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Objective: To evaluate the diagnostic ability of magnetic resonance imaging (MRI)

based radiomics and traditional characteristics to differentiate between Ovarian

sex cord-stromal tumors (SCSTs) and epithelial ovarian cancers (EOCs).

Methods:Weconsecutively included a total of 148 patients with 173 tumors (81 SCSTs

in 73 patients and 92 EOCs in 75 patients), who were randomly divided into

development and testing cohorts at a ratio of 8:2. Radiomics features were

extracted from each tumor, 5-fold cross-validation was conducted for the selection

of stable features based on development cohort, and we built radiomics model based

on these selected features. Univariate and multivariate analyses were used to identify

the independent predictors in clinical features and conventional MR parameters for

differentiating SCSTs and EOCs. And nomogram was used to visualized the ultimately

predictive models. All models were constructed based on the logistic regression (LR)

classifier. The performance of each model was evaluated by the receiver operating

characteristic (ROC) curve. Calibration and decision curves analysis (DCA) were used

to evaluate the performance of models.

Results: The final radiomicsmodel was constructed by nine radiomics features, which

exhibited superior predictive ability with AUCs of 0.915 (95%CI: 0.869-0.962) and

0.867 (95%CI: 0.732-1.000) in the development and testing cohorts, respectively. The

mixed model which combining the radiomics signatures and traditional parameters

achieved the best performance, with AUCs of 0.934 (95%CI: 0.892-0.976) and 0.875

(95%CI: 0.743-1.000) in the development and testing cohorts, respectively.

Conclusion: We believe that the radiomics approach could be a more objective

and accurate way to distinguish between SCSTs and EOCs, and the mixed model

developed in our study could provide a comprehensive, effective method for

clinicians to develop an appropriate management strategy.

KEYWORDS

ovarian sex cord-stromal tumor, epithelial ovarian cancer, magnetic resonance imaging,
radiomics, prediction model
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Introduction

Ovarian sex cord-stromal tumors (SCSTs) are rare nonepithelial

neoplasms, and represent about 7% of all primary ovarian tumors (1,

2). According to the classification of ovarian tumors by World Health

Organization (WHO) (2020), SCSTs are divided into the following

three clinicopathologic subcategories: pure stromal tumors, pure sex

cord tumors, and mixed sex cord-stromal tumors (3). Fibromas,

thecomas, and granulosa cell tumors account for the majority

of SCSTs.

Morphologically, SCSTs usually present as solid masses (4),

resembling malignant tumors. Although some of the SCSTs, such as

fibromas, have a few specific characteristics on conventional imaging

features, diagnostic dilemmas may often arise if the tumor shows

increased cellularity, or due to necrosis, hemorrhage, edema, or cystic

degeneration (2, 4). Other types are even more confusing on account

of morphological complexity. Moreover, the rarity of SCSTs

contributes to a low degree of suspicion, which makes it susceptible

to misdiagnosis as the more common epithelial ovarian cancer

(EOC). Clinically, SCSTs most commonly present at early stages (I)

and are primarily surgically treated with an overall favorable

prognosis (2, 5), while epithelial tumors usually present at advanced

stages (III or IV) and are treated with chemotherapy and surgical

debulking (2). Hence, a more accurate and objective assessment

method to identify SCSTs from ovarian cancers is imperative.

Magnetic resonance imaging (MRI) has been widely used to

detect and evaluate adnexal lesions, especially for the indeterminate

adnexal masses on ultrasonography (6, 7). The high soft-tissue

resolution and ability to characterize the composition of different

fluid types allow it to characterize the lesion types more accurately (7).

However, all the evaluation by MRI requires the subjective

interpretation of radiologists, in addition to the complexity and

overlap in imaging characteristics of different diseases, it is still a

challenge to differentiate the types of tumors with MRI alone (6).

