvement in overall survival

(OS) in patients with CLL (4). Recently, the emergence and vigorous development of
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targeted therapies, including B-cell Lymphoma 2 (Bcl-2) protein

inhibitors and B-cell receptor (BCR) signal inhibitors have

greatly improved the treatment options and prognosis of CLL

(5). Although the effectiveness of the above targeted therapeutic

drugs has been widely confirmed, it still shows some obvious

potential limitations, including poor treatment efficiency in

high-risk patients and the occurrence of drug resistance (6, 7).

In such cases, the introduction of other novel therapies to

achieve better treatment response and reduce the occurrence

of drug resistance becomes a necessity. Immunotherapy is one of

the most effective therapeutic approaches.

A series of new immunotherapy methods, including immune

checkpoint blocking and chimeric antigen receptor (CAR)

transduction, have shown significant therapeutic effects and

application prospects in a variety of lymphoid malignancies (8,

9), but the results in CLL (10, 11) cannot meet the expectations,

which may be caused by the defect of effector T cells (12, 13).

Therefore, further exploring the therapeutic effects of other types

of immune cells in CLL can make the immunotherapy of CLL

clearer and more complete. There are specific ligands on the

surface of tumor cells, and activated receptors and inhibited

receptors expressed by natural killer cells (NK) can specifically

bind to the former, thus mediating the anti-tumor activity of

immune system (14–16). Antibody-dependent cytotoxicity is an

important mechanism by which NK cells exert the effects of killing

cancer cells, which is mediated by CD16 receptors (17). According

to the characteristics and functional characteristics of NK cells,

this paper discussed the latest research progress of CLL

immunotherapy with NK cells as the core.
Overall view on NK cells

As an important part of the natural immune system, NK cells

play a key role in microbial infection and tumor cell recognition.

Generally, NK cells are classified according to the difference of CD

56 density expression, that is, CD3−CD56brightCD16−NK cells and

CD3−CD56dimCD16+ NK cells (18, 19). Mainly existed in the

peripheral blood system, CD3−CD56dimCD16+ NK cells are

associated with cytolytic activity by secreting granzymes and

perforin into target tumor cells (19). On the contrary,

CD3−CD56brightCD16− NK cells generally exist in secondary

lymphoid tissues, where they express and release various

cytokines to fight microbial infection or cancer cell proliferation

(19, 20). It has been demonstrated that CD56bright NK cells may

differentiate into CD56dim NK cells with the stimulation of

peripheral tissue fibroblasts (21).
Role of NK cells in the immune system

NK cell activity is controlled by the balance between various

activation, inhibition and cytokine receptors expressed on the
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cell surface, which bind to specific ligands expressed on the

surface of immune cells, host cells and tumor cells (22–24).

When NK cells contact with normal immune cells or host tissue

cells, the inhibitory receptor ligand signaling pathway and

MHC-I specific ITIM-bearing receptors will play a prominent

role and make NK cell toxic activity in a resting state (22, 25).

When NK cells sense the cancer cells or microbial infection in

the environment, their activated receptor ligand interaction

signal pathway will play a leading role and they will release

cytokines and lytic granules to damage the activity of target cells

(26). Since NK cells can only be activated to produce key

apoptosis-related cytokines in the presence of multiple

interactions, this ensures that NK cells do not accidentally

injure healthy tissues and cells on a large scale under

normal circumstances.

NK cells mainly perform two kinds of functions in tumor

cells: transmitting signals to circulating immune cells by

releasing cytokines; inducing the lysis apoptosis of tumor cells

by degranulation. Cytokines released by NK cells including GM-

CSF, IFN-g, IL-33 and TNF-a, combined with IL-4, IL-7, and IL-

12 stimulate the recruitment and activity of hematopoietic cells

to enhance the immune response (27). The involvement of NK

cells in cytolytic killing of tumor cells include direct killing

through releasing perforin and granzyme and ADCC (28–30). In

ADCC, the Fc receptors including FcgRIIIA and/or FcgRIIC
expressed on the surface of NK cells can bind to the Fc portion of

IgG1 or IgG3 whose Fab portion bound to tumor cells and the

NK cells get activated as a result. Then NK cells can release lytic

granules to kill the targeted tumor cells without pre-activation

(31). Some of the NK cell receptors are already found to be

valuable for leukemia treatment and tumor surveillance, which

were PD-1, 2B4 (CD244), CS1(CD319), LLT1 (CLEC2D) that

regulate NK cell cytotoxicity, and NKp44, NKp30, and NKp46

known as natural cytotoxicity receptors (NCRs).
Natural killer cell receptors

The functioning of NK cells is controlled by the activating

and inhibitory signals transmitted from the target cells which are

presented as the binding of receptors and ligands (16, 32).
Activating receptors

The main type of activating receptors of NK cells are the

NCRs, which belong to immunoglobulin-like family. NCRs

regulates the recognition of viruses, bacteria and cancer cells

by the immune system (31). Members of this protein family are

important in immune recognition, including NKp 46 (NCR 1,

CD 335), NKp 44 (NCR 2, CD 336) and NKp 30 (NCR 3, CD

337) (33). The mechanism of NCR protein is shown in Figure 1.

There is a gene encoding NKp 46 protein on human
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chromosome 19. Intracellular NKp 46 protein does not contain

ITAM sequence, and the amino acid residues in the

transmembrane region of NKp 46 protein act as the linker of ϵ
RI g and CD 3 z, which plays a role in transmitting activation

signals (34). The ligands recognized by NKp 46 mainly include

four categories: tumor cell ligands, viral ligands, bacterial ligands

and parasite ligands (35). The most classical tumor ligands are

those of melanoma and myeloma, while the ligands of most

tumor cells are still unknown. Hemagglutinin (HA) and

hemagglutinin neuraminidase (HN) are common virus ligands

of NKp 46. When the cells are infected by Mycobacterium

tuberculosis, vimentin appears on the cell surface, which is the

bacterial ligand of NKp 46. The erythrocyte membrane protein

of plasmodium falciparum (PfEMP 1) belongs to the parasitic

ligand of NKp 46. NK46 protein is expressed in all mature NK

cells and is responsible for initiating the killing process of NK

cells. The expression level of NKp 46 indicates the cytotoxicity of

NK cells. When NKp 46 protein binds to its ligand, the killing

program of NK cells is activated, and the levels of IFN-g and

TNF-a are increased, thus exerting the anti-infection immunity

and killing tumor cells (36). The activation signal of NK cells

mainly depends on ITAM-related receptors, which need

activation of NKp 46 protein. This cascade signaling is

ubiquitous in NK cells. The junction proteins of DAP 12,

FcRg, DAP 10 and CD 3 z all contain ITAM, while NK cells

can express type I transmembrane proteins Fcϵ RIg, CD 3 z and
DAP 12. When NKp 46 protein binds to the ligand, CD 3 z and
Fc ϵ R 1 g will also bind to NKp 46 protein, accompanied by the

phosphorylation of ITAM in the linker protein, which is closely
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related to Src family kinases such as Lck and Fyn (35, 37). When

