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Natural killer cells are members of the innate immune system and promote

cytotoxic activity against tumor or infected cells independently from MHC

recognition. NK cells are modulated by the expression of activator/inhibitory

receptors. The ratio of this activator/inhibitory receptors is responsible for the

cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-

tumor properties of NK cells, they are considered as interesting approach in

tumor treatment. Colorectal cancer (CRC) is the second most common cause

of death in the world and the incidence is about 2 million new cases per year.

Metastatic CRC is accompanied by a poor prognosis with less than three years

of overall survival. Chemotherapy and surgery are the most adopted

treatments. Besides, targeted therapy and immune checkpoint blockade are

novel approach to CRC treatment. In these patients, circulating NK cells are a

prognostic marker. The main target of CRC immune cell therapy is to improve

the tumor cell’s recognition and elimination by immune cells. Adaptive NK cell

therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has

been widely investigated within clinical trials. In this review, we focus on the NK

related approaches including CAR NK cells, cell-based vaccines, monoclonal

antibodies and immunomodulatory drugs against CRC tumoral cells.
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Introduction

Natural killer cells (NK cells) as granular cells, consist of

nearly 5-15% of peripheral blood lymphocytes. These cells are

classified as innate immunity cells since they can create a

defensive barrier without previous exposure to a pathogen,

cancer cells, or recognition by Major Histocompatibility

Complex (MHC) (1).

Human NK cells are divided into two subgroups based on

the expression of CD56: CD56 bright and CD56dim cells. These are

functionally and phenotypically different. CD56bright NK cells

are mostly found in secondary lymphoid tissues, while cytotoxic

CD56dim NK cells are found in circulation (2). Although NK

cells belong to the innate immune system, they also have some

adaptive immune features.

Previous studies of conducted on CMV infection and on

response to activatory cytokines identified two distinct

populations of memory NK cells as antigen-dependent and –

independent (3, 4).. The strategy to induce memory-like NK cell

differentiation is a novel approach for cancer immuno therapy

(5). The anti-tumor efficacy of NK cells is dependent to ratio of

activating/inhibiting receptors present on their surface.

Activating receptors of NK cells are NKG2D, DNM-1, Natural

Cytotoxicity Receptors (NCRs) and type 2 receptor (KIR) family.

NK activation releases of inflammatory cytokines as well as

granules with lytic properties which cause the lysis of tumor

cells (6).

One of the problem of immune cell therapy is the fact that

NK cells within tumor micro environment (TME) are scanty and

always suppressed (7). Tumor cells deceive NK cells in several

ways: a) by increasing human leukocyte antigen E (HLA-E) (8)

and HLA-G (9); b) via inhibitory immune checkpoints (10); c)

decreasing cytokine expression (11); d) decreasing NK cell

apoptotic activity (12); e) reducing expression of activating

receptors on NK cells (13); f) increasing the expression of

prostaglandin E2 by tumor-associated fibroblasts (14).

The main target of CRC immune cell therapy is to improve

the tumor cell’s recognition and elimination by immune cells.

Adaptive NK cell therapy is the milestone to achieve the purpose.

We will review the genetically manipulated NK cells and novel

immunotherapy approaches including immunomodulatory

drugs, monoclonal antibodies and cancer vaccines that may

enhance cytotoxicity of NK cells towards CRC.
Regulation of NK activity

Contribution of Receptor- Ligand

Activator and inhibitory receptors on NK cells detect the

protein ligands on the infected and tumor cells. The ratio of

these receptors will determine the activation or inhibition of NK
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cell cytotoxic cascades. Most healthy human nucleated cells

present MHC class I loaded with self-peptides that are

inhibitory ligands and will switch off NK cells. Thus, the

suppression/expression of MHC molecules on the surface of

most tumor cells play a key role in NK activation (Figure 1).

KIRs are the key MHC receptors and regulate the development,

activation, and cytotoxic features of NK cells. There are various

isoforms of KIRs that, in different physiologic and pathologic

conditions may play the role of inhibitory or activator receptors.

For example, it is reported that the KIR2DL1 isoform is specific

against HLA-C2, consisting of an Ig-like inhibitory motif (15).

However, KIR 2DS5, 2DS1, and 3DS1 containing Ig-like

activatory motifs are associated with an increased complete

remission post-chemotherapy in metastatic CRC (16). HLA-E is

a non-classical member of the MHC class-I family that presents

self-peptide on almost all nucleated cells and in normal

conditions, will dampen NK cell activation by interaction with

NKG2A inhibitory receptor. However, in the tumor context of

CRC, over-expressed HLA-E is an immune escape mechanism

that inhibits NK cell activation through high-affinity interaction

with the NKG2A receptor (17, 18). Activator receptors on NK cell

surface play an essential role in tumor cell recognition and

elimination. NKG2D is a critical activating receptor of NK cells

and its expression will be upregulated during NK cell maturation

and activation (19). NKG2D ligands are MHC class-I chain-

related A and B molecules, also known as MICA/MICB and UL

binding protein 1-6 (ULBP1-6). NKG2DLs are not expressed

under normal condition on healthy tissues, and their expression is

intracellular mainly (20). However, their expression on cell surface

has been reported in various carcinomas due to cellular stress (21),

including CRC. The same are also reported as a good prognostic

biomarker (22, 23). Besides surface expression of NKG2D ligands

on tumor cells, there are shedding form of MICA and MICB

derived from transformed cells in TME (20). Continuous

exposure of NKG2D with soluble forms of MICA and MICB

results in reduced NK cells cytotoxicity, downregulating NKG2D

expression. Altogether, these induce tumor cells proliferation (24).

Soluble forms of NKG2DLs is due to protease cleavage of their

conserved motif in the a3 domain. Two dis-integrin and

metalloproteinase enzymes known as A Dis-integrin and

Metalloproteinase domain-containing protein 10 and 17

(ADAM10 and 17) are crucial in making soluble forms of

MICA/B, and ULBP (25). It is reported that platelets are one of

the secretory origins of ADAM10 and 17. In metastatic lung

cancer, these soluble platelet-derived factors impair the NK

immune surveillance towards tumor cells (26).

The other family of no MHC restricted NK receptors are

Natural cytotoxicity receptors (NCRs), including NKp46,

NKp30, NKp44, and NKp80. NCRs ligands are expressed on

viral infected or tumor cells and extracellular soluble forms (27).

The density of NCRs on NK cells’ surfaces is coordinates with

NK cells activation and cytotoxic function (28).
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Receptor-ligand modulation may impair NK cells

functionality in tumor elimination. Novel therapeutic

strategies would selectively target this approach of NK cells in

tumor context. The interactions between NK Cell Receptor and

human target cell ligands are summarized in Table 1.
Cytokines induce NK cells’ cytotoxicity

Besides receptor-ligands interactions, cytokine secretion and

exposure are demanded for NK cell activation (54). Several

cytokines have been reported to modulate NK cell activation

and proliferation. Cytokine effectiveness in NK cells has been

reported mainly through JAK/STAT, CIS, and SOCS signaling

pathways (55–57). The crucial cytokines activating NK cells are:

IL-2, IL-12, IL-15, and IL-18. These molecules trigger their effects

thanks to signal transducer and activator of transcription (STAT)
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proteins (58). The suppressor cytokine signaling 2 (SOCS2)

inhibits JAK/STAT signaling and with negative feedback,

regulates NK cell differentiation. NK cells’ cytokine signaling

modulate homeostasis with IL-2, IL12, IL-15 and IL 18 and

limit INFa signaling through STAT1 (59). Immature NK cells

develop to mature NK cells through the acquisition of activator

receptors such as NKG2D. IL-2/IL-15/IL-18 increases the

cytotoxic activity of NK cells by NKG2D over expression (60).

IL-12 and IL-2 enhance the NKG2D signal activation. However,

IL-2 exclusively effects the activation of CD56 bright NK cells (61).

Moreover, IL-2 and IL-15 induce NKG2D, KIRDL1, and

KIRDL2 expression on NK cells, T cells, and NKT cells of

regional lymph nodes. This enhances NK cell cytotoxicity and

increases the anti-tumor potential of innate and adaptive

immune cells (62).