Radiomics is an emerging method for postprocessing any type of

medical image and generating new quantification metrics which have

proven to provide important insights into tumor biology, shifting

radiology from the traditional visual analysis to a more objective and

automated analysis (6). Recently, radiomics studies on adnexal

tumors have demonstrated some encouraging advances, including

clinical outcomes in ovarian cancer (6, 8, 9), tumor category (9, 10),

and subtype differentiation (9, 11). However, there are few studies

involving SCSTs. In this study, we developed an MR image-based

radiomics diagnostic model to prove that SCSTs and EOCs

are separable.
Patients and methods

Patient population

This retrospective pilot study was approved by our Institutional

Review Board with a waiver of informed consent. From January 2017

to December 2021, we retrospectively retrieved all MRI pelvic

examinations referring to ovarian or adnexal lesions from our

Institutional Picture Archiving and Communication System (PACS)
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and obtained 1867 results. Every report was analyzed by the

researchers. Then we identified patients who met the following

inclusion criteria (1): pathologically confirmed as SCSTs or EOCs;

(2) MRI was performed within 1 month before pelvic or laparoscopic

surgery at our institution; (3) no chemotherapy, radiotherapy, or

previous gynecological operation prior to MRI examination. The

exclusion criteria were: (1) poor MR image quality, so that the

focus cannot be clearly observed or delineated; (2) multiple nodules

that the primary focus cannot be identified due to a mutual fusion and

extensive adhesion pattern or any other reason. Finally, we

consecutively reviewed a total of 148 patients with 173 tumors (81

SCSTs in 73 patients and 92 EOCs in 75 patients) as the primary

cohort. Details of histopathology are presented in Table 1. Then the

primary dataset was randomly split into the development and testing

cohorts with a fixed ratio of 8:2 in each category, resulting in 137

tumors (64 SCSTs and 73 EOCs) for the development cohort and 36

tumors (17 SCSTs and 19 EOCs) for testing cohort. A flowchart of the

patient selection process is shown in Figure 1.

Clinical characteristics such as patient age, menstrual status,

endocrine level, cancer antigen 125 (CA125), and risk of ovarian

malignancy algorithm (ROMA), were obtained from the hospital

information system.
MR image acquisition and interpretation

MR examinations were performed on the 3.0 T system (SIGNA

Pioneer, GE Healthcare, and Skyra, Siemens Healthcare) with the

phased-array abdominal coil. The conventional MR sequences

included T1 weighted imaging (T1WI) in the axial plane, T2

weighted imaging (T2WI) in the axial and sagittal plane, fat-

suppressed T2WI (FS-T2WI) in the axial and coronal plane,

diffusion-weighted imaging (DWI) with the b value of 1000 s/mm2

in the axial plane, and multiphase contrast-enhanced fat-suppressed

T1WI in the axial, sagittal, and coronal plane. Detailed information

about the acquisition parameters is presented in Table S1.

Two radiologists (reader 1 and reader 2, with 7 and 15 years of

experience in MRI, respectively) independently recorded the

conventional imaging features while blinded to the histological

results. The recorded features include (1) Maximum diameter (MD)

(measured at the lesion slice with the maximum diameter of the

tumor in the three-dimensional measurements); (2) Visibility of

hemorrhagic component; (3) Solid and cystic components

(predominantly cystic, cystic-solid, and predominantly solid

corresponding to less than 1/3, 1/3-2/3, and more than 2/3 solid

component, respectively); (4) Signal intensity (SI) of the solid

components on T2WI (Hypo-, iso-, or hyperintense was relative to

the external myometrium; A few purely cystic lesions were not

recorded); (5) Apparent diffusion coefficient (ADC) value

(measured manually on the DWI derived ADC maps; regions of

interest were placed at target areas of the tumor, and areas such as

necrosis, hemorrhage, vascular structures were avoided as much as

possible; three measurements were obtained and averaged).

Discrepancies were resolved by a consensus, or a third radiologist

(reader 3 with more than 20 years of experience in gynecologic

imaging) would serve as an arbitrator.
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Tumor segmentation

In order to reduce the discrepancies related to various scanning

parameters and eliminate the internal dependence of image radiomics

features on voxel size, all images were set to a fixed voxel size

(1mm×1mm×1mm) with linear interpolation algorithm.

