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Using circulating molecular biomarkers to screen for cancer and other

debilitating disorders in a high-throughput and low-cost fashion is becoming

increasingly attractive in medicine. Onemajor limitation of investigating protein

biomarkers in body fluids is that only one-fourth of the entire proteome can be

routinely detected in these fluids. In contrast, Human Leukocyte Antigen (HLA)

presents peptides from the entire proteome on the cell surface. While peptide-

HLA complexes are predominantly membrane-bound, a fraction of HLA

molecules is released into body fluids which is referred to as soluble HLAs

(sHLAs). As such peptides bound by sHLA molecules represent the entire

proteome of their cells/tissues of origin and more importantly, recent

advances in mass spectrometry-based technologies have allowed for

accurate determination of these peptides. In this perspective, we discuss the

current understanding of sHLA-peptide complexes in the context of cancer,

and their potential as a novel, relatively untapped repertoire for cancer

biomarkers. We also review the currently available tools to detect and

quantify these circulating biomarkers, and we discuss the challenges and

future perspectives of implementing sHLA biomarkers in a clinical setting.

KEYWORDS

cancer biomarkers, liquid biopsy, immunopeptidomics, mass spectrometry, soluble
HLA, HLA peptidome
Introduction

The pursuit of cancer biomarker discovery serves the purpose of identifying,

characterizing, and monitoring specific molecules (or entire cells) in patients, allowing

for early detection of cancer and/or its differentiation from non-cancerous tissue. There

are three main types of biomarkers: 1) diagnostic, 2) prognostic and 3) predictive

biomarkers (1). A diagnostic biomarker refers to a marker that allows for the detection

and identification of a particular type of cancer. In contrast, a prognostic biomarker offers

information on the likelihood of survival as well as on potential future disease

progression, while a predictive biomarker informs clinicians and physicians about

appropriate and suitable therapeutic treatments (1). Irrespective of the type of
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biomarker, an ideal marker should be capable of reproducibly

and robustly discriminating healthy individuals from patients

(or subsequently the progress of diseases). In addition, it should

be easy and inexpensive to assay with the possibility of high-

throughput screening (2). Various types of biomarkers including

cancer biomarkers have been extensively reviewed (1, 3), and the

discovery and utilities of some of the most well-known cancer

biomarkers have been discussed in great detail elsewhere (4).

Molecular profiling techniques to identify or screen

biomarkers are typically initiated by acquiring tumor samples

from patients using invasive surgeries, often referred to as tissue

biopsies. Moreover, repeated surgeries are often required to

observe the development of a specific tumor over time,

especially in the case of metastasis (5). The cost of these

surgeries in combination with the risk of conducting repeated

invasive procedures on the same patient has created a pressing

need for alternative methods to identify and screen biomarkers.

One attractive solution is the use of liquid biopsies, which refers

to a collection of techniques developed to detect, quantify and

characterize circulating tumor cells (6) and/or cancer-related

molecules in various, easily accessible body fluids. Measurement

and analysis of biomarkers in such liquid biopsies allow for the

prediction of cancer pathogenic processes via tumor-specific

alterations in cancer (7–9).

Body fluids are fluids produced by the body for 1) normal

bodily functions (e.g. blood), 2) as waste products (e.g. urine), or

3) in disease pathology (e.g. malignant pleural effusion, which

results in the accumulation of exudative fluid in the lungs due to

pathology-induced fluid imbalances) (10). The most commonly

studied body fluid for human biomarker discovery is blood,

which is readily accessible and contains circulating molecules

from all over the body, including proteins and other

biomolecules originating from the tumor(s). As such, blood –

and its processed derivatives plasma and serum – are an

attractive source for biomarker discovery translational

research. Blood, however, contains a huge dynamic range of

protein concentrations (13 orders of magnitude) with over half

of the total protein mass made up of albumin (11). These highly

abundant proteins complicate the detection of cancer-associated

proteins, which are expected to be low in abundance. As of 2021,

a total of 5,877 plasma proteins have been cataloged through the

Human Plasma Proteome Project (HPPP) (12). This number,

however, represents only one-fourth of the approximately

20,000 proteins characterized and annotated in the human

proteome (13). Therefore characterizing protein biomarkers

from blood will likely not provide a comprehensive view of the

entire proteome expressed in tumors. Research on biomarker

discovery is not only limited to blood. Cancer-associated

proteins can also be present in other body fluids such as
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pleural effusion (14), saliva (15) and urine (16). For instance,

soluble mesothelin-related peptide, which is an FDA-approved

biomarker for clinical use in mesothelioma, has a high

abundance in malignant pleural effusion (14). However, in

contrast to blood, which contains proteins from all body

organs, these body fluids predominantly contain proteins that

are only released locally.

