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Purpose: To develop a multiparametric MRI model for predicting axillary lymph

node metastasis in invasive breast cancer.

Methods: Clinical data and T2WI, DWI, and DCE-MRI images of 252 patients

with invasive breast cancer were retrospectively analyzed and divided into the

axillary lymph node metastasis (ALNM) group and non-ALNM group using

biopsy results as a reference standard. The regions of interest (ROI) in T2WI,

DWI, and DCE-MRI images were segmented using MATLAB software, and the

ROI was unified into 224 × 224 sizes, followed by image normalization as input

to T2WI, DWI, and DCE-MRI models, all of which were based on ResNet 50

networks. The idea of a weighted voting method in ensemble learning was

employed, and then T2WI, DWI, and DCE-MRI models were used as the base

models to construct a multiparametric MRI model. The entire dataset was

randomly divided into training sets and testing sets (the training set 202 cases,

including 78 ALNM, 124 non-ALNM; the testing set 50 cases, including 20

ALNM, 30 non-ALNM). Accuracy, sensitivity, specificity, positive predictive

value, and negative predictive value of models were calculated. The receiver

operating characteristic (ROC) curve and area under the curve (AUC) were used

to evaluate the diagnostic performance of each model for axillary lymph node

metastasis, and the DeLong test was performed, P< 0.05 statistically significant.

Results: For the assessment of axillary lymph node status in invasive breast

cancer on the test set, multiparametric MRI models yielded an AUC of 0.913

(95% CI, 0.799-0.974); T2WI-based model yielded an AUC of 0.908 (95% CI,

0.792-0.971); DWI-based model achieved an AUC of 0.702 (95% CI, 0.556-

0.823); and the AUC of the DCE-MRI-based model was 0.572 (95% CI, 0.424-

0.711). The improvement in the diagnostic performance of the multiparametric

MRI model compared with the DWI and DCE-MRI-based models were
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significant (P< 0.01 for both). However, the increase was not meaningful

compared with the T2WI-based model (P = 0.917).

Conclusion: Multiparametric MRI image analysis based on an ensemble CNN

model with deep learning is of practical application and extension for preoperative

prediction of axillary lymph node metastasis in invasive breast cancer.
KEYWORDS

breast cancer, magnetic resonance imaging, axillary lymph node, metastasis,
convolutional neural network
Introduction

Global cancer statistics for 2020 show that breast cancer has

surpassed lung cancer as the most common cancer in women

and the leading cause of cancer deaths in women (1). Lymphatic

metastasis is the most common route for breast cancer, and the

status of axillary lymph nodes becomes an important indicator

to determine the clinical stage, treatment method, and prognosis

(2, 3). Axillary lymph node dissection (ALND) and sentinel

lymph node biopsy (SLNB) are the clinical standards for the

evaluation of axillary lymph node metastasis (ALNM). Since

postoperative complications after ALND are challenging to

recover from, such as narrow shoulder and upper arm

movement, lymphedema, Etc., ALND is now gradually being

replaced by SLNB (4–7). Although SLNB has become the

primary means of evaluating the status of axillary lymph

nodes, the negative rate of SLNB reaches 70% (8), and the

incidence of postoperative complications of SLNB reaches 41%

(7), which still has a significant impact on the prognosis of breast

cancer patients. Therefore, preoperative non-invasive and

accurate axillary lymph node status evaluation is of

clinical importance.

Currently, the main non-invasive methods for preoperative

assessment of axillary lymph node status are imaging

examinations, including mammography, ultrasound, magnetic

resonance imaging (MRI), and PET/CT (9–13). However,

mammography cannot show the entire axilla, and only the

anterior and inferior portions of the axilla can be observed.

Ultrasound is not only limited to superficial lymph nodes, but is

also determined by the diagnostic experience of the doctor. PET/

CT is expensive and may expose the patient to ionizing

radiation. Nevertheless, MRI has excellent tissue resolution

and is the best imaging examination to evaluate breast cancer

and axillary lymph nodes (14, 15). Radiologists usually observe

axillary lymph node morphology, size, fat hilum, and cortical
02
thickness in MR images to diagnose the occurrence of metastasis

(16, 17). However, when axillary lymph nodes are small and

have poor contrast with surrounding tissues, radiologists have

difficulty interpreting them. As a result, the sensitivity of

conventional breast MRI for detecting axillary lymph node

metastasis is still moderate (18). Therefore, it cannot be a

definitive evaluation method for axillary lymph node

metastasis. In addition, previous studies have shown an

intrinsic connection between preoperative MRI images of the

breast cancer tumor and axillary lymph node metastasis,

including anatomical and functional sequences (19–22).