The 3D segmentation was performed on open-source software

(ITK-SNAP version 3.8.0, http://www.itksnap.org). The volume of

interest (VOI) for each lesion on each slice was manually delineated
Frontiers in Oncology 03
on FS-T2WI by a reader 1. Then, reader 3 confirmed all the regions.

To examine the reproducibility of extracted radiomics features and to

obtain more robust radiomics features, the intra-class correlation

coefficient (ICC) was used to assess the intra- and inter-observer

agreement of VOI delineation. So, four weeks later, 30 patients (15

SCSTs and 15 EOCs) were randomly selected. Reader 1 then re-

delineated the VOI for intra-consistency testing, in the meantime,

reader 2 outlined the VOI according to the same procedure to test

inter-consistency. The feature with an ICC > 0.75 was selected for

further analysis (12). ICC can be obtained from the following

equation:

ICC =
(MSR −MSE)

MSR + ( MSC−MSE
n )

;

where MSR is mean square for rows, MSC is the mean square for

columns, MSE is mean square for error and n represents the number

of subjects.
Feature extraction

The extraction of radiomics features was conducted in the

Radcloud software (Huiying Medical Technology Co., Ltd, Beijing,

China). A total of 1,409 features were extracted from the FS-T2WI

sequences using the pyradiomics function package (https://

pyradiomics.readthedocs.io/). These features could be divided into

the following three categories. First, first-order statistical features,

such as peak value, mean, and variance, quantitatively describe the

voxel intensity distribution of the lesion area in MR images through

common basic indicators. Second, two-dimensional morphological

features, describe the two-dimensional shape and size of the lesion.

Third, texture features, such as Gray Level Co-occurrence Matrix

(GLCM), Gray Level Run Length Matrix (GLCM), and Gray Level

Size Zone Matrix (GLSZM), quantify the heterogeneity of the lesion

texture. In addition, several filters, such as exponential, logarithm,

square, square root, and wavelet (including wavelet-LHL, wavelet-

LHH, wavelet-HLL, wavelet-LLH, wavelet-HLH, wavelet-HHH,

wavelet-HHL, and wavelet-LLL) filters, were applied to calculate the

first-order statistical features and texture features of the

transformed image.
Feature selection

Before the selection of radiomics features, normalization

processing was performed for all extracted features, and the features

were normalized to the normal distribution by mean and

variance scaling.

We run a 5-fold cross validation to select features, where each fold

we did feature selection and model building on 80% of the

development data (the training cohort), and evaluated on the

remaining 20% (the validation cohort). In each fold, we implement

the dimensionality reduction process in three steps. Features with a

variance value of >0.8 were first selected. Then SelectKBest was

applied to select the features with a p-value less than 0.05. Finally,

the Lassolars algorithm was used to screen the optimal radiomics
FIGURE 1

Flowchart for the patient selection process in this study.
TABLE 1 Histopathological types of the selected samples.

Pathological type Numbers

SCST 81

Thecoma 4

Fibroma 18

Cellular fibroma 2

Fibrothecoma 28

Granulosa cell tumor 25

Sclerosing stromal tumor 2

Sertoli-Leydig cell tumor 2

EOC 92

High grade serous carcinoma 42

Low grade serous carcinoma 17

Endometrioid carcinoma 12

Clear cell carcinoma 12

Mucinous carcinoma 6

Seromucinous carcinoma 3

Total 173

SCST, sex cord-stromal tumors; EOC, epithelial ovarian cancer
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features, among which the top 10 features with the best contribution

would be selected. The least absolute shrinkage and selection operator

(LASSO) is a regression analysis method that can perform both

variable selection and regularization to improve the identification

accuracy and interpretability of the model. Regression algorithm least

angle regression (LARS) provides variables through the linear

combination of high-dimensional data. It is related to positive

stepwise regression. Lassolars algorithm used in this paper is a

combination of Lars algorithm and lasso model, which can

automatically select the optimal parameters l and have better

performance than LASSO algorithm alone (13). Finally, we counted

the frequency of each feature selected in the 5 folds, the features that

get selected three or more times repeatedly were considered stable

features, and different models were built using various combinations

of those selected features.
Classifier modeling

Univariate analysis and multivariate logistic regression analysis

were successively performed based on development data to screen the

clinical and conventional MR features. Based on the selected

radiomics features, clinical features, and conventional MR

parameters, five prediction models (clinical model, conventional

MR model, traditional model, radiomics model and mixed model)