A cocktail-based strategy by utilization of IL-2, IL-15, and

IL-18 cytokines was established to generate in vitro peripheral
B

C

A

FIGURE 1

schematic diagram of Natural killer cell contribution to innate immunity. The balance of NK cells activatory and inhibitory receptors promotes
either secreting cytotoxic molecules or making NK cells exhausted in TME respectively. (A) Immune suppressive TME is due to interaction of
MHC-1 with inhibitory receptors such as KIR2. High expression of PDL-1 in tumor cells interacts with inhibitory checkpoint PD-1, inhibiting the
NK cell activation. Beside the activatory role of MICA/MICB, the shedding form caused by ADAM17/10 cleavage makes the NK cells non
responsive to tumor target cells. (B) NKG2D the most prominent activatory receptor of NK cells interact with MICA/MICB/ULBP. Following NK
cells activation Fas ligand, TRAIL and TNF ligand highly express on NK cells to induce the apoptosis independent of perforin and granzyme.
Antibody dependent cytotoxicity of NK cells promotes perforin and granzyme activation and consequently granzymes triggers apoptosis even
dependent or independent of caspase cleavage. (C) Interaction of NK with other immune cells. NK cells secret INFg, CCL3, CCL5, CCL4 to
contribute with macrophages, dendritic cells and neutrophils. The innate immune cells subsequently secret IL-15, IL-18 and IL-12 to provoke NK
cells expansion and activation.
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TABLE 1 Interaction of NK cells’ receptor with tumor cells’ ligand.

Natural Killer Cell Receptors Receptor Type Human Target Cell Ligand Ref

KIR2DL1, KIR2DL2, KIR2DL3 Inhibitory motif (Ig-like domain) HLA-C1,HLA-C2 (29)

KIR2DL4 Inhibitory motif (Ig-like domain) HLA-G (29)
(30)

KIR2DL5A, KIR2DL5B Inhibitory motif (Ig-like domain) Unknown (31)

KIR3DL3 Inhibitory motif (Ig-like domain) B7 family member HHLA2 (31)
(32)

KIR2DS1,KIR2DS2,KIR2DS3,
KIR2DS4, KIR2DS5

Activatory motif (Ig-like domain) HLA-C (31)

KIR3DS1 Activatory motif (Ig-like domain) HLA-B Bw4-I80 (33)
(34)

NKP30 Activatory motif (Ig-like domain) Soluble BAG6,B7H6,Viral HA (35)

NKP44 Activatory motif (Ig-like domain) PCNA, Viral HA (35)

NKP80 Activatory motif (C-type Lectin Domain) AICL (35)

NKp46 Activatory motif (Ig-like domain) Viral HA,vimentin,heparin sulfate (36–
38)

CD94-NKG2C/E/H Activatory motif (C-type Lectin Domain) HLA-E (39)

CD94-NKG2A Inhibitory motif (C-type Lectin Domain) HLA-E (39)

NKG2D Activatory motif (C-type Lectin Domain) MICA,MICB,ULBP-1-6 (29)

CRTAM Activation of NK cell migration (Ig-like domain) Necl-2/IGSF4A (40)

DNM-1/CD266 Activatory motif (Ig-like domain) CD112(Nectin-2),CD155(PVR) (41)

TIGIT Inhibitory motif (Ig-like domain) CD112,CD113(Nectin-3),CD155 (42)

CD96 Inhibitory motif (Ig-like domain) CD155,CD111(Nectin-1) (42)

2B4/CD244/SLAM4A Adaptor molecule dependent (whether activatory or inhibitory) (Ig-like
domain) (GPI linkage)

CD48 (42)

NTB-A/SLAMF6 Co-receptor of NK cell activation (Ig-like domain) (GPI linkage) NTB-A/SLAMF6 (43)

CRACC/SLAMF7 Activatory receptor (Ig-like domain) (GPI linkage) CRACC/SLAMF7 (43)

FcR gamma Activatory motif (Ig-like domain) IgG (44)

CD27 Activatory receptor (EC cadherin Domain) CD70/CD27L (45,
46)

CD100/Semaphorin 4D Indirectly activates NK cell cytotoxicity (Ig-like domain) CD72 (47,
48)

CD160 Activates cytolysis effects of NK cells (Ig-like domain) HLA-C (29–
49)

Tim-3 Inhibitory motif (Ig-like domain) CEACAM-1,CEACAM-5,
galectin9.HMGB1

(50)

ILT2/LILRB1 Inhibitory motif (Ig-like domain) HLA classI (51)

KLRG1 Inhibitory motif (C-type Lectin Domain) E-N-R Cadherins (51)

LAIR1 Inhibitory motif (Ig-like domain) Collagen (51)

CD161/NKR-P1A Inhibitory motif (C-type Lectin Domain) OCIL/CLEC2d (52)

Siglec-3,Siglec-7,Siglec-9 Inhibitory motif (Ig-like domain) Sialic Acid (53)
F
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blood-derived NK cells with a strong cytotoxic effect (63).

Systemic administration of IL-2 in cancer patients improved

survival rate, however high doses was reported to be toxic (64).

Intratumoral administration of IL-2 is an alternative method to

systemic therapy, but this is limited to accessible tumors (65).

Targeted delivery of IL-2 is a novel approach to enhance the

cytotoxicity effects of tumor resident NK cells. Highly preserved

glycoproteins such as fibronectin expressed in solid tumors neo-

endothelial could be a target of cancer therapy. L19-IL-2 is an

immune-cytokine that targets extra domain of fibronectin fused

with IL-2. The IL-2 accumulates selectively in the tumor site,

boosting the tumor immune response (66).

IL-15 is an immuno-stimulatory cytokine that promotes the

survival and proliferation of NK cells. IL-15 receptor is a

heterotrimeric complex consisting of IL-15R a, IL-15R b and

common g chain (67). Antigen-presenting cells secret IL-15/

IL15Ra in two forms soluble and membrane-bound. IL-15/IL-

15Ra subsequently transduces signaling through four

independent mechanisms known as IL-15 trans presentation

delivery (68, 69). Recombinant IL-15 had been reported to evoke

anti-tumor activity of adaptive and innate immune cells in colon

cancer (70) however, Short half-life and poor bioavailability limit

the therapeutic potential of IL-15 systemic therapy.

It is reported that chimeric IL-15 (covalently linked IL-15

with IgG2) improves IL-15 half-life, enabling greater

bioavailability for an extended period of time (71). As the

delivery of IL-15 is reported through trans presentation, a

novel approach investigated an immune cytokine known as

KD033 that both targets PDL-1 and directly delivers IL-15/IL-

15Ra complex to immune cells resident in TME. 7 days after a

single dose of KD033, a dose-dependent increase in peripheral

NK cells and NKT-like cells were induced (72). Furthermore,

Rui Ma; et al. developed a new oncolytic herpes virus expressing

IL-15/IL-15Ra and demonstrated in a murine glioblastoma

model therapeutic efficacy (73).

Although there is the beneficial roles of IL-15 in immune cell

stimulating, the secretion is regulated through the cytokine

induced SH2-containing protein (Cish) that provides negative

feedback by preventing the JAK/STAT5 signaling (57).

Following CIS deletion in NK cells, hyperactive IL-15 signaling

leads to increased activation of the AKT/mTOR and c-Myc

signaling, inducing a high proliferation rate of NK cells (74). IL-

21 and 18 are stimulate NK cell proliferation and activation. The

signaling through a typical g chain subsequently induces INFg
production in mature NK cells (75). Targeted cytokine delivery,

in contrast to systemic therapy, will improve the beneficial effects

of treatment with minimum side effects. A fusion of anti-PD-1

antibody and IL-21 inhibits the PD-1 immune checkpoint

signaling and delivers IL-21 to targeted receptors, improving

treatment efficacy (76). IL-18 receptor is highly expressed in NK

cells. However, most tumors express IL-18 decoy receptor in

TME, limiting the anti-tumor immunity of therapeutic

recombinant IL-18. Ting Zhou; et al. have engineered a decoy
Frontiers in Oncology 05
resistance IL-18 receptor (DR-18); that maintains the IL-18

signaling and the compound is resistant to IL-18-decoy

receptor inhibition protein. These results demonstrated that

DR-18 enhanced the maturation and activation of NK cells in

anti-PD-1 resistance tumors (77).