However, this inherent connection is difficult for radiologists

to observe.

In the past few years, deep learning methods have been

increasingly used for medical image processing and are evolving

into a new field of medical imaging. Deep learning (23) differs

from radiomics, an end-to-end learning model that

automatically learns and extracts the intrinsic features of

medical images and then completes the corresponding tasks,

avoiding the human factor and omitting the traditional complex

operational steps. The deep learning using the MRI dataset

applied to axillary lymph node metastasis in breast cancer

mainly focuses on axillary lymph nodes and breast cancer

tumors. Convolutional neural networks (CNN) are commonly

used as a conventional deep learning model in breast image

analysis. Ha, et al. (24) and Ren et al. (25) used MR images of

axillary lymph nodes to build CNN models for their studies, and

the studies by Luo et al. (26) and Wang et al. (27)used

anatomical and functional MR images of breast cancer tumors.

Al l o f the i r deep- learning models achieved good

prediction results.

This study aims to develop an innovative prediction model

that can differentiate between ALNM and non-ALNM in breast

cancer using multiparametric MRI datasets based on the

CNN model.
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Materials and methods

Population

We retrospectively studied 465 breast cancer patients from

January 2016 to June 2022. The study was approved by the ethics

committee and institutional review and waived the requirement

for informed consent. Inclusion criteria for this study: (1)

invasive breast cancer confirmed by surgical pathology and

axillary lymph node status also confirmed by postoperative

pathology; (2) pathological stage ≥ pN1a was selected for the

ALNM group and pN0 for the non-ALNM group; (3) all

preoperative breast MRI scan and enhancement examinations

were done. Exclusion criteria: (1) pathological findings showing

the presence of isolated tumor cells in axillary lymph nodes or

the occurrence of micrometastases; (2) receiving tissue

aspiration biopsy or neoadjuvant chemotherapy before MRI

examination; (3) the presence of artifacts in MRI images. The

specific inclusion and exclusion process is illustrated in Figure 1.

252 patients with invasive breast cancer, including 98 with

ALNM and 154 with non-ALNM, were finally included in our

study, and the clinical characteristics of these people are shown

in Table 1.
MR imaging parameters

Breast MRI was performed using a 3.0T MRI scanner

(Magnetom Skyra, Siemens, Germany) and a 1.5T MRI

scanner (Signa Explorer, GE, USA) with dedicated breast coils.

Both scanners acquired the following sequences: axial T2-

weighted imaging (T2WI), axial diffusion-weighted imaging
Frontiers in Oncology 03
(DWI), and axial dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) images, and DCE-MRI

sequences were imaged by injecting 15 ml of gadolinium

contrast medium (Magnevist, Bayer Schering, Germany) at a

rate of 3.0 ml/s, and a total of 7 phases were performed. Only the

phase with the most significant enhancement, determined by the

time-intensity curve (TIC), was used in the DCE-MRI images.

The specific parameters are shown in Table 2.
Image processing and base
model building

The clipping of the lesion region of interest (ROI) included

the breast tumor and peritumoral area in this study, not the

axillary lymph nodes. Two doctors with three years of breast

imaging experience determined the tumor’s location, size, and

borders. When a dispute arose, a senior doctor with fifteen years

of experience decided it independently. We later used Matlab-

R2018b (Math works, Massachusetts, USA) software to crop out

the ROI from T2WI, DWI, and DCE-MRI raw images of 252

breast cancer, and the ROI segmentation example is in Figure 2.

First, boundary boxes were formed around each axial 2D ROI for

layer-by-layer ROI segmentation. Then, all segmented 2D ROI

images were unified into 224×224. Finally, image normalization

was performed by equation (1) so that the pixel values fall in the

[0,1] interval.

Norm =
xi −min xð Þ

max xð Þ −min xð Þ (1)

Where xi represents the image pixel value, max(x), min(x)

represent the maximum and minimum values of the image

pixels, respectively. All datasets were randomly divided into
FIGURE 1

Process of enrolling patients with invasive breast cancer.
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training and test sets, with 202 cases in the training set, including

78 cases of ALNM and 124 cases of non-ALNM; 50 cases in the

test set, including 20 cases of ALNM and 30 cases of non-ALNM.