were constructed by using the LR classifier. LR classifier includes

classification, function establishment, solving optimal model

parameters through optimization iteration, and verifying the model

performance. In addition, the nomogram was also constructed to

visualize the results of the logistic regression. The nomogram

develops scoring criteria based on the magnitude of the regression

coefficients for all independent variables. It scores each value level of

each independent variable, giving an overall score and finally

calculating the probability of disease risk for each patient through a

conversion function between the score and the outcome probability.

The calibration curve was drawn to assess the agreement between the

predicted results and actual presence. The detailed process of

radiomics analysis is presented in Figure 2.
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The performance of the model was estimated by using receiver

operating characteristic (ROC) curves and confusion matrix analysis, and

the area under the curve (AUC), sensitivity, specificity, and accuracy were

calculated. The DeLong test was used to compare the performance of

different models. The decision curve analysis (DCA) was used to evaluate

the clinical utility of the prediction models by quantifying the net benefits

at different threshold probabilities in the dataset.
Statistical analysis

Statistical analysis was performed using SPSS version 25.0 (IBM).

Quantitative variables are shown as mean ± standard deviation.

Categorical variables were assessed by Chi-square tests or Fisher exact

test, and differences in continuous variables were assessed by t-test or

Mann-Whitney U test. P< 0.05 was considered statistically significant.

Model construction was executed using R software 3.5.3 (https://cran.r-

project.org/) and Python 2.7 software (https://www.python.org/). The

packages of “pyradiomics” (https://pyradiomics.readthedocs.io/),

“scikitlearn” (https://scikit-learn.org/), and “matplotlib” (https://

matplotlib.org/) were used for feature selection, model building, and

plotting in this study.
Results

Patients and tumor characteristics

The comparisons of the clinical data and MR parameters between

SCSTs and EOCs groups in the primary and development cohorts are

summarized in Table 2. Age, ROMA index, serum CA125, ADC value,

MD, SI on T2WI, solid and cystic components showed significant

differences between the SCSTs and EOCs groups, while no significant

difference was observed in menstrual status, endocrine level, and

hemorrhagic component. Among the variables with significant

differences, only ROMA index (P< 0.001), ADC value (P = 0.004),

solid and cystic components (P = 0.043) remained as independent

predictors on the multivariate logistic regression analysis.
FIGURE 2

Process of radiomics analysis in this study.
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Feature extraction and selection

Of all the extracted radiomics features, the median ICC was 0.90,

and 1277 of 1409 features (91%) were robust and were selected for

subsequent analysis, with ICC > 0.75. Lassolars algorithms on feature

selection for each fold are shown in Figure S1. The selected radiomic

features and the corresponding coefficients in each fold are shown in

Figure 3 and Table S2. We did model building in every fold, the AUCs

for the 5-fold cross validation are reported in Table S3 and Figure S2,

and the mean AUCs were 0.883 ± 0.018 in the training cohort and

0.849 ± 0.021 in the validation cohort. Finally, there were three

features got selected in 3 of the 5 folds, three features got selected in 4
Frontiers in Oncology 05
of the 5 folds, and three features got selected in every fold. The

frequencies of the radiomics features are summarized in Table 3.
Construction and performance of the
prediction models

Based on the selected clinical variable ROMA index, a clinical

model was established. Based on parameter ADC, solid and cystic

components, a conventional MR model was established. Then, based

on the combination of the above clinical factors and conventional MR

parameters, a traditional model was established. The AUCs of the
TABLE 2 The clinical data and MR parameters of the primary and development cohorts.