Besides the investigation of cytokines effects one by one, the

compound of cytokines profile plays an essential role in the

generation of different NK cell subtypes. Cooper et al. first

studied cytokine-induced memory-like NK cells in 2009. They

reported that IL-15/IL-18/IL-12 pre-activated NK cells showed

higher INFg production by cytokine profile re-stimulation, in

contrast to pre-activated group (4). The memory-like NK cells

are phenotypically different from classical cytotoxic NK cells

(78). Low dose of IL-2 activates the cytokine-induced memory-

like NK cells more prominently (79). Significantly metabolic

features of cytokine-induced memory-like NK cells will be

reprogramed during pre-activation. mTOR controls metabolic

reprogramming and cytotoxicity function of NK cells. This gene

will be activated during cytokine exposure (80). Due to their high

cytotoxic activity and anti-tumor properties, cytokine-induced

NK cells represent the novel immune cell therapy against

tumors. However, their therapeutic potential may be further

improved studying how they change after cytokine exposure,

combination immunotherapy approaches, genetically

modifications (81). Generally, the anti-tumor activity of NK

cells is based on the responsiveness to growth factors and

cytokines that can extremely influence the tumor immune

surveillance. The specific contribution of NK cells and

cytokines still needs to be better identified.
Cytoskeleton as a regulator of NK cells’
immune responses

NK cells degranulation is a multi-step process. This consists

of: a) immunologic synapse formation by ligand-receptor

molecules of NK cells and tumor cells; b) polarization of lytic

granules toward the immunologic synapse, and directly release

of cytotoxic granules toward target cells (82).

Cytolytic granules with acidic pH are kind of lysosomes that

contains pore-forming molecule, granzyme, Fas Ligand, and

granulysin in NK cells. Perforin is a pore-forming molecule,

while granzymes are a serine protease family that induces

programmed cell death (apoptosis) in tumor cells (83).

Perforin mediates target cell membrane pore forming in a pH

and calcium dependent manner, consequently delivering the

serine protease granzyme toward the target cell (84).

NK cells are one of primary cells that induce the extrinsic

apoptosis pathway by expressing tumor necrosis factor super

family members such as Fas ligand (FasL), and TRAIL.

Interaction of death receptor ligands will recruit adaptor

proteins such as FADD (Fas-associated protein with death

domain), TRADD (Tumor necrosis factor receptor type 1-
frontiersin.org
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associated death domain protein), and a series of downstream

factors, including caspase-3, -6, -7, -8, -9 eventually leading to

apoptosis (85). Independent caspase apoptosis mediated by

granzymes is reported by provoking mitochondria ’s

permeabilization by with cytochrome C release in the cytosol

and apoptosome complex formation (86).

The cytoskeleton can regulate NK cells’ immune response.

NK cell migration and immune synapse formation are due to

polymerization and depolymerization of actin proteins. F-actin

filaments will polymerize in response to receptor-ligand

interaction and trigger the downstream signaling pathways,

including PLCg, MEK, and ERK (87). Besides NK cells

receptor-ligand interactions, monoclonal antibodies have been

reported to induce NK lytic granule polarization by activating

PLCg, MEK, and ERK signaling pathways (88). Cytotoxic

granule release is highly dependent from F-actin generation

due to the mediator of actin regulatory protein, EVL (89).

Recently, filamin A (FLNa) protein cross links F-actin

filaments was reported playing an essential role in the

degranulation of NK cells following synaptic accumulation of

F-actins (90). In addition to actin proteins, myosin IIA is the

next cytoskeleton protein that promotes NK cells functionality

by utilizing ATP to induce the contractile force on F-actin

filaments (91). Moreover, microtubule filaments consist of

alpha and beta tubulin heterodimers, and utilize microtubule-

associated proteins (MAPS) to facilitate the delivery of NK cells’

lytic granules in the immunologic synapse (92).

Cytoskeleton machinery abnormalities impair NK cell

migration and cytotoxic activity. The relationships between

NK cells and cytoskeleton should therefore be deeper

investigated (93).
Colorectal cancer and impaired NK
cell function

The mechanisms sustaining inflammation in CRC are not

fully understood. In colitis-related colon cancers, chronic

inflammation plays an influential role in the progression of the

disease to malignancy (94). Innate immune system cells,

including neutrophils, macrophages, NK cells, and B- and T-

cells of acquired immunity, are involved in post-inflammatory

cancer processes (95). According to studies conducted on CRCs,

inflammation and the presence of NK cells at the tumor site play

an essential role for the progression of the disease (96). In CRC

microenvironment NK cells and TCD8+ cells interact through

secretion of INFg, IL-2, and HMGB1 (high-mobility group

protein 1). Cross-talk between NK, TCD8+, and M1 cells are

involved in the induction of a pro-inflammatory immune

response that leads to the activity of TCD8+ cells in CRC

microenvironment. IL-2 activated NK cells, secret INFg, and
Leptin. Leptin directly stimulates M1 cells to produce IL-1b.
Subsequently, T cells synthesize the pro-inflammatory cytokine
Frontiers in Oncology 06
IL-6. INFg indirectly induces IL-6 production from the

macrophage (97).

Activated NK cells produce CXCL1, CCL1-3-4-5, CCL-22,

and CXCL-8, chemo-attractants for other immune cells, and

recruit them to the tumor site. A preclinical study in a colorectal

mouse model reported that the secretions of CCL-3 from CT26

tumor cells change the inflammatory response in the early phase

of tumor response. It causes mobilization of B, T-cells, dendritic

cells, and CD49+ NK cells to the tumor site (98). There are

differences in tumor-infiltrating immune cells among CRC on

the left and right sides. Left-side tumors (LCC) are associated

with a high number of CD56 bright NK cells that correlates with

patient survival (99). Left-side tumors show a higher rate of

response to therapy (100). It is demonstrated that CD56dim LCC

infiltrated NK cells could be a prognostic biomarker in CRC

(101). Mc Gilvray et al. showed NKG2D ligand expression

involves in cancer immunosurveillance and associated with

Prognosis (102). Furthermore, NK cells express programmed

cell death protein 1 (PD-1) substantially, and is further increased

after stimulation and indicates poor prognosis in digestive

cancer patients (103).

Various studies have been conducted on the infiltration rate

of NK cells which showed that NK cells infiltrating solid tumors

were relatively low and demonstrated that the NK cell number

was too low to pursue prognosis (104–107). Moreover, Sarah

Nersesian et al. investigated the prognostic value of NK cells for

solid tumors. They reported 1.9% found a negative association

between overall survival and NK cell infiltration and 38.9%

reported no impact and 59.3% positive associations between

NK cell infiltration and overall survival (108). These reports

demonstrate NK cells as a positive prognostic factor in

solid tumors.

There are 2 types of activated macrophages: a) activated M1,

which participates in immune response, and b) activated M2,

which promotes tumor progression. Tumors-associated

macrophages (TAMs), more similar to the M2 subtype, are the

major players of cancer-related inflammation (109) and play a

crucial role in NK cell suppression in the tumor milieu of CRC.

Cancer-associated fibroblasts (CAFs) by enhancement of TAMs

impair the NK cell function (98).

Elevated TGF-b in patients suffering metastatic CRC is

reported (110). TGF-b receptor mutation causes CRC with

microsatellite instability (MSI-high). This kind of mutation, is

associated with better survival (111). TGF-b has been showed to

impair NK cell cytotoxicity in a CRC mouse model. LY2157299,

a TGF-b receptor kinase inhibitor, combined with adoptive NK

cells, eradicated the liver metastasis of colon cancer in a mouse

liver metastasis CRC model (112).

NK cell manipulation would be a promising target in the

CRC immunotherapy context (113). As mentioned here, NK

cells are innate immune cells that, without previous exposure to

tumor antigens and HLA-priming, provide immunity against

tumor cells (114). However, in CRC, NK cell dysfunction
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represents an immunological failure. NK cell dysfunction allows

escape of tumor cells in colorectal, gastric, and pancreatic

cancers. In all types of malignancies, a marked decrease in

NKP30 NK cells has been reported (115). In cancer, several

mechanisms impair NK cell function, for example: a) decreased

NK cell count and b)modified phenotype, and impaired function

due to inhibitory interactions with other immune cells presented

in TME (Figure 2) (116).