For the outstanding image feature extraction ability and

classification accuracy of residual network (ResNet), the base

model in this study is constructed based on ResNet50. The

ResNet50 architecture is shown in Figure 3. In this study, T2WI,

DWI, and DCE-MRI of breast cancer tumors were used as input,

and the feature classifier Softmax score threshold 0.5 was used

for classification. Three base models of T2WI, DWI, and DCE-

MRI were constructed to distinguish between ALNM and non-
Frontiers in Oncology 04
ALNM. ResNet50 models were trained and tested on aWindows

image workstation using Python, the open-source deep learning

library torch, and math architecture with an NVIDIA GeForce

GTX 2080ti GPU graphics processor. In our study, we used the

training set data for training and fine-tuning the parameters of

ResNet50, initially we set the learning rate interval to 0.001-

0.000001 and the batch size to 16, by gradually adjusting the

batch size (16-32-64) and learning rate to make ResNet50 more

suitable for our research task. Finally, during the training

process, we determined the learning rate be 0.00005, the batch

size to be 64, and the number of training epochs was set to 300.
TABLE 2 Magnetic Resonance Imaging Scanner Parameters.

MRI parameters 1.5T 3.0T

T2WI DWI DCE-MRI T2WI DWI DCE-MRI

TR (ms) 7210 5030 5.6 4300 6650 3.6

TE (ms) 102 56 1.7 75 65 1.8

Flip angle 160° 180° 15° 120° 180° 10°

Slice gap (mm) 1 1 0.5 0.8 1.1 0.5

Slice thickness(mm) 4 5 1.5 4 4 2

FOV (mm²) 320×320 320×320 320×320 351×351 340×340 340×340

Matrix 288×224 110×170 114×224 576×576 224×224 512×512

b value (s/mm²) — 50,800 — — 50,1000 —
fro
TR, repetition time; TE, echo time; FOV, the field of view; T2WI, T2-weighted imaging; DWI, diffusion weighting imaging; DCE-MRI, dynamic contrast-enhanced magnetic
resonance imaging.
TABLE 1 Population characteristics.

Characteristics Total ALNM Non-ALNM P
number n=252 n=98 n=154

All patients Age (mean ± SD), years old 51.3 ± 11.24 51.0 ± 11.05 51.6 ± 11.40 0.698

Tumor size (mean ± SD), cm 2.1 ± 0.97 2.4 ± 1.15 1.9 ± 0.78 <0.01

Tumor margin 0.079

Regular 102 (40.5) 33 (33.7) 69 (44.8))

Irregular 150 (59.5) 65 (66.3) 85 (55.2)

TIC curve type 0.201

II 168 (66.7) 70 (71.4) 98 (63.6)

III 84 (33.3) 28 (28.6) 56 (36.4)

Number n=50 n=20 n=30

Testing dataset Age (mean ± SD), years old 50.7 ± 10.74 49.1 ± 11.77 51.7 ± 10.06 0.394

Tumor size (mean ± SD), cm 2.0 ± 0.80 2.3 ± 0.92 1.9 ± 0.67 0.086

Tumor margin 0.387

Regular 22 (44.0) 7 (35.0) 15 (50.0)

Irregular 28 (56.0) 13 (65.0) 15 (50.0)

TIC curve type 0.243

II 29 (58.0) 14 (70.0) 15 (50.0)

III 21 (42.0) 6 (30.0) 15 (50.0)
ntiersi
ALNM, axillary lymph node metastasis; SD, standard deviation; TIC, time-intensity curve.
n.org

https://doi.org/10.3389/fonc.2022.1069733
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1069733
Multiparametric MRI combined with an
ensemble learning model

Ensemble learning is a machine learning model that

accomplishes the learning task by constructing and combining

multiple base models so that multiple weak classification models

can be turned into a single robust model (28). In this study, the

idea of a weighted voting method in ensemble learning was

adopted, and three base models, T2WI, DWI, and DCE-MRI,

were applied as part of the novel prediction model we studied.

The workflow of the integrated model is shown in Figure 4.
Frontiers in Oncology 05
In this work, the trained three base models of T2WI, DWI,

and DCE-MRI were tested, the weight value of each base model

was calculated according to equation (2), and then a

comprehensive decision was made by equation (3). Finally,

half of the sum of the weights of the three base models were

used as the threshold to make the final classification.

wi =
o3

i=1ACCi

3
(2)

Where ACCi represents the accuracy of each base model on

the test set, and wi refers to the classification weight of each base
A B C

FIGURE 2

Cropping of ROI in raw MRI images of invasive breast cancer. (A) T2WI of the breast; (B) DWI of the breast; (C) Period with the most significant
enhancement in DCE-MRI of the breast. ROI, region of interest; T2WI, T2-weighted imaging; DWI, diffusion weighting imaging; DCE-MRI,
dynamic contrast-enhanced magnetic resonance imaging.
FIGURE 3

ResNet50 architecture. Res1 and Res2 represent two kinds of residual block structures, C represents the number of convolution kernels, and S
represents the step distance.
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model.