Characteristics

Primary cohort Development cohort

EOCs
(n = 92)

SCSTs
(n = 81) P value

EOCs
(n = 73)

SCSTs
(n = 64) P value

Age (year) a 51.78 ± 10.35 46.33 ± 15.76 0.017* 52.22 ± 10.41 46.58 ± 16.16 0.015*

ROMA (%) a 32.07 ± 26.71 16.03 ± 12.20 <.001* 33.65 ± 27.32 16.08 ± 12.91 <.001*

CA125 (mg/L) b <.001* <.001*

<35 38 (41.3%) 55 (67.9%) 27 (37.0%) 46 (71.9%)

35-200 26 (28.3%) 23 (28.4%) 23 (31.5%) 15 (23.4%)

200-500 13 (14.1%) 1 (1.2%) 10 (13.7%) 1 (1.6%)

>500 15 (16.3%) 2 (2.5%) 13 (17.8%) 2 (3.1%)

Menstrual status b 0.543 0.205

Premenopausal 45 (48.9%) 44 (54.3%) 32 (43.8%) 35 (54.7%)

Postmenopausal 47 (51.1%) 37 (45.7%) 41 (56.2%) 29 (45.3%)

Endocrine level b 0.788 0.588

Normal 85 (92.4%) 73 (90.1%) 67 (91.8%) 57 (89.1%)

Abnormal 7 (7.6%) 8 (9.9%) 6 (8.2%) 7 (10.9%)

ADC (×10-3mm2/s) a 0.98 ± 0.26 1.13 ± 0.34 0.001* 1.00 ± 0.28 1.12 ± 0.34 0.023*

MD (cm) a 8.72 ± 4.21 7.03 ± 4.28 0.001* 8.95 ± 4.42 7.31 ± 4.41 0.032*

SI on T2WI b 0.002* 0.003*

Hypo-intensity 5 (5.4%) 19 (23.5%) 2 (2.7%) 14 (21.9%)

Iso-intensity 40 (43.5%) 20 (24.7%) 34 (46.6%) 17 (26.6%)

Hyperintensity 30 (32.6%) 23 (28.4%) 23 (31.5%) 17 (26.6%)

Mixed 11 (12%) 15 (18.5%) 9 (12.3%) 13 (20.3%)

Solid and cystic components b 0.004* 0.002*

Predominantly cystic 30 (32.6%) 12 (14.8%) 26 (35.6%) 10 (15.6%)

Cystic-solid 21 (22.8%) 13 (16.1%) 17 (23.3%) 9 (14.1%)

Predominantly solid 41 (44.6%) 56 (69.1%) 30 (41.4%) 45 (70.3%)

Hemorrhage b 0.188 0.154

Present 16 (17.4%) 8 (9.9%) 13 (17.8%) 6 (9.4%)

Absent 76 (82.6%) 73 (90.1%) 60 (82.2%) 58 (90.6%)

EOC, epithelial ovarian cancer; SCST, sex cord-stromal tumors; ROMA, Risk of Ovarian Malignancy Algorithm; CA125, Cancer antigen 125; ADC, apparent diffusion coefficient; MD, maximum
diameter; SI, signal intensity; T2WI, T2 weighted imaging; a Data are the mean ± standard deviation, P values calculated by sample t test. b Date are the case (%), P values calculated by Chi-square
tests or Fisher exact test. * P values< 0.05 were considered statistically significant.
fron
tiersin.org

https://doi.org/10.3389/fonc.2022.1073983
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cheng et al. 10.3389/fonc.2022.1073983
clinical model, conventional MR model, and traditional model were

0.729 (95%CI: 0.645-0.812), 0.737 (95%CI: 0.654-0.819), 0.755 (95%

CI: 0.677-0.834) in the development cohort, respectively, and 0.680

(95%CI: 0.498-0.862), 0.693 (95%CI: 0.515-0.872), 0.735 (95%CI:

0.569-0.902) in the testing cohort, respectively (Figure 4 and Table 4).

Three different radiomics models (Models 1-3) were developed

using the following combinations of the radiomics features: 3 features

(got selected in every fold), 6 features (got selected 4 or more times

repeatedly) and 9 features (got selected 3 or more times repeatedly).