ITAM in the linker protein is phosphorylated, tyrosine kinases

such as Syk and/or ZAP 70 will be recruited and activated, which

requires the SH 2 domain to play a major role (38). When

tyrosine kinases are recruited and activated, transmembrane

linker proteins including LAT and NTAT will also be

activated, thus activating downstream phospholipase C

(PLCg), phosphatidylinositol - 3 - hydroxy kinase (PI 3K) and

Vav 1, Vav 2 and Vav 3. When PLCg is activated, the influx of

extracellular calcium ions is enhanced. After activation of PI 3K

and Vav 1, small G protein Rac 1 is recruited, and then cascade

phosphorylation is induced through PAK1-MEKEERK signaling

pathway, thus activating MAPK signaling pathway (39). Signal

cascade reaction causes a series of gene expression promotion,

including actin cytoskeleton rearrangement, degranulation,

cytotoxicity and cytokines or chemokines. NKp46 protein

plays a synergistic role with other commonly activated

receptors in the process of activating cytotoxicity of NK cells.

Relevant studies show that the Ca2+ influx of NK cells is closely

related to the activation signal transmission process related to

NKp46, in which the binding proteins of NKp46 are 2B4, CD2,

NKG2D and DNAM-1 (40). However, whether the synergistic

effect of NKp46 protein and different types of co-activated

receptors is the same still needs further study.

The gene encoding the NKp30 protein and the NKp40

protein is present on human chromosome 6. There are three

main specific ligands for NKp30 protein, which are tumor cell

ligands, partial virus ligands, and parasitic ligands. B7-H6,

BAG6/BAT3 and galectin -3 belong to the common tumor cell
FIGURE 1

The mechanism of NCR protein of NK cell.
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ligands of NKp30 protein. Viral ligands of the protein include

vaccinia virus, human cytomegalovirus pp65, and so on;

Plasmodium falciparum erythrocyte membrane protein

(PfEMP1) is the parasitic ligand (35) of NKp30 protein.

NKp30 and NKp46 are highly similar in protein expression

and signal transduction. When triggering cytotoxicity of NK

cells, NKp30 exerts synergistic effects with NKp46 and NKp44.

Delahaye et al. transfected NK cells with NKp30a, NKp20b, and

NKp30c and found that NKp30b could regulate Th1 cytokine

production, and NKp30c played a role in enhancing IL-10

secretion and transmission of inhibitory signals by rapidly

phosphorylating p38MAPK (41). In addition, soluble BAG6

has been confirmed to exist in the plasma of patients with

CLL, and when CLL develops to the advanced stage, the level

of soluble BAG6 in plasma will significantly increase (42).

However, exosome BAG6 can enhance the cytotoxicity of NK

cells (42). It is a consensus that the anti-tumor effect of NK cells

is influenced by tumor microenvironment, and the opposite

effect of the same molecule makes the anti-tumor immune

mechanism more complicated.

NKp44 protein is expressed on the surface of activated NK

cells and acts as a specific marker for activated NK cells. There

are three specific ligands for NKp44 protein, which are tumor

cell ligands, viral ligands and bacterial ligands. Viral ligands

include HA and hn; Bacterial ligands are dominated by cell wall

components of Mycobacterium tuberculosis (43). The binding of

NKp44 protein to KAPAP/DAP12 is mainly dependent on the

lysine residue in the transmembrane region protein. When the

two are combined, the ITAM of KAPAP/DAP12 functions as a

signaling pathway for activation (44). ITAM undergoes tyrosine
Frontiers in Oncology 04
residue phosphorylation after NKp44 activation, which is

mediated by tyrosine kinase (Syk) and accompanied by

phosphorylation of ZAP70. After the activation of this

signaling pathway, downstream signal transduction triggers

cytotoxicity of NK cells (44).

NKG2D homodimer is another important activating

receptor of NK cells. The mechanisms of action for activating

receptors such as NKG 2D and inhibiting receptors are

summarized in Figure 2. The adaptor protein DAP10 can be

non-covalently bound to NKG2D, which is an activated receptor

in nature. The binding of the two will activate multiple signaling

pathways, including mitogen-activated protein kinase MAPK,

Janus kinase (Jak)/signal transduction and transcription (STAT)

signals, etc. (45). The YxxM motif is the intracellular fragment

that DAP10 relies on to bind to p85PI3K, Grb2, and Shc (44).

Relevant studies have shown that the crosslinks of DAP10 and

NKG2D can further bind to p85 PI3K and Grb2-Vav-1-SOS1

complexes to activate the Akt/PKB signaling pathway (46).

Activation of SLP76 and PLC g 2 generally occurs after PI3K

and Grb2-Vav1 complexes are recruited by DAP10 (47).

Activat ion signal final ly promotes Ca2+influx, ce l l

degranulation and cytokine secretion. Segovis et al. found that

the interaction between p85 PI3K and the adaptor protein CrkL

is necessary for NK cell activation (48). Small Rap1 belongs to

the small Ras family and can be recruited by PI3K and CrkL (48).

The protein recognized by NKG2D is highly expressed in tumor

cells, but in order to escape the recognition and killing of NK

cells, some tumor cells reduce the expression of NKG2D on the

surface of NK cells by releasing soluble ligands and secreting

immunosuppressive cytokines. Activated receptors of NK cells
FIGURE 2

The mechanism of NKG2D, other important activating receptors, and the inhibitory receptors in NK cell.
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can work together with receptors of other NK cells to activate

cytotoxicity of NK cells. A family of signaling lymphocyte

activation molecules including NK-t-b antigen (NTB-A) and

2B4 can activate the cytotoxicity of NK cells by co-stimulation.