H xð Þ =o
3

i=1
wihi xð Þ (3)

Where hi(x) represents the probability value of the output of

each base model for the same case in the test set, and H(x) refers

to the final probability value of the output of the multi-

parameter combined integrated learning model. The

multiparametric MRI model combined the information from

the three base models of T2WI, DWI, and DCE-MRI to predict

the status of axillary lymph nodes, which was more consistent

with the clinical diagnostic environment.
Statistical analysis

SPSS 22.0 and MedCalc 20.0 were used for statistical

analysis, the Kolmogorov–Smirnov test was used for

normality, and quantitative data conforming to a normal

distribution were expressed using the mean ± standard

deviation. Independent samples t-test was used for continuous

data between ALNM and Non-ALNM groups, and c² test or
Fisher’s exact test was used for categorical data. P< 0.05 was

statistically significant. Model assessment indexes were used to

evaluate the diagnostic performance of the base models and

multiparametric model for axillary lymph node metastasis,

including accuracy, sensitivity, specificity, positive predictive

value, negative predictive value, receiver operating

characteristic (ROC) curve, and area under the curve (AUC).
Frontiers in Oncology 06
The DeLong test evaluated the ROC curves between different

models, and P< 0.05 was considered statistically significant.
Results

The mean age of all patients was 51.3 ± 11.24 years old, the

mean age of the ALNM group was 51.0 ± 11.05 years old, and the

mean age of the non-ALNM group was 51.6 ± 11.40 years old.

There was no significant difference in age, tumor margin, and

TIC curve type between the two groups of ALNM and non-

ALNM, except for tumor size. This statistic is consistent with

previous studies (29, 30) but not affecting our deep-learning

experiment. In the testing set, the mean age of the ALNM group

was 49.1 ± 11.77 years, and the mean tumor size was 2.3 ± 0.92

cm, the mean age of the non-ALNM group was 51.7 ± 10.06

years, and the mean tumor size was 1.9 ± 0.67cm. There were no

significant differences between the ALNM and non-ALNM

groups regarding age, tumor size, tumor margin, or the type of

TIC curve.

The model indicators are presented in Table 3. The Roc

curves of the base and multiparametric MRI models are shown

in Figure 5. The AUC of the T2WI-based model was 0.908 (95%

CI, 0.792-0.971), with an accuracy of 0.840, a sensitivity of 0.750,

a specificity of 0.900, a PPV of 0.833, and an NPV of 0.844. The

AUC of the DWI-based model was 0.702 (95% CI, 0.556-0.823),

with an accuracy of 0.640, a sensitivity of 0.550, a specificity of

0.700, a PPV of 0.550, and an NPV of 0.700. The AUC of the

DCE-MRI-based model was 0.572 (95% CI, 0.424-0.711), with

an accuracy of 0.540, a sensitivity of 0.550, a specificity of 0.533,
FIGURE 4

Workflow and the whole structure of the multiparametric MRI model. w represents the weight of each base model.
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a PPV of 0.440, and an NPV of 0.640. The AUC of the

multiparametric MRI model was 0.913 (95% CI, 0.799-0.974),

with an accuracy of 0.880, a sensitivity of 0.850, a specificity of

0.900, a PPV of 0.850, and an NPV of 0.900. Comparing the

three base models, the T2WI-based model best predicted axillary

lymph node metastasis with an AUC of 0.908 (95% CI, 0.792-

0.971). As a combination, the multiparametric MRI model was

the best model for predicting axillary lymph node metastasis,

and its AUC was 0.913 (95% CI, 0.799-0.974). The improvement

compared with the AUC of the DWI base model and the DCE-

MRI base model was significant (P< 0.01 for both). However, the
Frontiers in Oncology 07
increase was insignificant compared with the T2WI-based

model (P=0.917).
Discussion

This study developed a multiparametric MRI model

incorporating ensemble learning to explore the performance of

predicting axillary lymph node metastasis in invasive breast

cancer before operation. To fully utilize the information from

breast MRI, T2WI, DWI, and DCE-MRI were independent
TABLE 3 Performance characteristics of the base and multiparametric MRI models.