NK cell count is an independent prognostic factor in CRC

(11). Immune cell profile in peripheral blood of CRC patients

can be a prognostic factor. It was shown an increasing

percentage of circulating Tregs and a reduction of CD56dim

NK cells in CRC patients. The low rate of CD16+ NK cells has

been associated with shorter disease-free survival (DFS) (117). In

chronic inflammation, mediators such as Prostaglandin E2

(PGE2) are associated with worse survival of CRC patients.

PGE2 and upstream enzymes called COX (Cyclooxygenase)

linked to CRC were first studied in 1994 (118). Acid

arachidonic metabolizes to PGE2 through the COX pathway.

PGE2 mechanism in CRC had been reported to stimulate cell

invasion, tumor growth, and apoptosis inhibition (119). When

PGE2 is produced in high amounts has an immunosuppressive

role in TME produced by either immune cells and tumor cells

(120). PGE2 has adverse effects on NK cell function, survival,

and proliferation in tumor sites (121). PGE2 downregulates NK

cell-activating receptors through cAMP-mediated PKA type I-

dependent signaling (122), and it regulates IL-12 and IL-18

dependent INFg synthesis in NK cells (123). A COX-competent

animal model of CRC showed increased secretion of
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prostaglandin E2 and a lack of conventional type 1 dendritic

cells (cDC1) mobilization to the tumor site. PGE2 impaired NK

cell accumulation and its ability in tumor site to produce CCL5

chemokine. PGE2 also reduces the expression of CCL5 and

CXCL1 receptors on cDC1 cells (124). Inhibiting COX2 activity

by andrographolide (a natural diterpenoid from Andrographis

Paniculata) decreased PGE2 release. However, the same,

improved PD-1 immunotherapy in the xenograft model of

CRC by enhancing the functionality of TCD4+ and TCD8+,

enhancing INFg, and increasing cytotoxic molecules such as

perforin and granzymes (125). A recent case control study

showed PGE2 plasma level is associated by CRC risk so the

nonsteroidal anti-inflammatory drugs (NSAIDs) would be a

promising personalized medicine in CRC treatment (126).

TME in CRC is a hallmark of cancer progression, immune

cell dysfunction, and immunotherapy resistance. There are

various physical and chemical alterations in cancers ’

microenvironments, such as hypoxia, acidosis, increased

extracellular matrix rigidity, and high interstitial fluid pressure

(127). The acidic TME is the critical barrier created by tumor

cells against immune cells. Acidification of the tumor site is

caused by rapid cancer cell proliferation, a high glucose

glycolytic metabolism ratio, and increased lactic acid

production (128). Metastasis, tumor progression, immune cell

suppression, and poor prognosis are sustained by acidotic

processes (129). Acidosis in CRC contributes to tumor

progression and resistance to conventional treatments (130). It

is shown that lactate accumulation in metastatic CRC induces

mitochondrial dysfunction and apoptosis in NK cells; it seems
FIGURE 2

CRC and Impaired NK Cell Function due to innate immune cell interactions. Tumor resident innate immunity cells consist of CAF (cancer
associated fibroblast), TAMs (tumor associated macrophage), MDSC (myeloid derived suppressor cells), Treg (regulatory T cells), tDC1
(conventional Type1 dendritic cells) interact with NK cells. TGF-b secreted by CAf, TAMs, Treg inactivates NK cells and also DCs in TME. Other
regulatory cytokines such as IL-6, IL-10 and TNFa also inhibits NK cells activation. High PGE2 levels makes the NK cells non-responder to tumor
cells. Shedding forms of MICA/MICB is a tumor cell direct mechanism to escape from NK cells immune response.
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metabolism targeting in CRC is a promising therapeutic

approach to overcome immune suppression (131). Targeting

acidosis to overcome the resistance to anti-PD-1 and anti-

CTLA-4 could be promising (132).

Taken together, NK cells dysfunction from different aspects

play an important role in CRC immune response. NK cells exert

their cytotoxic function toward impaired cells; and through

cytokines and chemokines modulate the adaptive immunity

too. However, NK cells fail to infiltrate properly in tumor

microenvironment, and when reach the tumor site, they would

be exhausted due to immune checkpoints inappropriate

expression. NK cells dysfunction in tumor immunity provides

the basis of new strategies to harness their immune response.
Immunomodulatory drugs
potentiate NK cytotoxicity
against CRC

Immune cell therapy has become a milestone in cancer

therapy; however, the immunosuppressive status of the TME is

one of the main barriers for the immune system’s function (133).

Therefore, interfering with the TME seems to be the clue to restore

the immunologic responses (134). Immunomodulatory drugs

may interfere with the immunosuppressive status of the TME.

Immunomodulatory drugs that induce CD 8+ T cells

proliferation can enhance cytotoxicity, activation of DCs, Th1

responses, augmentation of NK cells activity, inhibiting tumor

angiogenesis, and changing the production of DCs cytokine

profile (135, 136). The cross-talk between these drugs and the

NK cells is mediated by IL-2 and IFNg (137). Thalidomide,

lenalidomide, and pomalidomide are examples of these drugs

with anti-cancer functions. The mechanism of action of these

drugs is anti-proliferative, anti-angiogenic, and proapoptotic

(131, 132). The effect of these drugs has been intensively

studied in acute myeloid leukemia (AML) as monotherapy or

in combination with other therapies. In mice animal models

where CRC was induced with CT26, lung metastasis was

significantly reduced after treatment with Thalidomide,

lenalidomide, and pomalidomide. Interestingly, the pre-

treatment of the CT26 cell line with lenalidomide reduced the

lung metastasis indicating the anti-metastatic effect of this

drug (138).

These immunomodulatory drugs have also opened their way

to clinical trials. For instance, in a phase II clinical study,

lenalidomide was used in combination with Cetuximab in

KRAS mutant patients. Lenalidomide significantly increased

the number circulating NK cells. The combination of

Cetuximab and Lenalidomide increased granzyme-positive NK

cells more than lenalidomide only (139).

Thalidomide monotherapy or chemotherapy showed a mild

effect on patients with advanced CRC. Thalidomide may affect
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NK cells’ cytotoxicity by increasing IL-2 and INFg production

(140, 141). Pomalidomide in CRC preclinical setting and in vitro

effectively restrained the cytotoxicity of NK cells (142). However,

no clinical trial with a pomalidomide-based regime has been

conducted in CRC patients so far.

Immuno modulatory drugs reported positively effect on NK

cells cytotoxicity by alter cytokine production, NK cells

augmentation and decrease metastasis in CRC patients.
Immune checkpoint blockades
improved NK cell cytotoxicity in
colorectal cancer

NK cells clearly exerting cytotoxic activity against cancer cell

and are a key-player of immunotherapy (143). Stimulatory and

inhibitory receptors regulate the cytolytic functions of NK cells.

Many of these receptors are expressed by NK cells to mount

effective anti-tumor immunity (6). The activation receptors

present on the NK cell surface, NCRs, include various receptors

such as NKp46, NKp30, NKp44, NKG2D, and DNAM-1 (144).

Tumor cells and TME adopt different approaches to evade NK

cells’ immune responses and surveillance. KIRs, LIRs, NKG2A,

and the classical CTLA-4 and PD-1 receptors to recently

discovered B7-H7 are immune checkpoint inhibitors that

compromise NK cell anti-tumor activity (145). Anti-PD1,

Dostarlimab, has been reported to induce complete response

with no evidence of tumor in mismatch repair-deficient, locally

advanced rectal cancer patients. A clinical study (NCT04165772)

was initiated in 2019, and the results demonstrated the complete

treatment at least in a 6-month follow-up (146).

Therefore, targeting these inhibitory immune checkpoints, is

proposed as one of the immune therapy strategies to augment

NK cell effects (147).

Ipilimumab, a CTLA-4 inhibitor monoclonal antibody, is

the first immune checkpoint inhibitor to gain approval with

outstanding results in different cancers (148). It has been

demonstrated that blocking CTLA-4 has increased the

expression of IL-2 and enhanced the cytotoxicity of NK cells

(149). Ipilimumab has entered clinical trials combined with

nivolumab, the anti-PD-1, to treat metastatic CRC (150).