There is a significant up-regulation of CD48 in EBV-infected B

cells and lymphoma cells that is specifically recognized by 2B4

(49). NK cell co-receptors, such as CD5, also play an important

role in the process of polarization degranulation (50). CD94/

NKG2C heterodimer is composed of type II proteins of the type

C lectin family, and both it and killer cell Ig-like receptors (KIRs)

belong to the activation receptors of NK cells, which can

specifically recognize HLA-I molecules (51). There is limited

research on NK cell-activated receptors. According to the results

of the current research, as a non-polymorphic MHC class Ib

molecule widely expressed in multiple cells, there is a non-

monomer peptide binding motif in the HLA-E protein structure

that can bind to CD94/NKG2C, but the binding degree is weak

(52). The Type I transmembrane molecule KIRs, as a member of

the immunoglobulin superfamily, specifically recognizes human

leukocyte antigens A, B, and C (HLA-class I) (53, 54). HLA-I

molecules are KIRs ligands, but the results of earlier studies

supported that the functions of HLA-I and HLA-II molecules in

regulating NK cell activity are likely to be closely related to the

interaction between NKp44 and HLA-DP, which may be

regulated by peptides presented by HLA-DP isoforms (55).

Besides, CD16 is another important activating receptor of NK

cells which is involved in ADCC (17, 56). CD16 is expressed on

large granular lymphocytes (LGLs) and also on granulocytes,

tissue macrophages, and subsets of monocytes, eosinophils, and

dendritic cells at moderate levels. It has been shown that the

CD16 antigen can be non-convalently associated within the

membrane of NK cells, and it is widely used in cancer

immunotherapy in clinical practice (57, 58).
Inhibitory Receptors

The inhibitory receptors in NK cells mainly recognize MHC

class I molecules which are HLA in humans (59). The inhibitory

signaling by MHC-I-specific receptors is essential for hematopoietic

cells to avoid destruction by NK cells. The inhibitory receptors of

NK cells specific for MHC class I molecules fall into three families,

including KIRs, leukocyte immunoglobulin-like receptors (LIRs),

and NKG2A.There are five human-derived KIRS, namely,

KIR2DL1 that recognizes HLA-C C2 isoforms, KIR2DL2 and

KIR2DL3 that recognize HLA-C C1 and two specific HLA-B

isoforms, KIR3DL1 that binds to HLA-B and HLA-A isoforms

with Bw4 epitopes, and KIR3DL2(56 that recognizes specific HLA-

A isoforms (54). After specific binding of KIR2DL, KIR3DL, and

CD49/NKG2A to their respective ligands, the ITIM sequence is

phosphorylated and activated by SRC family kinase (SFK). The

activated ITIM will recruit SHP-1/SHP-2 and down-regulate the

phosphorylation level of downstream signaling molecule (XX/YY)
Frontiers in Oncology 05
that activates the receptor, thereby inhibiting the cytotoxicity of NK

cells (60). KIR2DL4 is not a common receptor in humans, because it

has both activating and inhibitory signaling domains (61). Ig-like

transcript 2 (ILT2) is another HLA-specific inhibitory receptor. NK

cells express inhibitory checkpoints that regulate the intensity and

range of the immune response, prevent the normal issues from

being attacked, and maintain immune cell homeostasis (62). The

checkpoints are an important reason for immune tolerance in the

genesis and development of tumors (63, 64). The ligands are

upregulated on tumor cells. The inhibitory checkpoints of NK

cells also include T cell Ig and ITIM domains (TIGIT) and

CD96/Tactil.
Adhesion and polarization of NK cells

The functions of NK cells in killing virus-infected cells and

tumor cells need to be completed step by step: First, NK cells

complete the binding to target cells under the mediation of cell

adhesion molecules; Next, NK cells undergo polarization to

complete the migration of cytotoxic particles to target cells;

Finally, the cell loner releases perforin and granzyme to the

target cells (Figure 3A). When NK cells exert natural

cytotoxicity, the interleukin LFA-1(a L b 2 integrin, CD11a/

CD18) plays an important role in mediating the binding of NK

cells to target cells. In the LFA-1-deficient mouse model, NK

cells were unable to kill the target cells due to impaired coupling

formation (65). Similarly, blocking antibodies with LFA-1 can

also cause NK cells to lose cytotoxicity to kill target cells (66). A

large number of studies have confirmed that NK cells must have

the participation of LFA-1 in the process of adhesion to target

cells. The cyclic structure formed by LFA-1, talin and actin

ensures the stability of the immune synapse formed between NK

cells and target cells. This scaffold itself belongs to a special signal

complex (67). At the same time, this structure is responsible for

the transport of cytotoxic particles and plays a key role in killing

the target cells (67). Targeted polarization of microtubule

organizing center (MTOC) is a critical link in NK cell killing,

followed by accumulation of cytotoxic particles at the immune

synapse (67). Abundant MTOC, granular, and microtubule

structures are aggregated at the center of the LFA-1-LP actin

ring (68). Further studies confirmed that both the initial binding

of NK cells to target cells and the reorganization of agonist

protein cytoskeleton require the binding of ICAM-1 and LFA-1

to exert the mediating effects, which has a significant cell cycle

dependence and is an essential link in particle polarization (69).
Other mechanisms of NK cell
mediated cytotoxicity

The binding of NK cells to death receptors is another

mechanism for killing, distinct from exocytosis of dissolved
frontiersin.org
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particles. The initiation of apoptotic programs requires the

activation of three different receptor/ligand systems: TNF,

which binds to TNF receptor -1 or -2, FasL, which binds to

CD95(APO-1/Fas) receptor, and TRAIL, which binds to

different TRAIL receptors. Regulation of FASL and TRAIL-

mediated killing were the next major concerns (Figures 3B, C).

FASL is a type II transmembrane protein expressed on the

surface of activated T cells and NK cells (70, 71). The cells

synthesize FASL in the endoplasmic reticulum and transport it

to secretory lysosomes through the Golgi apparatus (72). FASL is

transported to the surface by degranulation and then rapidly

diffuses into the plasma membrane. LFA-1-mediated

intrasynaptic adhesion may limit the diffusion of FASL into

the plasma membrane (72). In addition, FASL can also be briefly

exposed to the surface by incomplete particle fusion (72). The

CD95 receptor is locally attached to the surface of virus-infected

cells and cancer cells, and FASL, when distributed on the surface,

binds to the former, thus activating the apoptotic signaling

pathway (73). Subsequently, metalloprotease cleaves the bound

FASL, and the resulting soluble FASL is not cytotoxic (74).

Under special circumstances, metalloprotease can produce

significant inhibition on the apoptotic process caused by FASL

in binding state (75). When the CD95 receptor is activated, the

internal signaling pathway is stimulated, and the assembly of

death induction signaling complex (DISC) occurs, which

activates caspase 8 and 10, and induces the final apoptosis

through caspase cascade and mitochondrial membrane

potential depolarization (76).