One additional major limitation of using proteins present in

any body fluid as a source for biomarkers is that the array of

proteins, which are present in these fluids, originated mostly

from secreted and membrane-bound proteins. These two classes

of proteins only represent around 35% of the whole proteome

(17, 18). More importantly, only ~6% of known cancer-

associated proteins are confirmed or predicted as secretory

proteins and thus, cannot be detected in the intact form in

body fluids (Supplementary Table S1) (19). As such, there is a

clear need for alternative approaches if we want to use body

fluids as a means to identify tumor-specific protein biomarkers.

Human Leukocyte Antigen (HLA) is a protein-product of

the Major Histocompatibility Complex (MHC) gene in Humans

and presents peptides on the cell surface for T cell recognition.

The cargo of peptides bound to HLA proteins is termed the

immunopeptidome (20). The immunopeptidome plays an

essential role in immunomodulation as presented peptides

may belong to either self or non-self (21). There are two main

classes of HLA: 1) HLA class I (HLA-I) and 2) HLA class II

(HLA-II). HLA-Is are expressed in the majority of nucleated

cells and present peptides (typically between 8 to 12 amino acids

long) from inside the cell, which are produced from proteasomal

degradation (22). HLA-II molecules bind longer peptides

(between 13 to 20 amino acids) and are expressed mostly by

antigen presenting cells (APCs) (23). The peptide cargoes of

HLA-II peptides are mostly of extracellular origin. As such, the

collective immunopeptidome of HLA-I and HLA-II is not

limited to secretory proteins, but rather represents snapshots

of entire cellular proteomes including their surroundings.

Both HLA-I and HLA-II are predominantly membrane-

bound (often termed mHLA), but intriguingly, a fraction of

HLA molecules is released into body fluids where they are

referred to as soluble HLAs (sHLAs) (24). In this review we

discuss the potential to exploit the sHLA immunopeptidome of

various body fluids as a novel, innovative and relatively

untapped repertoire to identify circulating biomarkers derived

from the entire cancer proteome. First, we broadly discuss the

potential for sHLA immunopeptidome to be used as a source of

cancer biomarkers including various concrete examples, and

then we discuss our vision of analyzing these biomarkers at low

cost in a high throughput manner in the context of translational

clinical screening.
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Sourcing biomarkers from
soluble HLA: Current evidence
and examples

The presence of HLA proteins in human plasma was first

discovered by van Rood and colleagues in 1970 (25). Three

soluble forms of HLA proteins have been discovered so far (26):

1) A ~35 kDa version corresponding to the extracellular domain

of an mHLA molecule (27); 2) A ~39 kDa version originating

from an alternative splicing event (28); and 3) the fully shed ~44

kDa mHLA molecule (24). There is increasing evidence linking

the abundance of sHLA protein in serum to disease progression

and immune evasion in cancer, particularly in protection from

immune recognition and inhibition of destruction of the

microenvironment (29). Additional studies have examined a

potential link between sHLA levels and malignancy. While the

majority of these studies agreed that elevated sHLA levels

correlate with poorer prognosis, a few studies suggest

otherwise (24, 30). It has to be noted however that these
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observations differ depending on the cancer type, and could

therefore be explained by different immune reactions toward

various cancer types. Regardless of the abundance of sHLA,

several studies confirm their presence in different body fluids

(Table 1) (31, 32, 34, 35, 37–42). Interestingly, peptides bound to

these sHLA are derived from intra- and extracellular proteins

expressed in the cell of origin. As such, the sHLA

immunopeptidome acts as a reservoir of all proteins expressed

in a cell including peptides derived from cancer-specific proteins

in tumors (45).

