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Purpose: The aim of this study was to develop a radiomics nomogram based on

grayscale ultrasound (US) for preoperatively predicting Lymphovascular

invasion (LVI) in patients with pathologically confirmed T1 (pT1) breast

invasive ductal carcinoma (IDC).

Methods: One hundred and ninety-two patients with pT1 IDC between

September 2020 and August 2022 were analyzed retrospectively. Study

population was randomly divided in a 7: 3 ratio into a training dataset of 134

patients (37 patients with LVI-positive) and a validation dataset of 58 patients (19

patients with LVI-positive). Clinical information and conventional US (CUS)

features (called clinic_CUS features) were recorded and evaluated to predict

LVI. In the training dataset, independent predictors of clinic_CUS features were

obtained by univariate and multivariate logistic regression analyses and

incorporated into a clinic_CUS prediction model. In addition, radiomics

features were extracted from the grayscale US images, and the radiomics

score (Radscore) was constructed after radiomics feature selection.

Subsequent multivariate logistic regression analysis was also performed for

Radscore and the independent predictors of clinic_CUS features, and a

radiomics nomogram was developed. The performance of the nomogram

model was evaluated via its discrimination, calibration, and clinical usefulness.

Results: The US reported axillary lymph node metastasis (LNM) (US_LNM)

status and tumor margin were determined as independent risk factors, which

were combined for the construction of clinic_CUS prediction model for LVI in

pT1 IDC. Moreover, tumor margin, US_LNM status and Radscore were

independent predictors, incorporated as the radiomics nomogram model,

which achieved a superior discrimination to the clinic_CUS model in the

training dataset (AUC: 0.849 vs. 0.747; P < 0.001) and validation dataset
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(AUC: 0.854 vs. 0.713; P = 0.001). Calibration curve for the radiomic nomogram

showed good concordance between predicted and actual probability.

Furthermore, decision curve analysis (DCA) confirmed that the radiomics

nomogram had higher clinical net benefit than the clinic_CUS model.

Conclusion: The US-based radiomics nomogram, incorporating tumor margin,

US_LNM status and Radscore, showed a satisfactory preoperative prediction of

LVI in pT1 IDC patients.
KEYWORDS
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1 Introduction

Lymphovascular invasion (LVI) refers to the presence of

tumor cells in the lymphatic or vascular system surrounding

invasive breast cancer (1, 2). LVI is positively associated with

increased risk of axillary lymph node (ALN), distant metastasis,

less responsive to chemotherapy, and locoregional recurrence (1,

3). Therefore, LVI has been considered as a major criteria for

tumor staging, prognostic prediction, and the treatment choice

(3, 4). Treatment decisions for T1 breast cancer usually need

refer to the presence or absence of lymph node metastasis (5),

which is often associated with LVI (1, 5–9). LVI had been proved

as an independent prognostic factor in T1 breast cancer (9, 10),

and patients with LVI may require more clinical decisions,

including surgical type, the margin determination of surgery,

and guiding more aggressive neoadjuvant treatment protocols

for breast cancer patients (9, 11).

Currently, the presence of LVI is determined by postoperative

pathology based on the primary tumor and peritumoral breast

tissue (12, 13). However, several factors, such as partial sampling

of tumors in preoperative biopsies, contractility of materials, and

mechanical force-induced cell displacement, may complicate the

postoperative assessment of LVI and lead to misdiagnosis (3, 14).

Furthermore, preoperative neoadjuvant chemotherapy for breast

cancer patients also makes it difficult to accurately evaluate LVI on

the basis of postoperative specimens (3, 14).

Although preoperative biopsy can provide information

about the histological type and immunohistochemistry of the

tumor, biopsy is invasive and difficult to confirm LVI due to the

small size of the tissue to be cut (12, 13). Therefore, it is

necessary to find a simple, accurate and non-invasive method

for preoperative prediction of tumor LVI, which would be of

great significance for clinical decision-making in breast

cancer (12).

Previous studies have demonstrated that preoperative breast

mammography, digital breast tomosynthesis (DBT) or MRI can
02
be effectively used for the prediction of LVI (1, 3, 6, 7, 15).

Different from other imaging methods, US has the advantages of

relatively low price, real-time, and reproducible operation, and is

a reliable examination method for breast tumors in clinical work

(16). Some CUS features had been demonstrated as the

independent variables for predicting the presence of LVI in

invasive breast cancer (8). Moreover, multiparametric

ultrasound, especially contrast-enhanced ultrasound (CEUS),

could also provide good discriminative value for predicting

LVI (12). However, the cost of additional contrast-

enhancement is higher and the examination time is longer

(16). Additionally, the assessment of CUS features and the

quantitative indicators of CEUS may be susceptible to

subjective factors (12, 16).

Radiomics is a relatively new machine learning approach

that provides high-throughput quantitative information on

tumor shape, intensity, and texture (3, 6), which fail to be

detected by naked eyes (17). Advances in radiomics-based US

have increasingly highlighted its potential value for improving

diagnosis, evaluating prognosis, and predicting response to

treatment in breast carcinoma (18–21). As a tool to determine

the appropriate treatment for patients, nomogram was

developed based on comprehensive data to allow the clinician

to assess the associated clinical risk more accurately (18, 22). The

nomogram incorporating US radiomics score had showed

potential diagnostic capabilities for triple-negative breast

cancer and fibroadenoma (18). On the other hand, nomogram

based on US radiomics analysis exhibited high accuracy in

predicting axillary lymph node (ALN) tumor burden in breast

cancer patients (21). To date, few studies about US-based

radiomocs nomogram have addressed the prediction of LVI in

breast cancer.

At present, due to the improvement of people’s health

consciousness and the increase of breast cancer screening, the

diagnosis rate of T1 breast cancer has increased (16, 23), in

which the most common histological type is invasive ductal
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carcinoma (IDC) (16). Thus, the purpose of our study was to

investigate whether a nomogram based on radiomics analysis of

US imaging could predict the status of LVI in patients with

pathologically confirmed T1 (pT1) IDC.
2 Methods

2.1 Patients

This retrospective study was approved by the ethics committee

of the Hubei Cancer Hospital (No.: LLHBCH2021YN-001), and the

requirement to obtain informed consent was waived. 643 female

patients with 771 breast carcinomas at the Hubei Cancer Hospital

(Wuhan, People’s Republic of China) between September 2020 and

August 2022 were consecutive included in this study.
Frontiers in Oncology 03
All patients underwent ultrasonic examination within 1

month before operation and were satisfied as the following

inclusion criteria (1): breast carcinoma pathologically

confirmed by the specimens obtained from surgical resection;

(2) no biopsy or medical treatment before US examinations; (3)

lesions with complete histopathological, immunohistochemical

and US data. The exclusion criteria were as follows: (1) patients

with distant metastases or a history of other malignancies (n =

35); (2) patients with bilateral breast tumors or ipsilateral

multifocal tumors of the breast (n = 79); (3) patients with

other histologic types or other stages of breast cancer (n =

326) (4) poor quality images (n = 11).