Other immune checkpoint inhibitors in metastatic patients are

the NKG2A inhibitor, Monalizumab, and PD-L1 inhibitors,

Durvalumab, with no severe side effects, mortality, and

practical clinical outcome (151). TIGIT is another cell surface

inhibitor on NK cells and T cells, causing exhaustion of TIL and

tumor-infiltrating NK cells. Either NK deficient TIGIT or using

Blockade of this inhibitor alone or combined with Blockade of

PD-L1 significantly restored the suppressed anti-tumor

immunity by NK cells in CRC animal models and patients (10).

Blockade of immune checkpoints regulates the cytotoxic

activity of NK cells and blockade drugs have been approved in
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so many malignancies; however, some patients are non-

responder to these novel treatments that fundamental studies

should be further investigate the effective therapies. A

comprehensive overview of the immune checkpoint inhibitors

and their Blockade is presented in Table 2.
Antibodies increase NK cell
cytotoxicity against
colorectal cancer

Antibody-dependent Cellular cytotoxicity (ADCC) is a

mechanism of NK cells’ defense against tumor cells independent

of MHC recognition and complement system activation.

Antibodies even derived from adaptive immunity activation (a

classic form of ADCC) or commercial types (monoclonal

antibodies) elicit the cytotoxic activity of NK cells. NK cells

interact with antibodies through FcgRIIc/CD32c and FcgRIIIa/
CD16a receptors that bind to antibodies Fc portion. IgG1 sub-type

comprises high affinity to FC receptors and mediates the NK cells’

ADCC activity. CD16a cross-links on NK cells following

antibodies binding (163, 164). CD16a and CD32c are associated
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with the CD3-z chain containing ITAMs (Immune tyrosine-based

activating motifs) residue in the cytoplasmic tail. Phosphorylated

ITAMs result in NK cell degranulation, cytokine release, and

tumor cell lysis by inducing TNF, FasL, and TRAIL death

receptors, IFNg secretion (165), granzyme and perforin release,

caspase 8 activation and apoptosis (166). Besides induced ADCC

by classical form and monoclonal antibodies, genetically

manipulated NK cells expressing high-affinity CD16a will also

trigger ADCC more prominently. Reportedly engineered NK-92

cell lines derived from human lymphoma expressing high-affinity

CD16a, producing high amounts of IL-2 and granzymes, are

highly cytotoxic against colon cancer cell lines (167).

Commercial immunoglobulin molecules are promising

approaches in CRC treatment since they interfere with tumor

angiogenesis and immune system modulation and induce direct

immune cell cytotoxicity through NK cells (168).

CRC disease progression is highly dependent from two

signaling pathways; EGFR and VEGF (169). The trastuzumab

(anti-HER2), cetuximab (anti-EGFR), panitumumab (anti-

EGFR), ramucirumab (anti-VEGFR2), and bevacizumab (anti-

VEGF-A) are commercial specific monoclonal antibodies that

are currently used in CRC treatment (170). High expression of

HER-2 in CRC-derived cancer stem cells was reported with
TABLE 2 Immune checkpoint inhibitors present on NK cells and their blockade under clinical and preclinical investigations in CRC.

Immune checkpoint inhibitors Immune checkpoint inhibitor blockade Disease classification Ref

KIR (CD158) PH2101
Lacutamab
Lirilumab

Advanced/Metastatic solid tumors (152)

PD-1 Nivolumab
Durvalumab
Dostarlimab
Tislelizumab
Spartalizumab
Sym021
Pembrolizumab
Toripalimab
Camrelizumab
Dostarlimab

dMMR/MSI-H mCRC
Locally advanced rectal cancer

(150, 153–155)
NCT03927898
NCT04202978
NCT04165772

CTLA-4 Ipilimumab
Tremelimumab

dMMR/MSI-H mCRC/refractory CRC (150, 156)

NKG2A Monalizumab recurrent or metastatic CRC NCT02671435

LAG-3 Relatlimab
Eftilagimod (IMP321)
MK4280
LAG525

MSS colorectal adenocarcinomas NCT03642067
NCT05328908
NCT05064059

(157)

TIM-3 Cobolimab
LY3321367
BGB-A425
MBG453

Advanced metastatic tumors including CRC (158–160)

TIGIT Tiragolumab
Etigilimab
AB154

(MSI) and MSS-CRC (161, 162)

defective mismatch repair (dMMR), High microsatellite instability (MSI-H), metastatic CRC(mCRC), Microsatellite stable (MSS).
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activation of the PI3K/AKT pathway exacerbating tumor cell

proliferation. Recent findings showed that monoclonal

antibodies in combination with other immune therapy

increase treatment efficacy significantly in CRC. HER-2

targeting in combination with PI3K and MEK inhibitors

induces tumor regression in avatar models of CRC (171).

Cetuximab beneficially intensifies the NK cell cytotoxicity

against CRC nude mice model (172).

Cetuximab combined with nivolumab was reported to be

well tolerated with less efficacy in metastatic colorectal cancer

(166). Panitumumab, combined with standard chemotherapy

regimens (FOLFOX), is the first-line treatment in RAS mutated

colorectal cancer. Re-treatment, even in the second or third line,

could have potential benefits (141). The immunoglobulin

backbone of panitumumab that has a low binding site affinity

for CD16a, does not induce NK cells mediated ADCC (173).

VEGF or VEGFR targeting is the other approach to monoclonal

antibody treatment in CRC. Ramucirumab is an IgG1

monoclonal antibody targeting VEGFR-2 and is reported to be

a prominent treatment in combination with chemotherapy

(FOLFIRI regimens) for second and late-line treatment of

metastatic CRC by inhibiting the tumor angiogenesis,

improving patients overall survival (174, 175). However, it has

not been reported that ramucirumab enhance NK cells’ ADCC.

Bispecific antibodies contain two binding sites against two

different antigens. Some bispecific antibodies connect immune

cells to tumor cells, triggering the immune cells cytotoxicity.

Other bispecific antibodies can target two check points in tumor

cells. Additionally, some are designed to concurrently target

tumor-associated antigens and check points (176–178).

Duligotuzumab, a bispecific antibody against EGFR and Her3,

contains FC domains activating NK cells’ ADCC (179). One of

the BIKE (bispecific NKcells’engager) antibodies recognizing

CD16 on NK cells and EPCAM on tumor cells that facilitates

ADCC but not the proliferation of NK cells was engineered by

Joerg.U and colleagues in 2013 (180). This group incorporated a

modified IL-15 cross-linker to the previous BIKE construct to

create a TriKE (trispecific construct) which can improve

activation, proliferation, and survival of NK cells (181). Patient

derived xenograft models effectively simulate the tumors. These

modelsare used to investigate the antitumor effects of immune

cell therapy in combination with other agents (182). An

antibody featuring simultaneous identification of two variants

of CD20 and CD16 [(CD20)2xCD16] is one of the major

trispecific antibodies that can effectively activate NK cells’

ADCC. More over this can be a mediator of malignant B-cells’

lysis in animal model (183).

Cytokines also play an essential role in activating NK cells’

ADCC; they are important mediators in tumorigenesis and

would be used as anti-cancer treatments in CRC (184). Co-

administration of IL-21 with cetuximab in phase I clinical trial of

CRC increased NK cell-mediated ADCC (178). Cetuximab in

combination with IL-2 and IL-15 improved the cytotoxicity of
Frontiers in Oncology 10
dysregulates blood NK cells in CRC patients (185). Moreover,

combination therapy of rituximab and IL-2 demonstrated a

synergistic role in activating NK cells (186). ALT-803 and IL-

15 super agonists have also been reported to increase NK cell-

mediated responses through CD16a, thus inducing ADCC

(187, 188).

Following preclinical research, the synergy potential of

targeted antibodies with NK cell therapy should be further

investigated in clinical trials. Our research group demonstrated

that pretreated checkpoint blockade NK cells could effectively

enhance the NK cells’ trafficking in TME and beneficially reduce

the tumor cell mitosis in gastric cancer xenograft model (189).