Cytotoxic cells such as T cells and NK cells express

transmembrane protein II TRAIL(79 that shares homology

with FASL and TNF (77). TRAIL was not detected on the

surface of freshly isolated NK cells, but surface TRAIL was

detected under stimulation by IL-2, IL-15, or IL-12 (78).

TRAIL-mediated cytotoxicity is highly dependent upon NK

cell killing virus to infect cells and cancer cells, which is

common in liver NK cells (79). However, soluble TRAIL is
Frontiers in Oncology 06
different from soluble FASL in that it maintains apoptotic

activity and induces the death of cells around NK cells that

secrete TRAIL.
Mechanism of tumor escape from NK
cell immune surveillance

In order to avoid the killing effect of NK cells, tumor cells

take corresponding measures. The specific mechanism is

summarized in Figure 4. The decreased killing effect of NK

cells on cancer cells is closely related to this. Clinical studies have

shown that NK cell dysfunction is prevalent in a variety of

hematological malignancies and solid tumors (80). It is common

that up-regulation of inhibitory NK receptor ligands such as

KIR2DL4, immunoglobulin-like transcript 2(ILT2) and ILT4

human leukocyte antigen g(HLA-G) in tumor cells is more

common in immune stress, whereby cancer cells escape NK

cell killing (81). In addition, the poor prognosis in tumor

patients was confirmed to be closely related to abnormal HLA-

G expression, which most likely helped the tumor to escape from

immunotherapy (82). The inhibition of NK cell proliferation and

cytotoxicity was attributed to reduced IFN production by HLA-

G in combination with IL − T2 − g and TNF − a (83). The

activity of GD2-specific CAR-NK cells can be inhibited by HLA-

G expressed on Ewing sarcoma (84). In patients with CLL,

blocking HLA-G on tumor cells is considered to be an effective

means of sensitizing NK cell immunotherapy (85).

Soluble molecule and ligands produce by tumor cells can

also help themselves to escape recognition and killing by NK

cells. Soluble IL-2R a produced by tumor cells can bind to IL-2,

which is necessary for the proliferation and activation of NK

cells. Such competitive binding results in the failure of IL-2R on

the surface of NK cells to bind to IL-2, resulting in the reduction

of NK cell activity (86). Studies have shown that high expression

of soluble ligand of NKp30 and major tissue MHCI related chain
B CA

FIGURE 3

(A) The mechanism of NK cell mediated cytotoxicity by releasing cytotoxic particles. (B, C) The mechanism of NK cell mediated cytotoxicity
binding of NK cells to death receptors.
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A(MICA) in serum and soluble ligand of NKG2D ULBP1-3 in

serum can lead to decreased NK cell killing ability (42).

Recognition of ligands on tumor cell membrane by NK cells

can be blocked by the shedding of soluble ligands in tumor cells

(87). Tumor cell shedding ligands require the protein disulfide

isomerase ERp5, disintegrant and metalloproteases ADAM10

and ADAM17 to function (87). Ferrari de Andrade et al.

confirmed through experiments that the antibodies at the

protein cleavage sites of MICA and MICB could inhibit the

two proteins from falling off the surface of cancer cells and

reactivate the killing effect of NK cells (88).

The binding of NK cells to the death receptor initiates an

exogenous apoptotic cascade. The death signal is emitted by the

death receptor and transmitted to the cells through a special

signaling pathway. The inactivation of the death receptor will

cause disorders of the normal apoptotic program, and the

above conclusions were verified in metastatic breast cancer

samples (89). Mutations of the TRAIL receptor gene are less

frequent in human tumors (90–92). The gene mutations of

L334F, E326K, E338K and K386N are the tumor-related

TRAIL receptor gene mutations discovered so far. These gene

mutations can directly lead to the blocked recruitment process

of intracellular components such as caspase -8 or FADD, and

further cause the loss of TRAIL-R2 function (93). At the same

time, the down-regulation of TRAILL-R1 and TRAIL-R2 as

well as the apoptosis resistance of B cell malignant tumors are

indeed closely related to the 8p chromosome. The common

associated alleles in epithelial cancer do suggest poor prognosis

and metastasis (94, 95). Similarly, the absence of a functional

mutation in the FAS gene in tumor cells helps tumor cells
Frontiers in Oncology 07
escape CD95L/FasL-binding-activated apoptosis (96).

Therefore, tumor cells can resist the killing effect of NK cells

through various pathways, regardless of the external or internal

apoptotic pathway.
NK cells in CLL

The NK cells in the patients with CLL were initially found to

be impaired in cytolytic activity in the early 1980s, which were

believed to result in the NK cell being unable to kill CLL cells and

was mainly caused by intrinsic NK cell defects (97, 98).

Following findings suggested that immune escape mechanisms

of CLL cells were also the cause of impaired cytolytic activity of

NK cells apart from intrinsic defects (42, 85). Some other studies

reported different results, which showed that the NK cells in

peripheral blood of patients with CLL expressed the activity of

degranulation, cytokine production and ADCC (99). There are

also results indicating that the NK cells in the patients with CLL

can be restored with adequate activating signaling from certain

types of interleukins (100, 101). Based on those findings, it can

be inferred that the NK cells have the potential to play an

important part in immunotherapy for the patients with CLL,

because their cytolytic activity impairment can be reversed in

certain conditions (102). Besides, some later studies find that the

low-level expression of HLA-class I molecules is observed in the

CLL cells of most patients, and the missing of HLA-class I

molecules leads to the killing of tumor cells mediated by NK

cells, which also demonstrates the mechanism and effect of NK

cells against CLL (103, 104).
FIGURE 4

Mechanism of tumor escape from NK cell immune surveillance.
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It has been found in some studies that the CLL patients have

more peripheral NK cells than healthy people, and that the

increased amount of NK cells is correlated with better prognosis

(105, 106). However, some other studies reported different

results about the correlation between the increased amount of

NK cells and the prognosis of CLL and did not support the

correlation (107). One factor contributing to the different results

of the role of NK cells in patients with CLL is CMV infection, in

which case the number of mature NK cells expressing more

activating receptor CD94/NKG2CO increases adaptively, and

the phenotype of the NK cells changes (108). The difference may

also come from the study design and subjects of different studies,

possibly including the inclusion and exclusion criteria,

experiment methods, signaling substances for stimulating the

NK cell receptors. According to the findings above, insufficient

studies have been conducted on the mechanism and

functionality of NK cells in the patients with CLL, so it should

be further studied to understand and clarify the effect of NK cells

against CLL.
Immunotherapies involving NK cells
in CLL

NK cells are usually involved in the immunotherapies in

CLL through stimulated or restored activity of patients’ NK cells

or the ones with activity administered to the patients. The so-

called adoptive immunotherapy refers to the in vitro induction

and culture of patients, healthy donors, or autologous or

allogeneic NK cells based on NK cell immunotherapy, to exert

the effect of directly or indirectly killing tumor cells through

these NK cells. The source of NK cells is an important factor in

determining the efficacy of this treatment. At present, only

autologous NK cells are actually applied to cancer

immunotherapy, but NK cells isolated from the peripheral

blood of patients are difficult to expand in vitro as expected.