Among them, Model 3 showed the best performance, which was

determined as the final radiomics model, with the AUCs of 0.915

(95% CI: 0.869-0.962) and 0.867 (95% CI: 0.732-1.000) in the
Frontiers in Oncology 06
development and testing cohorts, respectively (Figure 4 and

Table 4). However, no significant differences were observed between

Model 3 and the other two models. The AUCs of the three models and

the comparisons in terms of diagnostic performance among them

were shown in Table 5. Rad-score based on 9 features were weighted

by their respective coefficients, the calculation formula for the Rad-

score is provided in the Supplementary Materials page 7.

Finally, we established a mixed model based on the Rad-score,

clinical characteristics (ROMA), and conventional MR parameters

(ADC, solid and cystic components). The AUCs of the mixed model

were 0.934 (95%CI: 0.892-0.976) and 0.875 (95%CI: 0.743-1.000) in the

development and testing cohorts, respectively (Figure 4 and Table 4).
TABLE 3 Details of the selected features in the developed radiomics models.

Number Radiomics feature name Frequency

1 wavelet-HLL-GLSZM-ZoneEntropy 5

2 wavelet-LHL-GLSZM-HighGrayLevelZoneEmphasis 5

3 logarithm-firstorder-10Percentile 5

4 logarithm-firstorder-InterquartileRange 4

5 gradient-firstorder-Maximum 4

6 wavelet-HL-GLSZM-SmallAreaHighGrayLevelEmphasis 4

7 original-firstorder-Kurtosis 3

8 wavelet-HLH- GLSZM -ZoneEntropy 3

9 wavelet-LHL- GLSZM -ZoneEntropy 3

GLSZM, Gray-Level Size Zone Matrix
B

C D

E

A

FIGURE 3

The selected radiomic features in each fold. (A) 6 radiomic features selected in fold 1. (B) 9 radiomic features selected in fold 2. (C) 10 radiomic features
selected in fold 3. (D) 10 radiomic features selected in fold 4. (E) 10 radiomic features selected in fold 5.
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The difference between the traditional model and radiomics

model was statistically significant in the testing cohort (traditional

model AUC vs. radiomics model AUC: 0.735 vs. 0.867, Delong test P<

0.001); however, there was no evidence of a difference in the testing

set between the radiomics model compared with the mixed model

(radiomics model AUC vs. mixed model AUC: 0.867 vs. 0.875, Delong

test P = 0.561).

A radiomics nomogram was constructed by using the selected

variables from multivariate logistic regression and Rad-score to
Frontiers in Oncology 07
provide a visualized outcome measure (Figure 5A). The total score

for this nomogram was calculated using the formula: Nomo-score =

-1.5402 + 11.4118 × Rad-score -0.0335 × ROMA + 1.3928 × ADC +

0.3532 × Components. The calibration curves demonstrated good

diagnostic consistency between the predictions of the radiomics

nomogram and the actual observations of the samples (Figure 5B).

DCA revealed that the radiomics model and the mixed model

provided a better net benefit than the traditional model across the

majority of the range of reasonable threshold probabilities (Figure 6).
BA

FIGURE 4

ROC curves of conventional MR model, clinical model, traditional model, radiomics model and mixed model within the development (A) and testing (B) cohorts.
TABLE 4 Predictive performances of the final models in the development and testing cohorts.

Model

Development cohort Testing cohort

AUC
(95% CI) SEN SPE ACC P value AUC

(95% CI) SEN SPE ACC P value

Conventional MR model
0.737

(0.654-0.819)
0.758 0.528 0.638 <0.001

0.693
(0.515-0.872)

0.600 0.650 0.629 0.039

Clinical model
0.729

(0.645-0.812)
0.812 0.541 0.667 <0.001

0.680
(0.498-0.862)

0.600 0.650 0.629 0.048

Traditional model
0.755

(0.677-0.834)
0.727 0.542 0.630 <0.001

0.735
(0.569-0.902)

0.706 0.611 0.657 0.017

Radiomics model
0.915

0.869-0.962)
0.701 0.873 0.790 <0.001

0.867
(0.732-1.000)

0.714 0.857 0.800 <0.001

Mixed model
0.934

(0.892-0.976)
0.814 0.868 0.841 <0.001

0.875
(0.743-1.000)

0.727 0.750 0.743 <0.001

AUC, area under curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; p values on the AUCs are difference from AUC=0.5
fron
TABLE 5 Predictive performances of the three developed radiomics models.