Finally, 192 patients (mean age, 54.38 ± 11.27 years; range,

26 ~ 86 years) with 192 pT1 IDCs were eligible in our study,

which were split into training and validation datasets with a 7:3

ratio by random sampling. The training and validation datasets
A

B

FIGURE 1

Flowchart of this study. (A) The patient selection process. (B) The workflow to construct and validate the radiomics nomogram.
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included 134 patients and 58 patients, respectively. Figure 1A

provides a flowchart of the patient selection process.
2.2 US examination

All patients underwent US examination using EPIQ5

(Philips Ultrasound, Inc., Bothell, Washington, USA; L12-5

linear-array transducer probe, 5 ~ 12 MHz), Aixplorer

ultrasound scanner (SuperSonic Imagine, France; SL15-4

linear-array transducer probe, 4 ~ 15 MHz), and Resona 7,

Resona 8, Resona R9, Resona I9, and DC-65 (Mindray,

Shenzhen, China; L14-5, L14-3, and L13-3 linear-array

transducer probes, 3 ~ 14 MHz). The image settings for each

examination, including time gain compensation, focus position

and dynamic range, were optimized according to the

manufacturer’s recommendations.

After physical examination, the whole breast was

systematically examined. All cases were evaluated in the

supine position, with the upper arm abducted and the bilateral

breast fully exposed at the same time. The characteristics of

sonogram were observed by routine ultrasonic scanning. The US

image s were ob t a ined in bo th long i tud ina l and

transverse sections.
2.3 Clinical information and US
conventional features

The clinical information, including serum CA153, CA125,

and carcinoembryonic antigen (CEA) levels, and body mass

index (BMI), were acquired by reviewing the medical records.

BMI was calculated by dividing the patient’s weight (kg) by the

square of the height (m2), with a cutoff value of 24 kg/m2 for

classification (24).

All US images were reviewed and analyzed by two

experienced radiologists (both with more than 5 years of breast

image diagnosis experience). The two radiologists were blinded to

the patient’s clinicopathological information. The clearest and

most complete US images were obtained in DICOM format. The

following conventional ultrasound (CUS) features of breast

tumors were recorded in concordance with prior studies (12,

18): (1) tumor location: upper outer quadrant, upper inner

quadrant, lower outer quadrant, lower inner quadrant or other

positions; (2) tumor size: maximum diameter; (3) tumor shape:

regular (round or oval) or irregular; (4) tumor margin:

circumscribed or not circumscribed (indistinct, angular,

microlobulated, or spiculated); (5) tumor orientation: parallel or

not parallel; (6) tumor echo pattern: hypoechoic, isoechoic,

hyperechoic or heterogeneous; (7) microcalcifications: present or

absent; (8) tumor posterior features: no posterior acoustic features,

enhancement, shadowing or combined pattern. In addition,

suspicious CUS features of axillary lymph node metastasis
Frontiers in Oncology 04
(LNM) were also evaluated, including rounded hypoechoic node

complete or partial effacement of the fatty hilum, the ratio of long

axis diameter to short axis diameter < 2, cortical thickening > 3

mm, nonhilar cortical blood flow on color Doppler images,

complete or partial replacement of the node with an ill-defined

or irregular mass and microcalcifications in the node (25). With

one or more of the above-mentioned suspicious features, the US

reported LNM (US_LNM) status was recorded as present;

otherwise, it was recorded as absent. Differences in

interpretation of breast tumor features or US_LNM status

between the two radiologists were determined by another

radiologist with more than 10 years of experience in breast

imaging diagnosis.
2.4 Histopathological analysis

In all 192 cases, specimens of breast cancer were surgically

resected and the diagnosis were histopathologically confirmed.

Nottingham combined histological grading system was used to

determine the histological grade (26). The expression levels of

estrogen receptor (ER), progesterone receptor (PR), human

epidermal growth factor receptor 2 (HER-2), and Ki-67

antigen were measured through Immunohistochemical (IHC)

analyses (16, 26). ≤1% of carcinoma nuclei with positive staining

indicated that ER and PR were negative (16, 24, 26). The IHC

score was - or 1 +, indicating that HER-2 was negative, while 3+

indicating the positive expression of HER-2. IHC score was 2 +,

and fluorescence in situ hybridization (FISH) was negative,

which also showed that HER-2 was negative (16, 26). The Ki-

67 proliferation index was determined according to

immunohistochemical analysis. An index of <14% was

considered as low proliferation, while ≥14% is considered as

high proliferation (12). According to previous study (27),

patients were classified into the following four breast cancer

subtypes: luminal A, luminal B, HER-2-positive, and triple-

negative. LVI was defined as the presence of tumor cells

within the lymphatic or vascular channels at the peritumoral

region (6, 7), which was also identified by examining the primary

tumor stained with endothelial-specific markers, including anti-

CD34 and anti-D2-40 antibodies (6). The status of tumor LVI

was defined as LVI-positive and LVI-negative.
2.5 Lesion segmentation and feature
extraction in radiomics model

The ROI (region of interest) was manually delineated along the

edge of themaximumdiameter area for each tumor on grayscale US

image. The work of Lesion segmentation was accomplished by Two

radiologists (radiologist 1 and radiologist 2, both with more than 5

years of breast image diagnosis experience), who were blinded to the

clinicopathological data.
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Radiologist 1 drew all the ROIs by using 3D Slicer (version

4.11; http://www.slicer.org). To assess inter-observer reliability,

radiologist 2 drew the ROIs in 40 randomly selected tumors.

Additionally, to evaluate intra-observer reliability, Radiologist 1

then repeated the same procedure for second ROIs depiction

from the 40 randomly selected images with an interval of 2

weeks period. Intraclass correlation coefficient (ICC) was then

calculated to evaluate intra and inter-observer agreement for

feature extraction. The intra and inter-observer ICC > 0.75

indicated good reproducibility of feature extraction.