Studies have confirmed the therapeutic effect of autologous NK

cells in digestive system cancer. When the NK cells reached

4720fold amplification in vitro, they showed high in vitro

dissolution activity and strongly expressed functional markers

such as NKG2D and CD16, but no clinical response was

observed (109). The patient’s treatment likely affected the

functional status and proliferative capacity of isolated NK cells

in vitro, which also explains the poor clinical efficacy of

autologous NK cell immunotherapy (110). There is a general

problem of high dysfunction and reduced number of NK cells in

cancer patients, so it is of great clinical significance to study the

adoptive transplantation of allogeneic NK cells. After extensive

exploration, Miller et al. found that the effectiveness of allogeneic

NK cell adoptive transplantation was confirmed by the results of

a clinical experiment of allogeneic NK cell reperfusion. In this

experiment, after immunosuppressed AML patients were re-
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injected with NK cells and treated with IL-2, IL-15, the number

of NK cells were increased, and five of the 19 patients were in

remission (111). The results of a clinical study by Tonn et al.

showed that 75% of the 15 patients with advanced drug-resistant

malignancies (lung cancer, leukemia, and lymphoma) developed

an anti-tumor response 48h after two injections of NK-92 cells

(112). However, whether NK-92 cells can become a new type of

cancer treatment still needs further investigation. Studies have

proved that NK cells derived from induced pluripotent stem cells

(iPSCs) show high cytotoxicity to a variety of tumors in vivo and

in vitro (113). The research by Zeng et al. confirmed that NK

cells most likely originated from peripheral blood-induced

pluripotent stem cells (114). Next, we will describe in detail

the immunotherapy of NK cells in CLL.
Intensification of NK cell-mediated ADCC

One approach involving NK cells the immunotherapies in

CLL works through intensifying NK cell-mediated ADCC,

which uses tumor-specific monoclonal antibody (mAbs) or

bispecific and trispecific ki l ler engagers (BiKEs or

TriKEs) (Table 1).
Monoclonal antibodies
Tumor-specific mAbs are one of the stimuli inducing ADCC

medicated by NK cells in immunotherapies in CLL, which

recognize the different ligands on the surface of CLL cells,

including CD20, CD19 and CD37 (17, 56). The first mAbs

employed in immunotherapy in CLL were the family targeting

CD20, of which the first approved for clinical use was rituximab

(115). All of the antitumor mechanisms of anti-CD20 mAbs are

presented in Figure 5. Rituximab is approved by FDA for non-

Hodgkin’s lymphoma. There are several explanations for the

anti-tumor effect of rituximab, including complement-

dependent cytotoxicity (CDC), direct target cell apoptosis,

antibody-dependent phagocytosis and ADCC (116). Rituximab

had low efficacy when used alone, while its joint use of

fludarabine and cyclophosphamide (FCR) adds to the efficacy

(117). FCR is an option for the patients who have not receive

treatment before or those with recurrent tumors (118, 119). The

limitations of the use of anti-CD20 mAb alone in CLL

immunotherapy are mainly due to the following reasons: First,

the CD20 antigen on the surface of CLL cells is lost due to

rituximab, which causes an increase in antigen-loss cells that

tolerate NK cell-mediated ADCC, resulting in a decrease in

efficacy (120). Second, weak binding of FcgRIIIa to rituximab on

the surface of NK cells may also result in reduced efficacy (116).

Additionally, rituximab can increase the release of inhibitory

substances suppressing the immune reaction through weakening

NK cell-mediated ADCC (121). The limited therapeutic efficacy
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FIGURE 5

The antitumor mechanisms of anti-CD20 mAbs.
TABLE 1 Tumor-specific antibody therapies.

Target Antibodies Anti-tumor effect Reseaon of limited efficacy
Improving the
therapeutic
efficacy

CD20 rituximab

complement-dependent
cytotoxicity (CDC);
direct target cell
apoptosis; antibody-
dependent
phagocytosis; ADCC

the loss of CD20 antigen causing the increase of antigen-loss cells resistant
to NK cell-mediated ADCC and reducing the efficacy as a result; poor
affinity of rituximab to FcgRIIIa; increase the release of inhibitory
substances suppressing the immune reaction through weakening NK cell-
mediated ADCC; the impaired NK cell activity in the CLL patients

Obinutuzumab glycoengineering

Ofatumumab

Ublituximab

CD19
inebilizumab (MEDI-
551).

afucosylation:
increase the binding
affinity of mAbs to
FcgRIIIa

Fc-engineering

CD16

BiKEs(a single-chain
variable fragment
(scFv) recognizing
CD16 + a scFv
recognizing tumor
antigens)

transferring signals as immunological synapses and to induce cytotoxicity

TriKEs increasing the possibility of identifying tumor cells in the case of one antigen missing and reduces immunological evasion
F
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of mAbs in immunotherapy of CLL is also possibly associated

with the impaired NK cell activity in the CLL patients. To

improve the therapeutic efficacy of mAbs in immunotherapy

of CLL, glycoengineering were attempted to enhance the ADCC

effect to increase the affinity of anti-CD20 mAb to activating Fc

receptors. Obinutuzumab was the first humanized mAb

modified through being glycoengineered targeting CD20,

which was shown to induce stronger ADCC and direct target

cell death in vitro compared to rituximab (31).

Ofatumumab is a lately approved mAb targeting CD20 at

different fragment from rituximab and obinutuzumab (122).

Although both ofatumumab and obinutuzumab are proved to be

effective in phase 3 clinical trials, ofatumumab is preferred in the

later course of therapy than obinutuzumab because it is less

affected by the history of treatment (123–125). Ublituximab is a

novel glycoengineered anti-CD20 mAb found to induce stronger

NK cell-mediated ADCC against CLL cells in vitro than

rituximab (126). Ublituximab has been shown to have good

single-agent activity or efficacy in combination with ibrutinib in

relapsed or refractory CLL (127–129).