Model

Development cohort Testing cohort

AUC
(95% CI) SEN SPE ACC P value AUC

(95% CI) SEN SPE ACC P value

Model 1
0.837

(0.765-0.909)
0.672 0.838 0.761 0.073

0.817
(0.662-0.971)

0.800 0.55 0.657 0.631

Model 2
0.873

(0.814-0.932)
0.683 0.853 0.775 0.269

0.846
(0.707-0.985)

0.769 0.818 0.800 0.832

Model 3
0.915

(0.869-0.962)
0.701 0.873 0.790 1.000

0.867
(0.732-1.000)

0.714 0.857 0.800 1.000

AUC, area under curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; P values calculated by Delong test, compared with Model 3.
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Discussion

SCSTs are composed of a heterogeneous group with complicated

image manifestation. Although a few cases are mainly cystic, most

SCSTs are predominantly solid masses (2, 4, 5). In MRI, the presence

of solid tissue in an adnexal lesion is the primary cause of increased

risk stratification (7, 14), so the particular lesion that requires to be

differentiated is EOC. With the optimization of various diagnostic

schemes, multiple methods have been gradually combined to evaluate

adnexal tumors (15). In the current study, we assessed the ability of

the clinical model, conventional MR model, traditional model, and

the radiomics model to distinguish SCSTs and EOCs. As shown in the

result, radiomics model yielded prominent predictive performance,

significantly higher than that of the traditional model. The mixed

model stood out among all the models.

Generally, SCSTs are considered to be clinically different from

epithelial tumors to some extent, they occur across a wide age range

and some patients may have clinical signs of hormone production (5,
Frontiers in Oncology 08
16). In our study, only 8 in 73 patients with SCSTs showed elevated

hormone levels, mainly presenting as a slight increase in prolactin. No

significant difference was observed in menstrual status or endocrine

level between the two groups. In previous studies (17, 18), serum

CA125 and ROMA index have been proven to be effective diagnostic

markers for EOCs, which could be used to differentiate between

benign and malignant lesions. The present results were consistent

with the previous studies, revealing that serum CA125 and ROMA

index in the SCSTs group were significantly lower than those in

EOCs, owing to the blunt nature of SCSTs. And in the multivariate

logistic regression analysis, ROMA index was an independent

predictor. However, the diagnostic efficacy of the clinical model was

not satisfactory (AUCs = 0.729 and 0.680 in the development and

testing cohorts, respectively), suggesting that clinical characteristics

can only provide limited information for the differential diagnosis.

Conventional MR images could provide abundant information

regarding the pathological features of tumors. Yin et al. (19) reported

their results of 36 thecomas/fibrothecomas and 40 malignant pelvic
BA

FIGURE 5

(A) Radiomics nomogram with Rad-score, two conventional MR findings and a clinical factor, including components, ADC, and ROMA. (B) Calibration
curves of radiomics nomogram. The diagonal line represented the perfect prediction of the radiomics nomogram. The black solid line represented the
calibration curve of nomogram in the testing cohorts. The calibration curves were close to the diagonal line, which indicated good prediction
performance of the nomogram.
BA

FIGURE 6

Decision curve analysis (DCA) for the three models within the development (A) and testing (B) cohorts. The net benefit versus the threshold probability
was plotted. The x-axis represented the threshold probability, while the y-axis represented the net benefits. The sensitivity and specificity of the model
were calculated at each threshold to determine the net benefit. The DCAs showed that the net benefits of the mixed model (black line) and the
radiomics model (red line) were superior to the benefits of the traditional model (blue line) with the threshold probability range from 0 to 1.
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solid tumors via conventional MRI and DWI examinations. They

found that signal intensity on T2WI, capsule, and the lowest ADC

value were important indicators in discriminating thecomas/

fibrothecomas from malignant pelvic solid tumors. Their study

lacked other types of sex cord tumors, and they didn’t build

predictive models. In our study, ADC value, solid and cystic

components were independent predictors for differentiating EOCs

and SCSTs. The ADC value of SCSTs was relatively higher than that

of EOCs, and SCSTs were more likely to be dominated by solid

masses. Conventional MR model showed that the discrimination

ability of MR parameters was also limited. Moreover, after

negotiation, most conventional MR parameters required subjective

interpretation by the radiologist, resulting in a poor inter-observer

agreement in the assessment of these features.