However the same results was not achieved in chemo immune

cell therapy of Intratumoral injection of NK cells in combination

with capecitabine in gastric cancer xenograft model in the other

study of our group (190).
Vaccines augment anti-tumor
immune responses against
colorectal cancer

In cancer cells, many proteins look similar to healthy

proteins, which keeps the cancerous cells out of the immune

system’s reach. Vaccines expose antigens to the immune system

and this will trigger the immune response. Identifying the exact

antigens in different cancer types is the most crucial step in

developing cancer vaccines. Different types of therapeutic

vaccines have been developed for CRC patients. Cell-based

vaccines are either tumor lysate or immune cells modified to

present tumor antigens and tumor antigens’ receptors against

CRC. Molecular-based vaccines use tumor-specific antigens

known as neoantigens to inhibit tumor progression. Vector-

based vaccines present tumor antigens using microorganisms in

immunogenic or engineered form (191).

Sipuleucel-T (Provenge) is the first autologous immune cell-

based vaccine approved by FDA, 2010 (NCT00779402) for

prostate cancer. Cell-based vaccines have been investigated for

CRC treatment since 1990 (192, 193). Whole cell-based vaccines

are the sub-group that comprise the entire tumor cells antigens

and would evoke the immune system against tumor-associated

antigens. The development of an universal vaccine that could

protect any patients is a complex task (194). Cancer stem cells

could be isolated from whole tumor cells to develop a cancer

stem cell-based vaccine. A recent study demonstrated that the

targeted MUC1+ CRC stem cells vaccine significantly increases

NK cell infiltration and cytotoxicity. CCSC targeted vaccination

promotes the release of INFg, perforin, and granzyme B,

decreasing TGF-b production (195). Furthermore, an allogenic

cell base vaccine could be a valuable alternative to an autologous

tumor cells vaccine. Allogeneic vaccines based on CRC cell lines

(HT-29 and SW-480) were reported to induce anti-tumor
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immunity in CRC by increasing the NK cells’ cytotoxic

activity (186).

In a preclinical study of colorectal liver metastasis,

vaccination with CT26-derived tumors treated with

mitoxantrone (MTX) improved NK cell and T cell infiltration

to the tumor site and improved clinical response (196).

DC-based vaccines weremostly reported in clinical research to

be constructed based on CEA antigens. DCs were modified to

deliver CEA antigens by two CEA mRNA pulsed DCs, and CEA

peptide-loadedDCs approaches. Results demonstrated that theDC

vaccinationwas well tolerated and that NK cells level was increased

(197, 198). Moreover, a clinical study of 10 patients suffering from

CRCdemonstrated that the CEApeptide-loadedDCvaccine could

increase CEA- specific CTL and NK cell response (199).

Molecular-based vaccines have also been reported to

improve NK cells’ cytotoxicity against colon tumors (200).

DNA vaccines are based on direct introduction of a tumoral

antigen through plasmids containing the TSA sequence.

According to the U.S National library of medicine, 62% of

DNA vaccine clinical trials in the United States are assigned to

cancer vaccines. A DNA-based vaccine encapsulated in polyplex

micelles containing TAA, SART3 (squamous cell carcinoma

antigen), and C40L + GMCSF as adjuvant genes stimulated

CTLs and NK cells’ efficient immune response in peritoneal

metastasis of CT26-derived tumor s (200).

Vector-based vaccines composed of viral-based, bacterial-based,

and yeast-based vaccines are high-tech approaches to cancer

treatment. Immunogenic viruses will be engineered to express

TAAs, and the antigens will be presented to cytotoxic T cells to

eliminate cancer progression. It has been reported that systemic

activation of NK cells and systemic anti-tumor response occur

following viral-based vaccination (201). Recently a randomized
Frontiers in Oncology 11
phase-II clinical trial showed that CEA-targeted adenoviral vaccine

incombinationwithAvelumabandFOLFOX6is safe.This treatment

generated specific NK cellTCD4+/TCD8+ and ki67, NKP30+.

However, the trial failed to show and improvement of PFS (202).

Although therapeutic CRC vaccines have shown

considerable capacity in tumor inhibition, more investigation

are needed before any clinical use. Recent registered clinical

research is based on combination therapy of vaccines with

approved immune checkpoint blockades and chemotherapy as

standard of care (203). The combination of two different antigen

delivery systems in first-line treatment and vaccine booster can

inhibit the immune system tolerance against the first vectors

when more than one dose of vaccine is needed, especially in high

recurrence cancers. The most critical issues in vaccine

development are the selection of optimal antigens, adjuvant,

and delivery methods. Current registered clinical trials of vaccine

therapy in CRC are summarized in Table 3.
NK cells gene modification
improves immunogenicity of
colorectal cancer

Adoptive manipulated cell therapy has become a highly

promising treatment for advanced cancers. Patients affected by

Multiple Myeloma and B-lymphoma showed significant results

after receiving autologous T cells (204–206). Current T-cell

therapy uses gene-modified chimeric antigen receptor (CAR-T).

This was approved in August 2017 for the first time by the Food

and Drug Administration (207, 208). However, CAR-modified T

cells still have several functional and technical limitations. It can
TABLE 3 The current registered clinical trials of vaccine therapy in colorectal cancer.

Title Vaccine type Status Condition Characteristics Trial
identifier

Fluorouracil, Semustine, and
Vincristine Compared With BCG in Treating Patients

Biological: BCG
vaccine

Completed Colorectal Cancer Phase 3
-1977

NCT00427570

Cyclophosphamide Plus Vaccine Therapy in Treating Patients
With Advanced Cancer

Whole cell based
- Allogeneic tumor
cell vaccine

Completed Breast Cancer
Colorectal Cancer
Kidney Cancer
Lung Cancer
Malignant
Mesothelioma
Pancreatic Cancer

Phase 2
-1991

NCT00002475

Vaccine Therapy Peptide based
-Ras peptide
cancer vaccine

Completed Recurrent Colon
Cancer
Extensive Stage
Small Cell Lung
Cancer
Stage III Pancreatic
Cancer

phase 1
-1995

NCT00019006

(Continued)
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TABLE 3 Continued

Title Vaccine type Status Condition Characteristics Trial
identifier

Stage III Rectal
Cancer

Vaccine Therapy and Biological Therapy DC based vaccine
-mutant
p53 peptide pulsed
dendritic cell
vaccine

Completed Breast Cancer
Cervical Cancer
Colorectal Cancer
Lung Cancer
Ovarian Cancer
Pancreatic Cancer

Phase 2
-1996

NCT00019084

Biological Therapy in Treating Patients With Metastatic
Cancer

DC based
- CEA RNA-pulsed
DC cancer vaccine

Completed Breast Cancer
Colorectal Cancer
Extrahepatic Bile
Duct Cancer
Gallbladder Cancer
Gastric Cancer
Head and Neck
Cancer
Liver Cancer
Lung Cancer
Metastatic Cancer
Ovarian Cancer
Pancreatic Cancer
Testicular Germ
Cell Tumor

Phase 1
-1997

NCT00004604

Vaccine Therapy Plus Biological Therapy Peptide based
- Ras peptide
cancer vaccine

Completed Colorectal Cancer
Endometrial Cancer
Head and Neck
Cancer
Liver Cancer
Lung Cancer
Melanoma (Skin)
Pancreatic Cancer
Testicular Germ
Cell Tumor
Unspecified Adult
Solid Tumor

Phase 2
-1997

NCT00019331

Immunotherapy in Treating
Patients with Resected Liver
Metastases

Carcinoembryonic
antigen RNA
pulsed
DC cancer vaccine

Completed Metastatic
Colorectal Cancer

Phase 1,2
-1998

NCT00003433

Vaccine Therapy With or
Without Interleukin-2

Peptide based
-Ras peptide cancer
vaccine

Completed Locally Advanced
or Metastatic
Colorectal Cancer

Phase 1,2
-1999

NCT00019591

Vaccine Therapy Plus QS21 in Treating Patients Peptide based
-Ras peptide cancer
vaccine