The mAbs targeting CD19 are another family used to intensify

NK cell-mediated ADCC. The current roles of anti-CD19 mAbs

are shown in Figure 6. It has been found that some modifications

improve the efficacy of mAbs targeting CD19 in immunotherapies

in CLL. For example, afucosylation has been shown to increase the

binding affinity of mAbs to FcgRIIIa on NK cells and eventually

enhance ADCC potency, which is represented by inebilizumab

(MEDI-551). Fc-engineering is also an effective modification to

mAb shown to enhance killing effect of NK cells on B lymphoma

and leukemia cells (130, 131).
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Bispecific and trispecific killer cell engagers
BiKEs and TriKEs are additional therapeutic approaches

that are newly found to trigger human NK cell effector function

through CD16 signaling and induce cytotoxicity and cytokine

production (58). BiKEs consist of a single-chain variable

fragment (scFv) recognizing CD16 and a scFv recognizing

tumor antigens at the same time, which enable them to

transfer signals as immunological synapses and to induce

cytotoxicity (132). TriKEs recognize two different tumor

antigens, which increases the possibility of identifying tumor

cells in the case of one antigen missing and reduces

immunological evasion compared to BiKEs (133). There are

limited studies on therapeutic strategies exploiting BiKEs and

TriKEs to trigger NK Cells in CLL, but the results suggest that

they are promising in the NK cell immunotherapy in CLL.

Feys’ group developed different BiKEs constructs binding

CD19 and CD16, and found them able to induce ADCC

against primary CLL cells in vitro (134, 135). Later, the study

of Gleason et al. suggested that a BiKE binding CD16 and

CD19 and a TriKE binding CD16, CD19 and CD22 enhanced

the NK cell cytotoxicity and production of IFNg, which

increased the efficacy of NK cells in killing CLL cells

consequently (136). The TriKE binding CD16, CD19 and

CD22 has shown better efficacy in activating NK cells than

the agents targeting CD20 with higher expression than CD19,

which means the combined stimulation of CD22 and CD19 is a

better option (136). A TriKE recognizing CD16, CD19 and IL-

15 cytokine can activate the NK cells from healthy donors and

cause killing of CLL cells, showing promising efficacy in

refractory CLL (137).
FIGURE 6

The antitumor mechanisms of anti-CD19 mAbs.
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Allogeneic NK cell therapy

Before BCR and Bcl-2 inhibitors were found to be effective

and started to be employed in treating high-risk CLL, allogeneic

hematopoietic stem cell transplantation (allo-HSCT) was the

only curative option for the patients with recurrent or refractory

CLL (138). The introduction of BCR and Bcl-2 inhibitors in CLL

has given rise to the concerns of the risks and benefits of allo-

HSCT in high-risk CLL, which greatly decreased the application

of allo-HSCTs (139, 140).

In haplo-HSCT for high-risk lymphoid leukemia, the KIRs

on the NK cells from the donors do not bind to the HLA on the

surface of the patients’ leukemia cells, so the NK cells do not

receive inhibitory signaling from the binding of KIRs and HLA

and therefore get activated and start to kill leukemia cells. Bases

on this mechanism, allogeneic NK cells from the donors are very

important in graft-versus-leukemia (GvL) effect, which has been

adequately studied and proved (141, 142). Besides, in vitro

studies have found evidence on the ability of allogeneic NK

cells to kill CLL cells without recourse to KIR–HLA mismatches

(143). On the contrary, the GvL effect in allo-HSCT for CLL

relies primarily on T cells (144, 145). However, the GvL effect

mediated by T cells may lead to graft-versus-host disease

(GvHD) in HSCT for CLL. By contrast, allogenic NK cells can

be a safer option for immunotherapy for CLL because they do

not mediate GvL effect directly (141, 142, 146).
CAR-NK cell therapy

At present, CAR T cell therapy is one of the focuses of the

adoptive immunotherapies, and its application in acute

lymphoblastic leukemia, CLL, or lymphoma has achieved good

outcome in clinical practice. For example, anti-CD19 CAR T

cells are already approved for clinical use in the patients with

aggressive B-cell NHL or acute lymphoblastic leukemia.

CAR-NK cell therapy has become an emerging field of

adoptive immunotherapies, and increasing number of pre-

clinical studies have been conducted on it. CAR-NK cell

therapy has shown the potential to be a good option

comparable and even superior to CAR T cell therapy, because
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NK cells can be activated without antigen-presenting and kill a

broad range of tumor cells (147). Besides, NK cells provided an

extra mechanism of killing tumor cells by ADCC on the basis of

CAR-mediated cell lysis (148). Another important advantage of

CAR-NK cell therapy is that it does not require complete HLA-

matching for safe use, so one modification can apply to multiple

patients, which may save the waiting time for CAR-NK cell

production and reduce the price of the therapy (149).

Additionally, NK cells are safer for not causing GvHD while

taking effect (150). Due to the above advantages, NK cells are

being widely studied to explore their application in adoptive

immunotherapy (151). We summarize some clinical trials

related to NK cell based CLL therapy currently in progress in

Table 2, with data from https://clinicaltrials.gov/.

NK cells are easily acquired from peripheral blood, umbilical

cord blood and other sources, which makes it possible for the

wide use in clinical practice (152). The CAR NK cells derived

from cord blood attract more attention now, because they are

available, easily proliferated, and possible for better activation

profile (152). Preclinical studies have shown the efficacy of CAR

NK cells derived from cord blood in defeating CLL cells, and

their safety and effectiveness is being further explored in several

clinical trials (153). One of the clinical trials shows that CAR NK

cells derived from cord blood targeting CD19 are safe without

causing major adverse effects including cytokine release

syndrome, neurotoxicity, and GvHD (154). However, the

perdurability of CAR NK cells therapy is not fully tested in

vivo in this trial because the interference of other therapies after

30 days of experiment.

The individualized preparation process of CAR-T cells is

expensive. However, CAR NK cells can be prepared into “off the

shelf” products without being restricted by autologous cells,

because they are safe enough and rarely cause GVHD during

allogeneic infusion. NK cells usually secrete a limited level of

IFN- g and GM-CSF, but does not secrete the major cytokines

IL-1 and IL-6 that trigger cytokine celease syndrome. In

addition, CAR NK cells express natural recognition receptors.

These receptors can recognize CAR independent stress-induced

ligands, thus reducing the possibility of disease recurrence

associated with the loss of CAR targeted antigens. In view of

the above advantages of NK cells, researchers are currently
TABLE 2 Current NK-cell immunotherapy clinical trials for CLL.