Before feature extraction, image resampling and grayscale

discretization were performed on the grayscale US image to

achieve normalization (28–30): firstly, the images were resampled

by B-spline interpolation to a pixel size of 1 mm × 1 mm; secondly,

the gray-level discretization was performed in the histogram with a
Frontiers in Oncology 05
fixed bin width of 25. Then, each patient yielded 939 radiomics

features as follows (1): two-dimensional (2D) shape-based features

(n=9); (2) first-order features (n=18); (3) gray level co-occurrence

matrix (GLCM) features (n=24); (4) gray-level dependence matrix

(GLDM) features (n=14); (5) gray-level run length matrix

(GLRLM) features (n=16); (6) gray-level size zone

matrix (GLSZM) features (n=16); (7) neighboring gray tone

difference matrix (NGTDM) features (n=5) and (8) transform-

filtered features (including wavelet, square, square root, logarithm,

exponential, gradient) (n= 837). (1) ~ (7) were the radiomics

features from original images (Table 1), while (8) were were the

radiomics features from derived images which were obtained by

applying filters to the original image. The feature extraction was

implemented by the open-source Pyradiomics package (version

3.0.1; https://pyradiomics.readthedocs.io/en/v3.0.1/)
TABLE 1 Original radiomics features extracted in current study.

Original
radiomics
features
(n=102)

Feature names

Two-
dimensional
(2D) shape-
based features
(n=9)

Elongation; Major Axis Length; Maximum diameter; Mesh Surface; Minor Axis Length; Perimeter; Perimeter to Surface ratio; Pixel Surface; Sphericity

First-order
statistics features
(n=18)

Energy; Total Energy; Entropy; Minimum; 10th percentile; 90th percentile; Maximum; Mean; Median; Interquartile Range; Range; Mean Absolute
Deviation (MAD); Robust Mean Absolute Deviation (rMAD); Root Mean Squared (RMS); Skewness; Kurtosis; Variance; Uniformity

Gray level co-
occurrence
matrix (GLCM)
features (n=24)

Autocorrelation; Joint Average; Cluster Prominence; Cluster Shade; Cluster Tendency; Contrast; Correlation; Difference Average; Difference Entropy;
Difference Variance; Joint Average; Joint Energy; Joint Entropy; Informational Measure of Correlation (IMC) 1; Informational Measure of Correlation
(IMC) 2; Inverse Difference Moment (IDM); Inverse Difference Moment Normalized (IDMN); Inverse Difference (ID); Inverse Difference Normalized
(IDN); Inverse Variance; Maximum Probability; Sum Average; Sum Entropy; Sum of Squares

Gray level
dependence
matrix (GLDM)
features (n=14)

Dependence Entropy (DE); Dependence Non-Uniformity (DN); Dependence Non-Uniformity Normalized (DNN); Dependence Variance (DV); Gray
Level Non-Uniformity (GLN); Gray Level Variance (GLV); High Gray Level Emphasis (HGLE); Large Dependence Emphasis (LDE); Large
Dependence High Gray Level Emphasis (LDHGLE); Large Dependence Low Gray Level Emphasis (LDLGLE); Low Gray Level Emphasis (LGLE);
Small Dependence Emphasis (SDE); Small Dependence High Gray Level Emphasis (SDHGLE); Small Dependence Low Gray Level Emphasis
(SDLGLE)

Gray level run
length matrix
(GLRLM)
features (n=16)

Gray Level Non-Uniformity (GLN); Gray Level Non-Uniformity Normalized (GLNN); Gray Level Variance (GLV); High Gray Level Run Emphasis
(HGLRE); Long Run Emphasis (LRE); Long Run High Gray Level Emphasis (LRHGLE); Long Run Low Gray Level Emphasis (LRLGLE); Low Gray
Level Run Emphasis (LGLRE); Run Entropy (RE); Run Length Non-Uniformity (RLN); Run Length Non-Uniformity Normalized (RLNN); Run
Percentage (RP); Run Variance (RV); Short Run Emphasis (SRE); Short Run High Gray Level Emphasis (SRHGLE); Short Run Low Gray Level
Emphasis (SRLGLE)

Gray level size
zone matrix
(GLSZM)
features (n=16)

Gray Level Non-Uniformity (GLN); Gray Level Non-Uniformity Normalized (GLNN); Gray Level Variance (GLV); High Gray Level Zone Emphasis
(HGLZE); Large Area Emphasis (LAE); Large Area High Gray Level Emphasis (LAHGLE); Large Area Low Gray Level Emphasis (LALGLE); Low
Gray Level Zone Emphasis (LGLZE); Size-Zone Non-Uniformity (SZN); Size-Zone Non-Uniformity Normalized (SZNN); Small Area Emphasis (SAE);
Small Area High Gray Level Emphasis (SAHGLE); Small Area Low Gray Level Emphasis (SALGLE); Zone Entropy (ZE); Zone Percentage (ZP); Zone
Variance (ZV)

Neighborhood
gray tone
difference matrix
(NGTDM)
features (n=5)

Busyness; Coarseness; Complexity; Contrast; Strength
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2.6 Feature selection, Radscore
establishment, and nomogram
construction

2.6.1 Feature selection and Radscore
establishment

Because of the poor reproducibility, the radiomics features

with intra-ICC or inter-ICC ≤ 0.75 were initially excluded (31).

Then, a training/validation dataset division (7:3) and features Z-

score normalization were performed. Z-score normalization was

used to convert different data to the same order of magnitude, so

as to reduce the impact of different protocols and different

operators on the US images, and to ensure that radiomics

features were comparable (32–34). The calculation formula of

Z-score normalization was as follows (33): y = (x − μ)/s. where μ
is the mean and s is the standard deviation.

After data preprocessing, two-sample t-test or Mann-

Whitney U test was used to screen radiomic features with

statistically significant differences (P < 0.05) in order to

eliminate irrelevant features in the training dataset. Then, the

Spearman rank sum test was used for correlation analysis to

eliminate the redundancy. Among the features with correlation

coefficient > 0.9, only one was retained and the rest was

excluded. Finally, the least absolute shrinkage and selection

operator (LASSO) was performed, with penalty parameter

tuning conducted by 5-fold cross-validation, to obtain the

optimal regularization coefficient (lambda, also namely l).
Selected features with non-zero coefficients were analyzed with

a linear regression model and weighted by their respective

coefficients to construct a radiomics signature, called Radscore.
2.6.2 Nomogram construction and
model validation

In this study, 192 patients were randomly split into a

training dataset (n = 134) and a validation dataset (n = 58).

Univariate analyses were performed for the baseline patient

characteristics, including clinic_CUS features and Radscore.

Chi-square test or Fisher’s exact test was applied for

categorical variables for training and validation datasets, while

two-sample t-test or Mann-Whitney U test was used for

continuous variables.