In this study, we used different combinations of the selected

radiomics features to establish three radiomics models, all of which

achieved good prediction efficiency. When combining the most

efficient group of radiomics features and the traditional parameters,

we found that the diagnostic performance of the final radiomics

model was comparable to that of the mixed model. To date, in a few

studies, radiomics have been applied to patients with adnexal tumors,

such as evaluating the ability of texture features to characterize the

histopathological classification of ovarian cancer (9–11) and to

predict prognosis (8, 9, 20). However, SCSTs have been rarely

discussed. To our knowledge, this study was the first one to

establish an MR-based radiomics model focusing on the

differentiation of SCSTs from others. The results are encouraging,

and show great potential to improve the prediction accuracy for

ovarian tumors and derive predictive imaging biomarkers.

Misdiagnosis could thus be further avoided.

Radiomics extracts high-throughput quantitative data from

medical images, which is helpful for disease diagnosis, staging,

management, and prognostication. In the current study, we ran a 5-

fold cross validation setup during the feature selection, where each

fold we did feature selection and model building to provide stable

features. Nine radiomics features were finally selected, mainly

including first-order statistical features and Gray Level Size Zone

Matrix (GLSZM). The features contain a variety of traceable image

information. First-order statistics are based on histograms of the

original image and describe the distribution of voxel intensities within

the image region (21, 22). The GLSZM features quantify the Second-

Order joint probabilities of images (21). For example, Zone Entropy

(ZE) of GLSZM measures the randomness in the distribution of zone

sizes and gray levels, a higher value indicates more heterogeneity in

the texture patterns; High Gray Level Zone Emphasis of GLSZM

measures the distribution of the higher gray-level values, with a higher

value indicating a greater proportion of higher gray-level values and

size zones in the image. In our study, GLSZM is a quite important set

of features for differentiating SCSTs and EOCs, the intrinsic definition

of these features imply that they may capture the presence of necrotic,

edematous or cellular regions within the tumors (22).

To date, there is no consensus on which or how many MRI

sequences should be used to establish a radiomics model. Some studies

(11, 15, 23) have included several individual sequences at the same time

or combined multiple sequences to establish a radiomics model for
Frontiers in Oncology 09
evaluation, suggesting that the multi-sequence combination model may

have better performance. Only FS-T2WI sequences were used in our

radiomic analysis, considering that FS-T2WI is an important and

common sequence in the conventional pelvic MRI scanning protocol

with the highest spatial resolution which would improve the visualization

of ROIs. Sufficient predictive performance has been achieved for

differentiating SCSTs and EOCs. Further research with more sequences

such as DWI, ADC, and T1WI+C, would be carried out to improve our

radiomics classifier.

Several limitations should be noted. First, for a radiomics study,

the sample size was relatively small, so the results might be biased.

Second, this study is a single-center study without external

verification, so the reproducibility and generalizability of the

models need to be further tested. In the future, a multicenter study

with a larger dataset size should be conducted to perform an optimal

radiomics analysis. Third, the majority of patients in the EOC group

were in advanced stages, resulting in a demonstrated advantage of the

radiomics model. Future research should include more indeterminate

adnexal masses.

In conclusion, by comparing various models, we found the MR-

based radiomics model achieved excellent prediction performance for

differentiating SCSTs and EOCs. The mixed model which combining

the radiomics features and traditional parameters achieve a

performance comparable to the radiomics model. Therefore, we

believe that the radiomics approach could be a more objective and

accurate way for discriminating SCSTs and EOCs. Meanwhile, the

mixed model developed in our study could provide a comprehensive,

effective manner for clinicians to diagnose and develop appropriate

management strategies.
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