This notion of exploring the sHLA immunopeptidome in the

context of cancer biomarkers was initiated by Bassani-Sternberg

and colleagues slightly more than a decade ago (33). In the

seminal study comparing HLA immunopeptidomes in human

plasma to hematological cancer cell lines, they aptly recognized

that the sHLA complexes (consisting of the sHLA molecule

themselves and their peptide ligands) remain stable in

circulation for two days. More importantly, the peptide

cargoes of the sHLAs were highly similar to those carried by

their mHLA counterparts. These observations opened up the
TABLE 1 Summary of various body fluid in which presence of HLA has been validated via proteomics studies.

Body fluid Origin of proteins No. of proteins detected in the
body fluid

Coverage for
tumor-

associated
antigen$

Evidence of the presence of HLA in
this body fluid

Amniotic
fluid

Maternal blood 3025* <3% (90/3025) (31)

Aqueous
humor

Eyes 1888** <3% (50/1888) (32)

Blood Whole body organs 5877*** <3% (157/5877) (33)

Cerebrospinal
fluid

Brain 4364* <3% (122/4364) (34)

Milk Whole body organs 2457* <3% (67/2457) (35)

Pleural
effusion

Lungs 1519* 4% (62/1519) (36)

Saliva Oral cavity, whole body
organs

2758* 3.3% (92/2758) (37)

Seminal fluid Male reproductive organs 4084* 3.6% (145/4084) (38)

Sweat Skin, whole body organs 1244* 3.1% (39/1244) (39)

Synovial fluid Joints, whole body organs 1637* 3.6% (59/1637) (40)

Tears Eyes 1882* 3.4% (64/1882) (41)

Urine Urinary organs,
reproductive organs

7330* <3% (196/7330) (42)

*taken from Human Body Fluid Proteome database (43).
**taken from the latest available MS-based proteomics study with compiled database from all existing aqueous humor proteomics studies (44).
***taken from the latest Human Plasma Proteome Project-associated study article (12).
$data compiled in the Supplementary Table S1.
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possibility of characterizing all proteins present in a tumor cell

by studying peptides presented by sHLA complexes in

body fluids.

At present, only a handful of studies exist describing sHLA

immunopeptidomes, and many of those studies are centered

around sHLA-I peptides isolated from blood (33, 46–48). The

above-mentioned study by Bassani-Stenberg (33) identified a

number of peptides derived from cancer-testis antigens (CTA)

and tumor-associated antigens (TAA) in the blood of patients

with hematological malignancies. More recent studies observed

that sHLA complexes containing peptides derived from

validated CTAs (macrophage inhibitory factor (49, 50) & NY-

ESO-1 (51)) can be detected in the blood of breast cancer

patients (52).

In 2016, Ritz and colleagues (46) conducted validation

studies on the methodology for the current mHLA

immunopeptidome extraction from cell lines. Once validated,

the method was then implemented on the sera of melanoma

patients and healthy individuals to assess its effectiveness in

extracting sHLA immunopeptides. Their investigation identified

a total of 22 peptides derived from validated melanoma-

associated antigens (53), 15 of which were exclusively found in

serum. Just one year later, the same laboratory successfully

improved their sHLA peptidome characterization from a few

hundred peptides in their original study (46) to about 2,000

peptides by adding an additional purification step (47). This

number was further increased again to 26,841 peptides in 2019

(48), demonstrating a tremendous improvement in method

development. In this study, Shraibman et al. managed to

validate that the expression of potential biomarkers derived

from plasma sHLA in glioblastoma patients change pre- vs

post-surgical interventions, whilst most of the peptides remain

constant during the same period of time (48).