Univariable logistic regression analysis was performed to

evaluate clinical information and CUS features (called

clinic_CUS features), and to determine the potential predictor

for LVI status in training dataset. And variables with P < 0.05

were subjected to subsequent multivariable logistic regression

analysis, with a backward stepwise elimination method using the

Akaike information criterion (AIC). The clinic_CUS features

with P < 0.05 were confirmed as the final independent predictors

to construct the clinic_CUS prediction model for LVI status.

Then the Radscore and independent clinic_CUS features were

combined, through multivariable logistic regression, to establish
Frontiers in Oncology 06
a radiomics nomogram prediction model. The variance inflation

factor (VIF) was applied to estimate the collinearity diagnosis.

The potential predictive value of the established model was

performed by receiver operating characteristic (ROC) curve

analysis. The DeLong test was applied to compare differences

between the areas under the curve (AUC). The goodness-of-fit of

the radiomics nomogram was evaluated by Hosmer-Lemeshow

test. We bootstrapped the data 1000 times to perform internal

verification, drawing a calibration curve to verify the consistency

between actual probability and the predicted probability.

Decision curve analysis (DCA) was developed to ascertain the

clinical utility of the radiomics nomogram by quantifying the net

benefits at different threshold probabilities in the training and

validation datasets (18). All procedures of building and

validating radiomics nomogrammodel were shown in Figure 1B.
2.7 Statistical analysis

All statistical analyses were performed with R software

(version4.1.3, http://www.Rproject.org) and SPSS software

(version 26.0; Chicago, IL). Quantitative variables were

expressed as mean ± standard deviation or medians (25%

quantile, 75% quantile). Kolmogorov-Smirnov test and

bartlett.test were used to evaluate the normality and

homovariance of quantitative variables, so as to determine

whether to use independent samples t-test or Mann Whitney

U-test. Categorical data was analysed by chi-square test, or

Fisher’s test. Intraclass correlation coefficient (ICC) was

calculated to evaluate the agreement between intra- and inter-

readers in the ROI delineation for radiomics feature extraction.

Univariate and multivariate logistic regression were respectively

used to select the significant predictors for building prediction

models. The diagnostic performance to differentiate LVI status

was performed by the area under the receiver operating curve

(AUC) and the corresponding sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), and

accuracy. According to the AUC value, the diagnostic

performance can be considered as high (AUC > 0.9), moderate

(AUC = 0.7 ~ 0.9), or low (AUC = 0.5 ~ 0.7). Delong tests were

performed to assess the differences in AUC values between
TABLE 2 Major packages of R software applied in current study.

Procedure of statistical analysis R package

LASSO regression glmnet

Univariate logistic regression glm

Multivariate logistic regression glm

Nomogram Construction rms

Drawing ROC curves and measuring the AUC values pROC

Calibration curves rms

Decision curve analysis (DCA) rmda
fro
ntiersin.org

http://www.Rproject.org
https://doi.org/10.3389/fonc.2022.1071677
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1071677

Frontiers in Oncology 07
different radiomics models. Hosmer-Lemeshow test was used to

evaluate the goodness-of-fit of the radiomics nomogram. The

calibration curve was applied to evaluate the consistency

between actual probability and the predicted probability.

Decision curve analysis (DCA) was developed to ascertain the

clinical utility of different models. A 2-sided P value < 0.05 was

considered a statistically significant difference. All packages of

R4.1.3 that were listed in Table 2.
TABLE 3 Comparisons of baseline characteristics in the training and
validation datasets.

Characteristics Training dataset
(n = 134)

Validation dataset
(n = 58)

P-
value

LVI status, n (%) 0.471

LVI-negative 97 (72.4) 39 (67.2)

LVI-positive 37 (27.6) 19 (32.8)

Age, years 54.00 (47.00, 62.00) 55.03 ± 10.69 0.554

BMI, n (%) 0.935

≤24kg/m2 84 (62.7) 36 (62.1)

>24kg/m2 50 (37.3) 22 (37.9)

CA125, n (%) 0.940

0-35U/mL 122 (91) 53 (91.4)

>35U/mL 12 (9) 5 (8.6)

CA153, n (%) 0.850

<25U/mL 122 (91) 54 (93.1)

≥25U/mL 12 (9) 4 (6.9)

CEA, n (%) 0.632

<4mg/L 123 (91.8) 52 (89.7)

≥4mg/L 11 (8.2) 6 (10.3)

Tumor location, n
(%)

0.211

Upper outer
quadrant

58 (43.3) 20 (34.5)

Lower outer
quadrant

19 (14.2) 9 (15.5)

Upper inner
quadrant

28 (20.9) 21 (36.2)

Lower inner
quadrant

14 (10.4) 4 (6.9)

Others 15 (11.2) 4 (6.9)

Tumor size 1.64 ± 0.43 1.73 ± 0.34 0.324

Shape, n (%) 0.629

Regular 32 (23.9) 12 (20.7)

Irregular 102 (76.1) 46 (79.3)

Margin, n (%) 0.131

Circumscribed 28 (20.9) 18 (31)

Not
circumscribed

106 (79.1) 40 (69)

Orientation, n (%) 0.574

Parallel 113 (84.3) 47 (81)

Not parallel 21 (15.7) 11 (19)

Echo pattern, n (%) 0.175

Hypoechoic 45 (33.6) 13 (22.4)

Isoechoic or
hyperechoic

4 (3) 4 (6.9)

Heterogeneous 85 (63.4) 41 (70.7)

Microcalcifications,
n (%)

0.617

Absent 56 (41.8) 22 (37.9)

Present 78 (58.2) 36 (62.1)

Posterior features,
n (%)

0.862

(Continued)
TABLE 3 Continued

Characteristics Training dataset
(n = 134)

Validation dataset
(n = 58)

P-
value

None 27 (20.1) 10 (17.2)

Enhancement 34 (25.4) 18 (31)

Shadowing 50 (37.3) 20 (34.5)

Combined
pattern

23 (17.2) 10 (17.2)

US_LNM_status, n
(%)

0.468

Absent 110 (82.1) 45 (77.6)

Present 24 (17.9) 13 (22.4)

Histological grade,
n (%)

0.921

Grade 1 10 (7.5) 4 (6.9)

Grade 2 84 (62.7) 35 (60.3)

Grade 3 40 (29.9) 19 (32.8)

ER status, n (%) 0.510

Negative 42 (31.3) 21 (36.2)

Positive 92 (68.7) 37 (63.8)

PR status, n (%) 0.462

Negative 57 (42.5) 28 (48.3)

Positive 77 (57.5) 30 (51.7)

HER-2 status, n
(%)

0.244

Negative 101 (75.4) 39 (67.2)

Positive 33 (24.6) 19 (32.8)

Ki-67 status, n (%) 0.261

Low proliferation 23 (17.2) 14 (24.1)

High
proliferation

111 (82.8) 44 (75.9)

Molecular subtype,
n (%)

0.412

Luminal A 19 (14.2) 12 (20.7)

Luminal B 75 (56) 26 (44.8)

HER-2-positive 16 (11.9) 10 (17.2)

Triple-negative 24 (17.9) 10 (17.2)

Radscore -1.01 ± 0.49 -0.93 (-1.52, -0.54) 0.806
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TABLE 4 Comparisons of baseline characteristics between LVI-positive and LVI-negative groups in the training and validation datasets.