Model ACC SEN SPE PPV NPV AUC (95%CI)

T2WI 0.840 0.750 0.900 0.833 0.844 0.908 (0.792-0.971)

DWI 0.640 0.550 0.700 0.550 0.700 0.702 (0.556-0.823)

DCE-MRI 0.540 0.550 0.533 0.440 0.640 0.572 (0.424-0.711)

Multiparametric MRI 0.880 0.850 0.900 0.850 0.900 0.913 (0.799-0.974)
T2WI, T2-weighted imaging; DWI, diffusion weighting imaging; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; ACC, accuracy; SEN, sensitivity; SPE, specificity;
PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve; CI, confidence interval.
FIGURE 5

The Roc curves of the base and multiparametric MRI models.
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inputs to CNN model, and the predictions of the three base

models were weighted and fused by ensemble learning based on

weighted voting to achieve the final classification of axillary

lymph nodes.

Deep learning is a method of feature learning in machine

learning. It can automatically learn deep abstract features in the

input data by simulating the mechanism of the human brain

neural network processing information, reducing the

dependence of human factors on crucial features and

achieving an end-to-end learning effect, thus improving the

extension ability of the model. Deep learning has been widely

used in breast imaging, including segmentation (31, 32),

differentiation of benign and malignant tumors (33, 34), and

preoperative prediction related to breast cancer (35, 36).

There are only five studies on the preoperative evaluation of

axillary lymph node status in breast cancer. Ha, et al. (24)and

Ren et al. (25) studied only T1WI images of axillary lymph nodes

using CNN models, and the accuracy of the CNN models in

diagnosing axillary lymph node metastasis reached 0.843 and

0.848, respectively. Ren et al. (37) further analyzed T1WI, T2WI,

and DCE-MRI of axillary lymph nodes, and the accuracy and

AUC values of the three fused CNN models for assessing the

status of axillary lymph nodes reached 0.885 and 0.882,

respectively. Wang et al. (27)also investigated T1WI, T2WI,

and DWI images, and their traditional CNN+SVM model was

used for the deep-learning analysis of breast cancer tumors. The

T1WI+T2WI+DWI model had the best diagnostic efficacy for

axillary lymph node metastasis, with accuracy and AUC values

of 0.970 and 0.996. Luo et al. (26)developed a CNN+SVMmodel

to extract deep features from DWI images of different

orientations of the breast cancer tumor by using the CNN

model and SVM as a classifier. They then evaluated the status

of axillary lymph nodes, and the AUC value of this model was

0.852. These studies suggest that deep learning analysis of MRI

images of the breast cancer tumor and axillary lymph nodes

would be useful for predicting axillary lymph node status in

breast cancer patients.

In this study, axial T2WI, DWI, and DCE-MRI images of

breast cancer tumors of the same resolution size were used for

deep learning analysis to ensure consistency of image input. The

efficacy of the T2WI-based model for diagnosing axillary lymph

node metastasis remained superior to that of the DWI and DCE-

MRI-based models. The results were consistent with those of

Wang et al (27). The possible reasons are mainly in two aspects.

First, the T2WI-based model may extract richer features than the

DWI and DCE-MRI base models in our study. ResNets are

widely used in image classification tasks, such like ResNet18,

ResNet50, ResNet101, but the number of extracted features

varies with the number of layers of the ResNet. The feature
Frontiers in Oncology 08
extraction process is generally simple to complex and low-level

to high-level. The ResNet50 model may be too shallow for DWI

and DCE-MRI images in terms of the number of layers to extract

relevant deep features. Second, for axillary lymph node

metastasis, T2WI raw images of invasive breast cancer have

more meaningful features than DWI and DCE-MRI raw images.

The ROI in this study included the breast tumor itself and

peritumoral edema. Previous studies (38)showed that the

presence of perineural edema in breast cancer and axillary

lymph node metastasis were closely related, and T2WI was the

best sequence to show perineural edema.

Our study has some limitations. First, this study is a

retrospective analysis and lacks multicenter data, which needs

to be further validated by prospective studies. Second, the sample

size is small, and the data distribution is unbalanced between

ALNM and Non-ALNM groups, which needs a more extensive

data set for further study. Third, the MR images acquired in this

study are from two types of MR scanners, which may have some

influence on the accuracy of the final results. However, based on

the idea of multicenter validation, we believe that the model in

our study could achieve similar accuracy in different medical

centers and has the value of clinical replication.

In conclusion, we developed a novel model for preoperative

prediction of axillary lymph node metastasis in breast cancer

using multi-parametric MRI datasets. Our results showed that

T2WI outperformed DWI and DCE-MRI for predicting axillary

lymph node metastasis in breast cancer for a single MRI

sequence, but the multiparametric MRI model combined with

ensemble learning improved the predictive performance. This

model may give clinicians more information about breast cancer

axillary lymph nodes preoperatively and assist in clinical

decision-making.
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