In a more recent report, Khazan-Kost and colleagues

discovered the potential of sHLA as a valuable source of

biomarkers for lung cancers in pleural effusion (54). His work

attempts to expand from the 2002 study in which Amirghofran

and colleagues validated the presence of sHLA-I in malignant

pleural effusion (36), to provide a comparison between

malignant vs benign pleural effusions. Analysis of both the

soluble and membrane HLA immunopeptidome resulted in

the identification of a total of 32,970 unique HLA peptides

derived from 11,305 proteins from both benign and malignant

effusion with clear distinctions between them (19,294 and 1,784

peptides have been exclusively identified in the malignant and

benign effusion, respectively). More importantly, unique sets of

peptides derived from TAAs specific to lung adenocarcinoma

were observed exclusively in pleural effusion and not in

corresponding individual’s plasma samples. The protein used

as an example in the study, anaplastic lymphoma kinase (ALK),

is not yet validated and classified as a CTA/TAA at present (55),
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but this protein has a potential to be a localized biomarker for

lung cancer. Finally, while the study predominantly focused on

pleura l e ffus ion , i t a l so va l ida ted that the sHLA

immunopeptidome can serve as a valuable source of TAAs as

evidenced by the identification of several known TAAs (SAGE1,

PBK and ODF2) in both pleural effusion and plasma samples of

lung cancer patients.

The investigation of the sHLA-II immunopeptidome proved

to be much more challenging than the HLA-I counterpart. At

present, there is little progress on the identification and

characterization of the peptide cargo of sHLA-II molecules

(56). Combined with the lower abundance of sHLA-II in

blood it is not surprising that only ~200 peptides have been

identified from 3 mL of human plasma from healthy individuals

(56). There are currently no HLA-II peptidome studies of cancer

patients yet, either from blood nor any other body fluid.
Analysis of sHLA immunopeptides by
using immunopeptidomics

Immunopeptidomics is the method of choice for the

identification and quantification of sHLA-bound peptides and

the pipeline is summarized in Figure 1. In brief, the body fluid of

interest is collected from the patient via a minimally invasive

procedure, and sHLA-peptide complexes are enriched via

immunoaffinity purification (IP) using HLA-specific

antibodies. Peptides are eluted from the sHLA protein by

acidification and analyzed by liquid chromatography-tandem

mass spectrometry (LC-MS/MS). The data is then analyzed

against a human proteome reference database and/or a

personalized database in the case of a proteogenomics

approach (57). The peptides’ source proteins are then typically

mapped against the cancer testis antigen database (58).

Recent advances of the immunopeptidomic pipeline have

resulted in significantly increased peptide identifications (IDs) as

well as data accuracy and quality. This was predominantly

accomplished by mitigating issues that have been plaguing

earlier HLA peptidome studies. For example, earlier studies

heavily relied on the extraction of mHLA-bound peptides

directly from intact cancer cell lines using mild acid elution

(MAE), which is highly prone to contamination (59). The

implementation of antibody-based IP enrichments of HLA-

peptide complexes after cell lysis resulted in a 6-fold increase

in peptide numbers compared to the earlier MAE approach (60).

Similarly, significant advances in the sensitivity, selectivity and

speed of mass spectrometric instrumentation have led in the past

10 years to an increase in peptide IDs that can be identified from

decreasing amounts of starting material (61). Just a decade ago,

1010 cells were required to identify approximately 3,000 peptides
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(62). A similar number of peptides was identified with 100-fold

less starting material (108 cells) just a few years later (63) and

most recently, with as little as 107 cells (64). In the context of

liquid biopsy analysis, current approaches have resulted in the

identification of >20,000 peptides from human plasma derived

from approximately 8,000 source proteins (48). Comparable

numbers (32,970 peptides, derived from 11,305 source

proteins) have also been identified in pleural effusion (54).

The classical MS acquisition method used for such studies is

data-dependent acquisition (DDA) mass spectrometry, where

abundant peptide sequences are obtained by searching the

acquired mass spectra against existing protein databases (65,

66). However, such approaches usually suffer from a lack of

reproducibility, and lower abundant peptide species are typically

neglected. As a consequence, (DDA) mass spectrometry is

increasingly replaced by the arguably superior data-

independent acquisition (DIA) mass spectrometry, in which all

peptides irrespective of their abundance are fragmented in the

mass spectrometer (67–70). More recently, attempts to

incorporate quantitative aspects into the historically purely

qualitative field have gained traction, utilizing both label-free

(71, 72) and label-based (73, 74) quantification approaches.
Challenges and future perspectives

In previous studies, similar sHLA peptidomes were observed

for individuals sharing the HLA allotypes. Indeed, it is important

to recognize that the HLA region is the most polymorphic region

in the human genome (22, 75) and that HLA allo- and
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haplotypes determine the sHLA immunopeptidome (33). As a

consequence, an analysis of two different populations has a high

possibility of yielding two different sHLA immunopeptidomes.