Characteristics Training dataset (n=134) Validation dataset (n=58)

LVI-negative
(n = 97)

LVI-positive
(n = 37)

P-value LVI-negative
(n = 39)

LVI-positive
(n = 19)

P-value

Age, years 54.81 ± 12.12 52.22 ± 9.76 0.245 57.23 ± 10.36 50.53 ± 10.19 0.024

BMI, n (%) 0.013 0.107

≤24kg/m2 67 (69.1) 17 (45.9) 27 (69.2) 9 (47.4)

>24kg/m2 30 (30.9) 20 (54.1) 12 (30.8) 10 (52.6)

CA125, n (%) 0.271 1

0-35U/mL 90 (92.8) 32 (86.5) 36 (92.3) 17 (89.5)

>35U/mL 7 (7.2) 5 (13.5) 3 (7.7) 2 (10.5)

CA153, n (%) 0.031 0.189

<25U/mL 92 (94.8) 30 (81.1) 38 (97.4) 16 (84.2)

≥25U/mL 5 (5.2) 7 (18.9) 1 (2.6) 3 (15.8)

CEA, n (%) 0.083 0.623

<4mg/L 92 (94.8) 31 (83.8) 36 (92.3) 16 (84.2)

≥4mg/L 5 (5.2) 6 (16.2) 3 (7.7) 3 (15.8)

Tumor location, n (%) 0.661 0.966

Upper outer quadrant 44 (45.4) 14 (37.8) 14 (35.9) 6 (31.6)

Lower outer quadrant 14 (14.4) 5 (13.5) 6 (15.4) 3 (15.8)

Upper inner quadrant 21 (21.6) 7 (18.9) 14 (35.9) 7 (36.8)

Lower inner quadrant 8 (8.2) 6 (16.2) 3 (7.7) 1 (5.3)

Others 10 (10.3) 5 (13.5) 2 (5.1) 2 (10.5)

Tumor size, cm 1.62 ± 0.44 1.69 ± 0.41 0.416 1.69 ± 0.36 1.82 ± 0.29 0.172

Shape, n (%) 0.941 1

Regular 23 (23.7) 9 (24.3) 8 (20.5) 4 (21.1)

Irregular 74 (76.3) 28 (75.7) 31 (79.5) 15 (78.9)

Margin, n (%) 0.025 0.018

Circumscribed 25 (25.8) 3 (8.1) 16 (41) 2 (10.5)

Not circumscribed 72 (74.2) 34 (91.9) 23 (59) 17 (89.5)

Orientation, n (%) 0.242 0.522

Parallel 84 (86.6) 29 (78.4) 33 (84.6) 14 (73.7)

Not parallel 13 (13.4) 8 (21.6) 6 (15.4) 5 (26.3)

Echo pattern, n (%) 0.706 0.577

Hypoechoic 35 (36.1) 10 (27) 10 (25.6) 3 (15.8)

Isoechoic or hyperechoic 3 (3.1) 1 (2.7) 2 (5.1) 2 (10.5)

Heterogeneous 59 (60.8) 26 (70.3) 27 (69.2) 14 (73.7)

Microcalcifications, n (%) 0.567 0.203

Absent 42 (43.3) 14 (37.8) 17 (43.6) 5 (26.3)

Present 55 (56.7) 23 (62.2) 22 (56.4) 14 (73.7)

Posterior features, n (%) 0.512 0.731

None 21 (21.6) 6 (16.2) 6 (15.4) 4 (21.1)

Enhancement 27 (27.8) 7 (18.9) 11 (28.2) 7 (36.8)

Shadowing 34 (35.1) 16 (43.2) 14 (35.9) 6 (31.6)

Combined pattern 15 (15.5) 8 (21.6) 8 (20.5) 2 (10.5)

US_LNM_status, n (%) < 0.001 0.030

Absent 90 (92.8) 20 (54.1) 34 (87.2) 11 (57.9)

Present 7 (7.2) 17 (45.9) 5 (12.8) 8 (42.1)

Histological grade, n (%) 0.816 0.167

Grade 1 8 (8.2) 2 (5.4) 4 (10.3) 0 (0)

(Continued)
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3 Results

3.1 Comparison of clinic_CUS features
and construction of clinic_CUS model

Among the 192 patients with pT1 IDC, there were LVI-

positive (n = 56) and LVI-negative (n = 136) cases. Included

patients were divided into the training dataset (37 LVI -positive

and 97 LVI -negative pT1 IDCs) and validation dataset (19 LVI

-positive and 39 LVI -negative pT1 IDCs) randomly.

There were no significant differences in all the clinic_CUS

features between the training dataset and the validation dataset

(P = 0.131 ~ 0.940) (Table 3). The clinic_CUS features between

LVI-positive and LVI-negative groups in the training and

validation datasets are shown in Table 4.

In the univariable logistic regression analysis for clinic_CUS

features, the initially selected risk predictors included BMI, CA153,

CEA, tumor margin, US_LNM_status (all P < 0.05) (Table 5).

After the multivariable logistic regression analysis, tumor

margin and US_LNM_status were regarded as independent

clinic_CUS risk predictors for the LVI status (all P < 0.05)
Frontiers in Oncology 09
(Table 6). The VIF value of the two predictors was 1.177,

indicating no significant collinearity.
3.2 Feature selection and Radscore
establishment

In this study, a total of 939 radiomics features for each

patient were extracted from grayscale US images. We selected

858 features with high stability and reproducibility (ICCs > 0.75)

for subsequent feature screening as follows.

Step 1: After the two-sample t-test or Mann-Whitney U test,

103 features remained.

Step 2: After eliminating redundancy by applying Spearman

correlation analysis, the number of remaining features was 35.