Completed Advanced
Pancreatic or
Colorectal Cancer

Phase 1
-2000

NCT00006387

Vaccine Therapy in Treating
Patients With Metastatic Cancer

Peptide based
-MAGE-12
peptide vaccine

Completed Lung Cancer
Adult Soft Tissue
Sarcoma
Colorectal Cancer
Bone Cancer
Ovarian Sarcoma
Melanoma
Colon Cancer
Rectal Cancer
Breast Cancer
Eye Cancer
Uterine Sarcoma

Phase 1
-2000

NCT00020267

(Continued)
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TABLE 3 Continued

Title Vaccine type Status Condition Characteristics Trial
identifier

Vaccine therapy in Treating
Patients with Stage II or Stage III Colon

Biological: BCG
Vaccine,
autologous tumor
cell vaccine

Completed Colorectal Cancer Phase 1, 2
-2001

NCT00016133

Vaccine Therapy in Treating
Patients With Colorectal Cancer Metastatic to the Liver

Anti-body based
-monoclonal
antibody 11D10
anti-idiotype

Completed Metastatic
Colorectal Cancer

Phase 2
-2001

NCT00033748

Vaccine Therapy Vector based
-viral vaccine
-TRICOM-CEA
(6D)

Completed Breast Cancer
Colorectal Cancer
Gallbladder Cancer
Gastric Cancer
Head and Neck
Cancer
Liver Cancer
Ovarian Cancer
Pancreatic Cancer
Testicular Germ
Cell Tumor

Phase 1
-2002

NCT00027534

An Open Label Study of a
Peptide Vaccine

Peptide based
-EP2101

Completed Colorectal
Neoplasms

Phase 1
-2003

NCT00054912

Denileukin Diftitox Followed by Vaccine Therapy Vector based
fowlpox virus
-recombinant
fowlpox-CEA(6D)/
TRICOM vaccine

Completed Breast Cancer
Colorectal Cancer
Lung Cancer
Pancreatic Cancer
Unspecified Adult
Solid Tumor

Phase 1
-2005

NCT00128622

Vaccine Therapy in Treating
Patients With Liver or Lung
Metastases

DC based vaccine Completed Colorectal cancer Phase 2
-2005

NCT00103142

CEA(6D) VRP Vaccine in patients with advanced or
metastatic CEA expressing malignancies

Alpha viral
replicon particle
vaccine

Completed Colorectal Cancer
Breast Cancer
Lung Cancer
Pancreatic Cancer

Phase 1,2
-2007

NCT00529984

Study of Colon GVAX and
Cyclophosphamide

Whole cell based Completed Colorectal Cancer
Metastatic Cancer

Phase 1
-2008

NCT00656123

Study of the MUC1 Peptide-
Poly-ICLC Adjuvant Vaccine

Peptide based Completed Advanced colorectal
adenoma

Phase 2
-2008

NCT00773097

Immunotherapy With CEA(6D) VRP Vaccine (AVX701) Alpha viral
replicon particle
vaccine

Completed Stage III Colon
Cancer

Phase 1
-2013

NCT01890213

SGI-110 in Combination With an Allogeneic Colon Cancer
Cell Vaccine (GVAX) and Cyclophosphamide (CY)

Whole cell based Completed Metastatic
Colorectal Cancer

Phase 1
-2014

NCT01966289

Study of GVAX (With CY) and Pembrolizumab Whole cell based Completed MMR-p advanced
Colorectal Cancer

Phase 2
-2017

NCT02981524

Pooled Mutant KRAS-Targeted Long Peptide Vaccine
Combined
With Nivolumab and Ipilimumab

Peptide based Recruiting Resected
MMR-p Colorectal
and
Pancreatic Cancer

Phase 1
-2020

NCT04117087

A Study of ELI-002 in Subjects With KRAS Mutated
Pancreatic Ductal Adenocarcinoma (PDAC) and Other Solid
Tumors

Peptide based
-ELI-002 2P

Recruiting Pancreatic Ductal
Adenocarcinoma
Colorectal Cancer
Non-small Cell

Phase 1
-2021

NCT04853017

(Continued)
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be challenging to generate a product for one patient only, and

production costs are economically not sustainable for most health

care systems. In addition, autologous products require longer time

to generate CAR T-cells.

Allogeneic products have the potential to overcome these

limitations, and allogeneic HLA-matched T-cells can mediate

graft versus host disease (GvHD) (209). During the CAR-T cell

development NK cell- therapy was also considered. NK cells

provide an attractive source of allogeneic cells and have become

one of the hopes of the CAR engineering approach. Allogeneic

NK cells with a short life span do not cause GvHD and also have

less long-term adverse events (210–212). Furthermore, donor

selection is based on killer cell immunoglobulin receptor (KIR)-

ligand mismatch with the recipient or haplotype B KIR gene,

which could be beneficial in allogeneic stem cell transplantation

(213). CAR NK cell generation has been based on the CAR-T cell

platform (comprising CD3z and T cell co-stimulatory

molecules). It has been shown that these cells target cancer

cells with the desired specificity and effectiveness (214).

Therefore, CAR-NK-based therapy has been performed on

CRC, showing that EpCAM-CAR-NK-92 cells combined with

Regorafenib suppress EpCAM-positive tumor xenografts (215).

Furthermore, Masayuki Shiozawa et al. demonstrated anti-CEA-

CAR NK-92MI cells in a CEA-dependent manner recognized

and lysed high CEA-expressing tumor cells (215, 216) and

NKG2D CAR mRNA-engineered NK cells significantly

improved the cytolytic activity of NK cells against tumors

(217). Preclinical models are crucial stages that recapitulate the

individual tumor phenotype. The organoid culture system allows

long-term ex vivo expansion of gastrointestinal stem cells in a 3D
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extracellular matrix. In a study by Theresa E Schnalzger et al.,

CRC organoid was admitted to evaluate the performance of

EpCAM-CAR-NK-92 and FRIZZLED-CAR-NK-92. This 3D

platform is useful for evaluating CAR-engineered lymphocytes

(218). Furthermore, the recent development and efficient

CRISPR/Cas9 genome-editing technologies have accumulated

NK cell properties and offered new opportunities to increase

their susceptibility to NK surveillance. Lanlan Gao et al.

demonstrated up regulation of CXCR2 and IL-2 Via CRISPR-

Cas9 improved NK-92 cell anti-tumor effects, and survival time

was significantly prolonged as cellular immunotherapy for

CRC (219).

Engineered NK cells are the next generation of immune cell

therapy products with enhanced proliferation and homing

capacity and blocked suppressing signals that will enhance

their tumor killing properties.
NK cell-based clinical trial of
colorectal cancer

NK cell-based therapies are well developed for hematological

malignancies such as Acute Myeloid Leukemia (AML) (220,

221). The FDA and EMA have represented ONKord as an off-

shelf orphan drug for AML patients: the allogeneic partial HLA-

matched NK cells derived from UCB-CD34 + progenitors.

Despite the successes in hematologic malignancies, NK-

based therapies for CRC as a solid tumor are associated with

challenges. The most difficult are NK cell source and ex vivo

expansion, lymphocyte infiltration, and tumor escape from
TABLE 3 Continued

Title Vaccine type Status Condition Characteristics Trial
identifier

Lung Cancer
Ovarian Cancer
Cholangiocarcinoma
Bile Duct Cancer
Gallbladder
Carcinoma

A Vaccine (PolyPEPI1018
Vaccine) and TAS-102 for
the Treatment of Metastatic
Colorectal Cancer

Peptide based Recruiting -Metastatic
Microsatellite
Stable Colorectal
Carcinoma
-Stage IV, IVA,
IVB, IVC Colorectal
Cancer

Phase 1
-2022

NCT05130060

Study of an Individualized
Vaccine Targeting Neoantigens
in Combination with Immune
Checkpoint Blockade

Vector based
-Adenoviral,GRT-
C901/GRT-R902

Recruiting Colorectal
Neoplasms

Phase 2
-2022

NCT05456165

Neoantigen-Targeted Vaccine Combined with Anti PD-1
Antibody

Peptide based Not yet
recruiting

Patients With Stage
IV MMR-p Colon
and Pancreatic
Ductal Cancer

Phase 1
-2022

NCT04799431
frontiersin.org

https://doi.org/10.3389/fonc.2022.1077053
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ghazvinian et al. 10.3389/fonc.2022.1077053
the immune surveillance. These challenges have led to fewer

trials on this cancer, which has been rising in recent years

(Table 4). iPSC- differentiated NK cells (iPSC-NK) are

homogeneously differentiated and more suitable than NK-

92. Other clinical trials (NCT03841110 and NCT04106167)

examined the safety and efficacy of these cells under the name

FT500 against CRC.