Identifier Source of NK cells Phase Treatment method design

NCT05020678 Allogeneic 1 NKX019

NCT04796688 AT19 1 CAR-NK-CD19 + Fludarabine and Cyclophosphamide

NCT03056339 Cord blood derived 1 iC9/CAR.19/IL15-transduced NK cells + Fludarabine, Cyclophosphamide or Mesna

NCT04848064 Allogeneic 1 NK cell infusion + Fludarabine, Cyclophosphamide and Mogamulizumab

NCT02727803 NK92 2 NK92 + cord blood transplant + Chemo + Rituximab

NCT02890758 Non-HLA matched donor 1 NK cells + ALT803
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exploring the application of CAR NK cells in the treatment of

blood and solid tumors, with broad prospects. Nevertheless,

there are still some factors affecting the clinical transformation of

CAR NK cells. Unlike T cells, arming NK cells with CAR is

challenging, because NK cells from peripheral blood have low

transfection rate and short survival time in vivo (114). Many

researchers are exploring ways to improve the transfection

efficiency of primary NK cells, but no significant progress has

been made. In addition, the activation of CAR-NK cells is

affected by the location of CAR-binding epitope. The distance

between the surface of CAR-NK cells and CAR-binding epitope

is also a factor. Contamination of allogeneic NK cells by T-cells

can induce GvHD or lymphoproliferative disorders (155).

In summary, NK cell-based immunotherapy is a valid

alternative of the therapeutic treatment for the patients with

CLL according to the current evidences.
Conclusions

NK cells have become a promising and advantageous

approach for the immunotherapies of CLL with the different

mechanisms against leukemia cells from earlier treatment. NK

cell-based immunotherapy not only provides a second choice for

the leukemia types resistant to routine treatment, but also

reduces immune escape through motivating the potential of

the patients’ own immune system. The efficacy of NK cell-based

immunotherapy is being evaluated by more and more clinical

trials. The research on the NK cell receptors, including 2B4, CS1

and LLT1, and their ligands may help further clarify the

mechanisms of leukemia and improve the therapies. Although

previous evidences have demonstrated the efficacy of NK cells

used as a single agent in adoptive immunotherapy or in tumor-

specific mAbs treatment, the proliferation and persistence

enhancement of such NK cells in vivo can be contributed by

the combination effects of cytokines, e.g. IL-12, IL-15 and IL-21.

Although few studies have been conducted to design CAR

structures based on the characteristics of NK cells, their killing

activity can be increased by CAR powerfully. Thus, most CAR-

NK cells simply follow the design of CAR-t cells without taking

into account the specific characteristics of NK cells. Designing

optimized CAR structures suitable for NK cells and then

transfecting the CAR into memories like NK cells or specific

NK cell subsets is a promising research direction. Kaufman and
Frontiers in Oncology 12
colleagues recently established and compared nine different NK

cell-specific CAR constructs. To prepare mesoleptically targeted

CAR NK cells, different NK cell-specific activation domains and

human iPSC were applied. NK specific CAR-NK cells, especially

the optimized NKG2D-2B4 z- IPSC NK cells, significantly

enhanced the killing ability, significantly inhibited tumor

growth and prolonged survival time in ovarian cancer

xenotransplantation models. In addition, the immune evasion

of leukemia cells is also a focus of future studies, which may

provide more information on the associated microenvironment

and reference for optimizing the therapies.
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51. Stewart CA, Laugier-Anfossi F, Vély F, Saulquin X, Riedmuller J, Tisserant
A, et al. Recognition of peptide-mhc class I complexes by activating killer
immunoglobulin-like receptors. Proc Natl Acad Sci U.S.A. (2005) 102(37):13224–
9. doi: 10.1073/pnas.0503594102

52. Braud VM, Allan DSJ, O'Callaghan CA, Söderström K, D'Andrea A, Ogg
GS, et al. Hla-e binds to natural killer cell receptors Cd94/Nkg2a, b and c. Nature
(1998) 391(6669):795–9. doi: 10.1038/35869

53. Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors:
Detection, function and therapeutic use. Int J Immunogenetics (2019) 47(1):1–12.
doi: 10.1111/iji.12461

54. Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer ig-
like receptors (Kirs): Their role in nk cell modulation and developments leading to
their clinical exploitation. Front Immunol (2019) 10:1179. doi: 10.3389/
fimmu.2019.01179

55. Niehrs A, Altfeld M. Regulation of nk-cell function by hla class ii. Front Cell
infection Microbiol (2020) 10:55. doi: 10.3389/fcimb.2020.00055

56. Battella S, Cox MC, Santoni A, Palmieri G. Natural killer (Nk) cells and anti-
tumor therapeutic mab: Unexplored interactions. J Leukocyte Biol (2016) 99(1):87–
96. doi: 10.1189/jlb.5vmr0415-141r

57. Gauthier M, Laroye C, Bensoussan D, Boura C, Decot V. Natural killer cells
and monoclonal antibodies: Two partners for successful antibody dependent
cytotoxicity against tumor cells. Crit Rev Oncology/Hematology (2021)
160:103261. doi: 10.1016/j.critrevonc.2021.103261

58. Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of bikes
and trikes to improve nk cell-mediated targeting of tumor cells. Methods Mol Biol
(2016) 1441:333–46. doi: 10.1007/978-1-4939-3684-7_28

59. Buckle I, Guillerey C. Inhibitory receptors and immune checkpoints
regulating natural killer cell responses to cancer. Cancers (Basel) (2021) 13
(17):4263. doi: 10.3390/cancers13174263

60. Chen Y, Lu D, Churov A, RJMoi Fu. Research progress on nk cell receptors
and their signaling pathways. Mediat Inflamm (2020) 2020:6437057. doi: 10.1155/
2020/6437057

61. Rajagopalan S, Long EO. Kir2dl4 (Cd158d): An activation receptor for hla-
G. Front Immunol (2012) 3:258. doi: 10.3389/fimmu.2012.00258

62. Chiossone L, Vienne M, Kerdiles YM, Vivier E. Natural killer cell
immunotherapies against cancer: Checkpoint inhibitors and more. Semin
Immunol (2017) 31:55–63. doi: 10.1016/j.smim.2017.08.003

63. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al.
Identification of a subset of human natural killer cells expressing high levels of
programmed death 1: A phenotypic and functional characterization. J Allergy Clin
Immunol (2017) 139(1):335–46.e3. doi: 10.1016/j.jaci.2016.04.025

64. Pesce S, Greppi M, Grossi F, Del Zotto G, Moretta L, Sivori S, et al. Pd/1-Pd-
Ls checkpoint: Insight on the potential role of nk cells. Front Immunol (2019)
10:1242. doi: 10.3389/fimmu.2019.01242

65. Matsumoto G, Nghiem M, Nozaki N, Schmits R, Penninger J. Cooperation
between Cd44 and lfa-1/Cd11a adhesion receptors in lymphokine-activated killer
cell cytotoxicity. J Immunol (1998) 160(12):5781–9.