Step 3: The features were reduced to 7 potential predictors

with nonzero coefficients in the LASSO regression model, and

the optimal lambda (l) was chosen as 0.066 (Figure 2A, B;

Figure 3A). The correlation analysis showed that the maximum

correlation coefficient between the selected radiomic features

was 0.59 (Figure 3B).
TABLE 4 Continued

Characteristics Training dataset (n=134) Validation dataset (n=58)

LVI-negative
(n = 97)

LVI-positive
(n = 37)

P-value LVI-negative
(n = 39)

LVI-positive
(n = 19)

P-value

Grade 2 61 (62.9) 23 (62.2) 25 (64.1) 10 (52.6)

Grade 3 28 (28.9) 12 (32.4) 10 (25.6) 9 (47.4)

ER status, n (%) 0.559 0.944

Negative 29 (29.9) 13 (35.1) 14 (35.9) 7 (36.8)

Positive 68 (70.1) 24 (64.9) 25 (64.1) 12 (63.2)

PR status, n (%) 0.919 0.512

Negative 41 (42.3) 16 (43.2) 20 (51.3) 8 (42.1)

Positive 56 (57.7) 21 (56.8) 19 (48.7) 11 (57.9)

HER-2 status, n (%) 0.397 0.290

Negative 75 (77.3) 26 (70.3) 28 (71.8) 11 (57.9)

Positive 22 (22.7) 11 (29.7) 11 (28.2) 8 (42.1)

Ki-67 status, n (%) 0.739 0.173

Low proliferation 16 (16.5) 7 (18.9) 12 (30.8) 2 (10.5)

High proliferation 81 (83.5) 30 (81.1) 27 (69.2) 17 (89.5)

Molecular subtype, n (%) 0.694 0.341

Luminal A 13 (13.4) 6 (16.2) 10 (25.6) 2 (10.5)

Luminal B 57 (58.8) 18 (48.6) 15 (38.5) 11 (57.9)

HER-2-positive 10 (10.3) 6 (16.2) 6 (15.4) 4 (21.1)

Triple-negative 17 (17.5) 7 (18.9) 8 (20.5) 2 (10.5)

Radscore -1.14 ± 0.46 -0.67 ± 0.41 < 0.001 -1.26 (-1.63, -0.83) -0.68 ± 0.38 0.001
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The final remaining 7 radiomics features were incorporated

into the calculation of Radscore with the following formula:

Radscore = (� 1:014) + 0:275*

wavelet:LH_gldm_DependenceNonUniformityNormalized +  

� 0:151ð Þ*wavelet:HL_glrlm_RunVariance+

0:213*square_glszm_SizeZoneNonUniformityNormalized +

0:049*wavelet:LL_glszm_SmallAreaLowGrayLevelEmphasis+

0:013*squareroot_glrlm_LongRunLowGrayLevelEmphasis +  

0:028*logarithm_glszm_LowGrayLevelZoneEmphasis + 0:010

*logarithm_ngtdm_Busyness
There was no significant difference for Radscore between the

training dataset and the validation dataset (P = 0.806)(Table 3).

In both training and validation datasets, the LVI-positive group

had significantly higher Radscores than those of the LVI-

negative group (P < 0.001 and P=0.001, repectively). (Table 4).

The optimal cut-off value of the Radscore for discriminating LVI

status was -1.138 in the training dataset. We used this cut-off

value to plot Radscore bar chart in the training (Figure 4A) and

validation (Figure 4B) datasets.

The Radscore presented good discrimination performance

in predicting the status of LVI in both training and validation

datasets (Table 7).
TABLE 5 Univariate logistic analysis for the risk factors of LVI.

Characteristics OR 95%CI P-value

age 0.98 0.948-1.014 0.245

BMI

≤24kg/m2 Reference

>24kg/m2 2.627 1.209-5.71 0.015

CA125

0-35U/mL Reference

>35U/mL 2.009 0.595-6.785 0.261

CA153

<25U/mL Reference

≥25U/mL 4.293 1.269-14.53 0.019

CEA

<4mg/L Reference

≥4mg/L 3.561 1.016-12.485 0.047

Tumor_location

Upper outer quadrant Reference

Lower outer quadrant 1.122 0.343-3.674 0.848

Upper inner quadrant 1.048 0.368-2.984 0.931

Lower inner quadrant 2.357 0.698-7.961 0.167

Others 1.571 0.459-5.381 0.472

Tumor size 1.457 0.59-3.597 0.414

Shape

Regular Reference

Irregular 0.967 0.399-2.341 0.941

Margin

Circumscribed Reference

Not circumscribed 3.935 1.112-13.932 0.034

Orientation

Parallel Reference

Not parallel 1.782 0.672-4.731 0.246

Echo pattern

Hypoechoic Reference

Isoechoic or hyperechoic 1.167 0.109-12.476 0.899

Heterogeneous 1.542 0.665-3.576 0.312

Microcalcifications

Absent Reference

Present 1.255 0.577-2.726 0.567

Posterior features

None Reference

Enhancement 0.907 0.265-3.107 0.877

Shadowing 1.647 0.557-4.869 0.367

Combined pattern 1.867 0.536-6.506 0.327

US_LNM_status

Absent Reference

Present 10.929 3.998-29.87 <0.001

Histological grade

Grade 1 Reference

Grade 2 1.508 0.298-7.643 0.62

Grade 3 1.714 0.316-9.304 0.532

(Continued)
TABLE 5 Continued

Characteristics OR 95%CI P-value

ER status

Negative Reference

Positive 0.787 0.352-1.759 0.559

PR status

Negative Reference

Positive 0.961 0.447-2.064 0.919

HER-2 status

Negative Reference

Positive 1.442 0.616-3.377 0.398

Ki-67 status

Low proliferation Reference

High proliferation 0.847 0.317-2.26 0.74

Molecular_subtype

Luminal A Reference

Luminal B 0.684 0.227-2.063 0.5

HER-2-positive 1.3 0.321-5.269 0.713

Triple-negative 0.892 0.241-3.298 0.864

Radscore 11.808 3.924-35.526 <0.001
frontie
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TABLE 6 Multivariate logistic analysis for the risk factors of LVI.