The first human study of NK cell transfer in CRC showed

stable disease in metastasis and progression stages and was also

reported to be safe with no side effects, mainly including GvHD

(222–224). Furthermore, a phase-I clinical trial revealed the

safety of autologous NK cell therapy and was reported

tolerable in patients suffering from CRC who had failed

previous standard therapy. Autologous NK cells were

administered dose-escalating (dose 0.5 × 109, 1.0 × 109, 2.0 ×

109 cells/injection) three times/week. The results demonstrated

that adoptive NK cell monotherapy caused no clinical responses

besides safety and was undesirable for patients. To improve their

efficacy, combining approaches with other immune therapy

agents should be considered (225).
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It has become increasingly clear that NK therapy alone has

limited efficacy in solid tumors. Most studies have shifted to

engineered NKs and combined therapies.

Takeshi Ishikawa et al. performed a human study (N = 9) of

expanded NK cells in combination with IgG1 antibody

(Trastuzumab, Cetuximab). Patients received NK cells after

three days of IgG1 antibody administration were infused with

expanded NK cells in three steps, at doses of 0.5 × 109, 1.0 × 109,

and 2.0 × 109 cells/injection at tri-weekly intervals. A decrease in

tumor size in three patients and raised whole blood IFNg
production after combination therapy was observed (226).

Allogeneic NK cells combined with Cetuximab were

administered in metastatic colorectal carcinoma (N = 6) to

evaluate the safety and efficacy of NK cell delivery in the

phase-I clinical trial. NK cells were administrated, followed by

high-dose IL-2 (3×106, 8×106, and 12×106 NK cells/kg).

Reportedly, NK cell-Cetuximab combination approach was

well tolerated. However, clinical responses should be further

investigated (227). Chimeric antigen receptor (CAR) -carrying

cells have been shown to be effective in hematologic malignancy.
TABLE 4 Ongoing clinical trials of therapeutic NK cells in CRC.

Agent Cell source Treatment approach Malignancy
Year, Study

phase
(status)

Trial
identifier

Adoptive NK cell

NK Cord blood In combination with Cetuximab CRC
2021, Phase 1
(Not yet
recruiting)

NCT05040568

HSP-70
activated
NK cells

PBMC Autologous NK cell
Colon and lung
cancer

2004, Phase
1Complete

(222)

NK PBMC
Evaluation of safety following allogenic hematopoietic stem cell
stem cell transplantation

CRC, HCC, RCC,
B-CLL

2009, Phase 1,
Complete

(223)

NK PBMC In combination with conventional treatment CRC
2021, Phase 1,
Complete

(224)

NK PBMC Autologous NK cell
Advanced
digestive cancer

2015, Phase 1,
Complete

(225)

NK PBMC In combination with IgG1 antibody
Gastric and
Colorectal cancer

2018, Phase 1,
Complete

(226)

NK PBMC Combined with Cetuximab
Gastrointestinal
carcinoma

2018, Phase 1,
Complete

(227)

FATE-
NK100

PB NK cells Monotherapy and in combination with trastuzumab
Advanced Solid
Tumors

2017, Phase 1
(not recruiting)

NCT03319459

FT500 iPS
Monotherapy and in Combination with Immune Checkpoint
Inhibitors

Advanced Solid
Tumors

2019, Phase 1
(Recruiting)

NCT03841110

FT500 iPS Evaluation of long-term safety and efficacy Solid tumors
2019,
(recruiting)

NCT04106167

CB-NK cells – Evaluation of safety and activity of combination with cetuximab Colon Cancer
2021, phase 1b,
Recruiting

NCT05040568

(Continued)
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In comparison to CAR based T cell therapy, allogeneic CAR-

NK cell therapy caused no GvHD (228, 229), accompanied by a

shorter final production time (230, 231), and also the final

product would be “off-the-shelf” (232). LinXiao et al.

performed an open-label pilot study (NCT03415100) to assess

the safety of NKG2D CAR mRNA-engineered NK Cells to

improve their cytolytic activity against metastatic CRC

patients. No serious adverse effects (≥grade 3 adverse events)

existed in any of the three patients except grade 1 cytokine

release syndrome. CAR-NK cells augmented NK-based therapy

when they were administered intra -peritoneal in a dose-

escalation manner to reduce off-target risks (217). Moreover, a

clinical trial was recently registered (NCT02839954) to

administer anti-MUC1 CAR-NK cells in patients suffering

from solid tumors, including colorectal cancer. Additionally, a

phase-I clinical study (NCT04319757) is recruiting patients to

investigate the safety and preliminary efficacy of anti-HER2 oNK
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cells (ACE1702) against human HER2-expressing solid tumors

as an off-the-shelf NK cell product.

The infiltration and active persistence of NK cells and

genetic manipulation have been among researchers’ priorities.

In recent years, the identification of checkpoint inhibitors has

led to immunotherapy development, which is being evaluated in

combination (NCT03841110) with FT500 to inhibit cancer

immunity. Ongoing clinical trials of therapeutic NK cells in

CRC have been reviewed in Table 4.
Conclusion

NK cell therapy has been widely adopted as an efficient

cancer treatment, however; the limitation and challenges,

especially in solid tumors, are indisputable. The major

limitations reported are the non-targeted responses of NK
TABLE 4 Continued

Agent Cell source Treatment approach Malignancy
Year, Study

phase
(status)

Trial
identifier

FT536 – Dose-finding study in Combination With Monoclonal Antibodies
Advanced Solid
Tumors

2022, phase 1,
Recruiting

NCT05395052

DKC – Evaluate the safety of autologous dendritic killer cell (DKC) Solid Tumors
2016, Phase 1
(not recruiting)

NCT02882659

NKT PBMC Evaluation of Clinical Efficacy and Safety
Advanced Solid
Tumor

2015, Phase 1/2
(Recruiting)

NCT02562963

DC-CIK – Evaluate the efficacy Colorectal Cancer
2013, Phase II,
Unknown

NCT01839539

NK –

Evaluate Safety in Combination With Interleukin-2 (IL-2) and
Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor
Vactosertib

Colorectal Cancer
2022, phase 1
Not yet
recruiting

NCT05400122

NKG2D
CAR - NK

PBMC Evaluate the safety and efficacy
Metastatic
Colorectal Cancer

2019, Open
label pilot study

(217)

CAR-pNK – Anti-MUC1 CAR-pNK cells
Refractory Solid
Tumor

2016, Phase 1/2
(Recruiting)

NCT02839954

CAR-
NKG2D

– Anti-NKG2D CAR-pNK cells
Refractory
Metastatic
Colorectal Cancer

2022, phase 1
(Recruiting)

NCT05213195

SNK01
Autologous non-
genetically
modified

Safety and Efficacy of SNK01 in Combination with Trastuzumab
or Cetuximab

Advanced HER2
or EGFR

2020, Phase1/2
(Trial not
initiated)

NCT04464967

ACE1702 –
Evaluate the safety and tolerability, pharmacokinetics,
pharmacodynamics, and preliminary efficacy

HER2-expressing
Solid Tumors

2020, Phase 1
(Recruiting)

NCT04319757

NK cell augment

Lidocaine – Intravenous lidocaine in CRC resection will preserve NKs activity CRC
2013, Phase 4
(Recruiting)

NCT01841294

Aerobic
Exercise

– Exercise increases the activity of NK cells CRC Stage IV
2021, Not
Applicable
(Recruiting)

NCT04715061
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cells, the immune suppressive tumor microenvironment, and the

NK cell infiltration barriers to the tumor site. Genetic

engineering strategy has developed chimeric antigen receptors

NK cells; in addition, immune checkpoints recognition and

development of immune blockade molecules effectively

improved the adaptive NK cell therapy effectiveness. The use

of NK cells to target cancer cells and understanding the NK cell–

cancer interactions is constantly evolving.
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