66. Chen B, Malkovsky M, Hank J, Sondel P. Nonrestricted cytotoxicity
mediated by interleukin 2-expanded leukocytes is inhibited by anti-Lfa-1
monoclonal antibodies (Moab) but potentiated by anti-Cd3 moab. Cell Immunol
(1987) 110(2):282–93. doi: 10.1016/0008-8749(87)90123-7

67. Vyas Y, Mehta K, Morgan M, Maniar H, Butros L, Jung S, et al. Spatial
organization of signal transduction molecules in the nk cell immune synapses
during mhc class I-regulated noncytolytic and cytolytic interactions. J Immunol
(2001) 167(8):4358–67. doi: 10.4049/jimmunol.167.8.4358

68. Kuhn J, Poenie M. Dynamic polarization of the microtubule cytoskeleton
during ctl-mediated killing. Immunity (2002) 16(1):111–21. doi: 10.1016/s1074-
7613(02)00262-5

69. Mace E, Monkley S, Critchley D, Takei F. A dual role for talin in nk cell
cytotoxicity: Activation of lfa-1-Mediated cell adhesion and polarization of nk cells.
J Immunol (2009) 182(2):948–56. doi: 10.4049/jimmunol.182.2.948

70. Bodmer J, Schneider P, Tschopp J. The molecular architecture of the tnf
superfamily. Trends Biochem Sci (2002) 27(1):19–26. doi: 10.1016/s0968-0004(01)
01995-8

71. Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, et al. Expression of
the fas ligand in cells of T cell lineage. J Immunol (1995) 154(8):3806–13.

72. Liu D, Martina J, Wu X, Hammer J, Long E. Two modes of lytic granule
fusion during degranulation by natural killer cells. Immunol Cell Biol (2011) 89
(6):728–38. doi: 10.1038/icb.2010.167
Frontiers in Oncology 14
73. Mariani S, Matiba B, Bäumler C, Krammer P. Regulation of cell surface apo-
1/Fas (Cd95) ligand expression by metalloproteases. Eur J Immunol (1995) 25
(8):2303–7. doi: 10.1002/eji.1830250828

74. Schneider P, Holler N, Bodmer J, Hahne M, Frei K, Fontana A, et al.
Conversion of membrane-bound Fas(Cd95) ligand to its soluble form is associated
with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med
(1998) 187(8):1205–13. doi: 10.1084/jem.187.8.1205

75. Hohlbaum A, Moe S, Marshak-Rothstein A. Opposing effects of
transmembrane and soluble fas ligand expression on inflammation and tumor
cell survival. J Exp Med (2000) 191(7):1209–20. doi: 10.1084/jem.191.7.1209

76. Peter M, Krammer P. The Cd95(Apo-1/Fas) disc and beyond. Cell Death
differentiation (2003) 10(1):26–35. doi: 10.1038/sj.cdd.4401186

77. Wiley S, Schooley K, Smolak P, DinW, Huang C, Nicholl J, et al. Identification
and characterization of a new member of the tnf family that induces apoptosis.
Immunity (1995) 3(6):673–82. doi: 10.1016/1074-7613(95)90057-8

78. Smyth M, Cretney E, Takeda K, Wiltrout R, Sedger L, Kayagaki N, et al.
Tumor necrosis factor-related apoptosis-inducing ligand (Trail) contributes to
interferon gamma-dependent natural killer cell protection from tumor metastasis. J
Exp Med (2001) 193(6):661–70. doi: 10.1084/jem.193.6.661

79. Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular
cytotoxicity. J leukocyte Biol (2019) 105(6):1319–29. doi: 10.1002/jlb.Mr0718-269r

80. Sun C, Sun H, Xiao W, Zhang C, Tian Z. Natural killer cell dysfunction in
hepatocellular carcinoma and nk cell-based immunotherapy. Acta pharmacologica
Sin (2015) 36(10):1191–9. doi: 10.1038/aps.2015.41

81. Ibrahim E, Guerra N, Lacombe M, Angevin E, Chouaib S, Carosella E, et al.
Tumor-specific up-regulation of the nonclassical class I hla-G antigen expression in
renal carcinoma. Cancer Res (2001) 61(18):6838–45.

82. Polakova K, Bandzuchova E, Sabty F, Mistrik M, Demitrovicova L, Russ G.
Activation of hla-G expression by 5-Aza-2 - deoxycytidine in malignant
hematopoetic cells isolated from leukemia patients. Neoplasma (2009) 56(6):514–
20. doi: 10.4149/neo_2009_06_514

83. Wan R, Wang Z, Li H, Peng X, Liu G, Ou J, et al. Human leukocyte antigen-
G inhibits the anti-tumor effect of natural killer cells Via immunoglobulin-like
transcript 2 in gastric cancer. Cell Physiol Biochem Int J Exp Cell physiology
biochemistry Pharmacol (2017) 44(5):1828–41. doi: 10.1159/000485819

84. Kailayangiri S, Altvater B, Spurny C, Jamitzky S, Schelhaas S, Jacobs A, et al.
Targeting Ewing sarcoma with activated and Gd2-specific chimeric antigen
receptor-engineered human nk cells induces upregulation of immune-inhibitory
h l a -G . Onco immuno l o g y ( 2 017 ) 6 ( 1 ) : e 1250050 . do i : 1 0 . 1080 /
2162402x.2016.1250050

85. Maki G, Hayes G, Naji A, Tyler T, Carosella E, Rouas-Freiss N, et al. Nk
resistance of tumor cells from multiple myeloma and chronic lymphocytic
leukemia patients: Implication of hla-G. Leukemia (2008) 22(5):998–1006.
doi: 10.1038/leu.2008.15

86. Chiu J, Ernst D, Keating A. Acquired natural killer cell dysfunction in the
tumor microenvironment of classic Hodgkin lymphoma. Front Immunol (2018)
9:267. doi: 10.3389/fimmu.2018.00267

87. Fernández-Messina L, Ashiru O, Boutet P, Agüera-González S, Skepper J,
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