Characteristics Clinic_CUS model Radiomics nomogram model

OR 95%CI P-value OR 95%CI P-value

Margin

Circumscribed Reference Reference

Not circumscribed 7.893 1.658-37.566 0.009 6.524 1.272-33.45 0.025

US_LNM_status

Absent Reference Reference

Present 15.034 4.53-49.889 <0.001 12.92 3.537-47.196 <0.001

Radscore NA NA NA 7.778 2.486-24.336 <0.001
Frontiers in Oncology
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OR, Odds ratio; 95% CI, 95% confidence interval. NA, not available.
A

B

FIGURE 2

The selection of radiomics features in LASSO regression. (A) The association between binomial deviance and log (lambda) was plotted, and two
vertical line were drawn via the minimum deviance and 1 standard error of the minimum deviance, respectively. Based on the minimum criteria,
the optimal lambda was selected according to 5-fold cross-validation. (B) LASSO coefficient distribution of radiomics features by different log
(lambda) values. The vertical line was drawn at the optimal value of l, leading to 7 features with nonzero coefficients.
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3.3 Construction and validation of
radiomics nomogram

On multivariate logistic regression analysis for clinic_CUS

features and Radscore, tumor margin, US_LNM_status and

Radscore were identified as independent risk factors for

predicting LVI status (Table 6). The VIF values of the three

predictors were 1.000 ~ 1.175, indicating no significant

collinearity. Therefore, tumor margin, US_LNM_status and

Radscore constructed the preoperative radiomics nomogram

model (Figure 5A).

The radiomics nomogram score (Nomoscore) for each

patient was calculated using the following formula: Nomoscore

= -1.228 + 1.875* margin+2.559×US_LNM_status+

2.051× Radscore

The ROC curve indicated that the radiomics nomogram

model had satisfactory performance and applicability with the

AUC value of 0.849 (95% CI: 0.775 ~ 0.923) in training dataset

and 0.854 (95% CI: 0.748 ~ 0.960) in validation dataset (Table 7).

DeLong test was used to compare AUC values between

Radscore, clinic_CUS model, and the radiomics nomogram

model. In the training dataset, the radiomics nomogram

model was significantly superior to the clinical model and

Radscore model (P < 0.001 and P = 0.014, respectively). In the

validation dataset, the radiomics nomogram model was

significantly superior to the clinical model (P = 0.001), but not

significantly superior to Radscore (P = 0.165). No significant

difference in AUC values was found between the Radscore and

the clinic_CUS model in the training dataset (P = 0.598) and in

validation dataset (P = 0.567). The ROC curves of the three
Frontiers in Oncology 12
models in the training and validation datasets are shown in

Figures 5B, C, respectively.

The calibration curve of the radiomics nomogram showed

good agreement between the predicted LVI probabilities and the

actual LVI status in both training and validation datasets

(Figures 6A, B). The results of the Hosmer-Lemeshow test

were not significant in both training and validation datasets

(P = 0.550 and 0.812, respectively), indicating favorable

goodness-of-fit of the radiomics nomogram.

The DC showed that the radiomics nomogram model had

higher net benefit than the Radscore and clinic_CUS models in

predicting LVI in the training dataset (Figure 7A), when

threshold probabilities ranged from 0.21 to 0.73. Similar

results presented in the validation dataset (Figure 7B). The

DCA demonstrated the clinical value of the radiomics

nomogram model.
4 Discussion

In our study, a Radscore derived from grayscale US image

was developed and validated to predict the LVI status in patients

with pT1 IDC. Moreover, the radiomics nomogram combining

tumor margin, US_LNM and Radscore provides a direct, non-

invasive way for preoperative prediction of LVI while exhibiting

high accuracy in the individualized prediction of LVI.

T1 stage breast cancer has become the most commonly

diagnosed invasive breast disease in developed countries (23).

The incidence of LVI in T1 breast cancer is 13% ~ 27% (5).

Among the 192 patients with pathologically confirmed T1 breast
A B

FIGURE 3

The selected radiomics features to construct the Radscore. (A) The coefficients of radiomics features in the construction of Radscore. (B)
Heatmap depicting correlation coefficient matrix of the selected radiomics features associated with LVI. The degree of correlation between
various features is shown in different shades of color.
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cancer in our study, the incidence of LVI is 29.2% (56/192),

which is slightly higher than the results of previous studies. This

may be related to the fact that all breast cancers included in this

study were invasive ductal carcinoma. LVI is defined as the

invasion of lymphatic vessel walls by tumor cells or the spread of
Frontiers in Oncology 13
carcinoma thrombus into the luminal cavity, which had been

considered as a critical step in the relapse or progression of

disseminated tumor cells (1, 6, 7). LVI was highlighted as a risk

factor with important implications for survival in patients with

T1 breast cancer (9, 10). The presence of LVI is not always able
A

B

FIGURE 4

Bar chart of Radscore in the training (A) and validation (B) datasets, and the y-axis refers to the Radscore minus the cut-off value (i.e., Radscore
+1.138). Up and down bars refer to the predicted positive LVI and negative LVI status, respectively. Green and red bars represent the actual LVI
status as positive and negative, respectively.
TABLE 7 Diagnostic performance of the Radscore, clinical_CUS, and radiomics nomogram models in the training and validation datasets.

Prediction models Datasets Cut-off value AUC 95% CI ACC SEN SPE PPV NPV

Lower Upper

Radscore Training -1.138 0.775 0.693 0.857 0.627 0.946 0.505 0.422 0.961

Validation -1.138 0.768 0.647 0.889 0.655 0.895 0.539 0.486 0.913

Clinic_CUS Training 0.295 0.747 0.666 0.828 0.799 0.459 0.928 0.708 0.818

Validation 0.295 0.713 0.579 0.848 0.724 0.421 0.872 0.615 0.756

Radiomics nomogram Training 0.390 0.849 0.775 0.923 0.858 0.649 0.938 0.800 0.875

Validation 0.390 0.854 0.748 0.960 0.810 0.684 0.872 0.722 0.850
frontiers
95% CI, 95% confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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to be detected at biopsy, owing to the small tissue volume to be

cut and obtained from the primary tumor (3, 12, 13); therefore,

noninvasive prediction of LVI is necessary.

Previously, it had been demonstrated that the clinic_CUS

features of breast carcinoma could distinguish LVI-positive from

LVI-negative (8, 12). In our study, tumor margin and US_LNM

status were independent predictors of LVI in the clinic_CUS

model. Tumor margin showed significant difference in LVI-

positive group and LVI-negative group, and LVI-positive breast

tumors were more likely to present with not circumscribed

margins than LVI-negative tumors. This is consistent with

previous studies (6, 12, 22). Reasonable explanations may be

that tumor microvascular invasion usually occurred in the

peritumoral area, while undefined margin, especially spiculate

margin, was associated with the infiltrative growth of the tumor

into the peritumoral stroma (6). As another independent

predictor for LVI in the clinic_CUS model, US_LNM was

more common in LVI-positive than LVI-negative breast

cancers. Previous studies (6–9) had also demonstrated that the

presence of LVI was closely associated with axillary lymph node
Frontiers in Oncology 14
involvement, which were consistent with our study. Similarly,

ZHOU et al. (12) and Tong et al. (8) all thought that suspicious

findings on axillary US imaging were independent predictor for

the presence of LVI. Moreover, LVI-positive were more likely to

have nodal metastases than LVI-negative in T1 breast cancer

patients (9), whereas lymph node metastases were naturally

relatively low in T1 breast cancer (35), perhaps more likely to

be LVI-positive at the time of lymph node metases.

Recently, some studies proposed that MRI-based and digital

breast tomosynthesis (DBT)-based radiomis score were

independent risk factors for predicting LVI status of breast

cancer patients (3, 6, 7, 11). Their results demonstrated good

predictive efficacy for LVI status of breast cancer. Compared

with the prior MRI or DBT, grayscale US images were simpler

and easier to obtain for radiomics analysis. In addition, US-

based radiomics score had been shown to be of great value for

the discrimination and prognostic assessment of breast tumor

(18–21), but had rarely been used to predict LVI, especially

for small breast cancer. Therefore, we chose to use the US image

for radiomics analysis in order to discover its potential value for
A

B C

FIGURE 5

The construction of radiomics nomogram and the ROC curves of Radscore, clinic_CUS, and radiomics nomogram models. (A) Radiomics
nomogram model visualized and constructed with tumor margin, US_LNM status and Radscore. The ROC curves of the Radscore model,
clinic_CUS model, and radiomics nomogram model in training (B) and validation (C) datasets.
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predicting LVI in T1 stage IDC. In our study, Radscore was

calculated by 7 radiomics features associated with the LVI status

in the construction of Radscore model. All the selected 7

radiomics features were from transform-filtered texture

features, including 2 GLRLM features, 1 NGTDM feature, 3

GLSZM features, and 1 GLDM feature, from which

wavelet.LH_gldm_DependenceNonUniformityNormalized and

square_glszm_SizeZoneNonUniformityNormalized were the

dominant features in the construction of the Radscore.

The texture features could quantify the spatial variation in

the architecture and function of breast cancer, which are suitable

to assess the information of tumor heterogeneity (20, 34). The

transform-filtered texture features could provide potential

insight for quantifying tumor biological and multidimensional

heterogeneity (6, 11, 30, 36). Many studies had found that

transform-filtered texture features were useful in predicting the

tumor benignity and malignancy, lymph node metastasis, gene

expression, and the efficacy of neoadjuvant chemotherapy (11,

18–20, 30, 36, 37), although some explanations of relationship

between these complex features and tumor biology behavior

remained to be elucidated (6). Some transform-filtered texture

features from DBT and MRI could be incorporated as prediction
Frontiers in Oncology 15
model for the LVI status in breast cancer (6, 11), since the

transform-filtered features may be associated with the tumor

complex microstructure, such as tumor cell proliferation, local

necrosis, hemorrhage, inflammation, and microcalcifications, etc

in LVI-positive tumor (6, 7). Different imaging modalities

contained different potential information about the

microstructure and biological behavior of the tumor (6), thus

US-based Radscore could also had certain value in predicting

LVI in breast cancer. Our results revealed that LVI-positive pT1

IDCs exhibited higher scores on the grayscale US image based

Radscore model, which may be attributed to the higher

invasiveness and heterogeneity of LVI-positive tumors (6, 11).

US-based radiomics nomogram had been widely performed

and demonstrated to be of great clinical value in oncology (18, 20,

21, 36, 38, 39). To our knowledge, our study is the first to utilize

the US-based radiomics nomogram to preoperatively predict the

LVI status in pT1 IDC. In this study, we developed and validated a

US-based radiomics nomogram, constructed with three

independent predictors, namely tumor margin, US_LNM status

and Radscore. Our result revealed that the radiomics nomogram

model, incorporating tumor margin, US_LNM status and US-

based Radscore, exhibited a good discrimination ability for
A

B

FIGURE 6

Calibration curves of the radiomics nomogram in the training dataset (A) and validation dataset (B), respectively.
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predicting LVI in pT1 IDC, with the AUC value of 0.849 (95% CI:

0.775~0.923) in the training dataset, and 0.854 (95% CI:

0.748~0.960) in the validation dataset. In addition, the

radiomics nomogram model presented superior predictive

performance to the clinical model both in training and

validation datasets, and the radiomics nomogram model could

bemore intuitive and easily applied in distinguishing LVI status in

pT1 IDC. The predictive performance of LVI in our research was

similar to that in previous studies (6, 7, 11), which were based on

MRI or DBT for radiomics nomogram construction. Moreover,

the calibration curve for our radiomics nomogram model showed

a good concordance between predicted and actual probability, and

DCA demonstrated a higher clinical net benefit from the

nomogram model. Thus, we strongly believe that the

constuction of radiomics nomogram based on US image can be

effectively applied to predict the status of LVI in pT1 IDC. Future

research directions would be associated with other prognostic

indicators or treatment assessment of breast carcinoma through

US-based radiomics nomogram.
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Our study has several limitations. Firstly, this study only

included pT1 IDC. Other histological types or T stages of breast

cancer would be included to increase the clinical applicability of

this study. Secondly, this is a single center retrospective study, in

which case selection bias may exist. Moreover, the sample size of

this study is not large enough, so a larger sample and multicenter

data would be deserved in the future. Thirdly, we manually

delineated the maximum diameter level of the tumor as two-

dimensional (2D) ROI, which could not represent the whole

tumor. Fourthly, we only based on the grayscale US images for

radiomics analysis. Multimodal ultrasound images, including

elastography and CEUS imaging, would be performed in the

future study. Fifthly, US images were acquired from multiple

manufacturers in this study. Although we standardize the images

before feature extraction and performed Z-score normalization

for radiomics features, heterogeneity of images from different

operators and different equipments may also have certain impact

on experimental results. Finally, LVI usually indicates tumor

invasion in peritumoral tissue, but radiomic analysis of the
A

B

FIGURE 7

DCA for the clinical value assessment of the three models in the training dataset (A) and validation dataset (B), respectively. The X-axis indicates
the threshold probability, and the Y-axis represents the net benefit. The gray line indicates the assumption that all patients are LVI-positive
cases; the black line represents the assumption that all patients are LVI-negative cases. The red, green, and blue lines refer to the Radscore,
clinic_CUS, and radiomics nomogram models, respectively.
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peritumoral ROI was not performed. Further studies are needed

to verify this aspect as well.

In conclusion, radiomics features derived from grayscale US

image may be potential biomarkers for predicting LVI of pT1

IDC. The proposed radiomics nomogram, incorporating tumor

margin, US_LNM status and US-based Radscore, could provide

a satisfactory predictive efficacy for LVI status and confer a

higher clinical benefit for patients.
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