Because of the polymorphism of the HLA gene, the discovery of

universal HLA-bound peptides biomarker is challenging.

However, precision biomarkers (based on HLA types) would

be an option. Another possibility is studying peptides present by

non-classical HLAs, such as HLA-E and G, which are

less polymorphic.

In order for biomarkers to be implemented in the clinical

settings, they have to undergo a thorough validation study against

a large cohort of samples from both cancer patients and healthy

donors. This poses a significant technical challenge on the

throughput capabilities of existing immunopeptidomics

workflows, as emphasized by the Human Immunopeptidome

Project (HIPP) (69). Many approaches have been attempted to

overcome this challenge ranging from the use of multiplexing

assays (73, 74) to establishing a 96-well format workflow

applicable to both cell lines and tumor tissues (64). A promising

recent study by Zhang and colleagues successfully incorporated

the use of an automated liquid handling instrument (Assay MAP

Bravo platform; Agilent Technologies) (76), which resulted in an

overall improvement in speed, sensitivity, and also reproducibility.

This automation has indeed created a standardized high-

throughput workflow that eliminates human error and might

pave the trend for future studies.

Another important challenge that has been plaguing

immunopeptidomic studies is the amount of starting material

needed. Considering the low abundance of sHLA-peptide

complexes in body fluids, approximately 3-5 mL of plasma
FIGURE 1

Commonly used pipeline to study HLA immunopeptidomes. Body fluids are extracted from cancer patients or healthy donors via minimally
invasive procedures. sHLA-peptide complexes are enriched by immunoprecipitation assays and the peptide cargo is separated under mild acidic
conditions. The peptides are analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and various software packages are
used to search the data against a human proteome database to obtain peptide sequence information. State-of-the-art bioinformatic analyses
are employed to shortlist potential biomarkers.
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(33, 56) and at least 10 mL of pleural effusion (54) are required

for each analysis. In fact, some TAA-derived peptides are only

found in a higher volume of starting material (54), posing a risk

of losing valuable biomarkers when working with a lower

volume. While the implementation of IP enrichments has

allowed for significant improvement in peptide recovery, it

comes with its limitation for reliable clinical biomarker

screening. Varying quantities of peptides (from as low as

17.5% (77) up to 99% (78)) have been observed to be lost in

the process, possibly due to the varying IP conditions employed

in the literature (64). Therefore, the development of a

standardized protocol for this method is paramount.

Lastly, all the current studies on sHLA immunopeptidomes

used conventional proteome databases and only considered

intact (not biologically modified) sequences which are present

in the human reference proteome (79). However, recent studies

suggest the high prevalence of post-translationally modified

peptides (such as phosphorylated, deamidated and glycosylated

peptides) as well as proteasomally spliced epitopes in the

immunopeptidome (80–83). On the other hand, the rise of

proteogenomic studies, which combine genomic and

proteomic approaches, will accelerate the expansion of current

databases with novel and variant peptide species (84–86). Taken

together, these breakthroughs have created and will create

superior approaches to investigate HLA immunopeptidomes at

an unprecedented level, further elevating its potential as a

repertoire for cancer biomarkers.
Conclusion

In summary, sHLA immunopeptidomes are a viable source

of cancer biomarkers. sHLA complexes are present in most body

fluids (31, 32, 34, 35, 37–42) and their peptide cargo contains

many validated CTAs and TAAs (33, 46–48, 54). These peptides

have the potential to be used as diagnostic, prognostic and/or

predictive biomarkers for different cancer immunotherapy

strategies such as immune checkpoint inhibitors, cancer

vaccines and T-cell therapies. Continuous improvements in

mass spectrometric instrumentation, bioinformatics and

sample preparation over the past decade have allowed for

more robust and comprehensive sHLA immunopeptidomics

(57, 76, 77, 87, 88). However, we have to be acutely aware that

there are currently very limited studies on liquid biopsy samples
Frontiers in Oncology 06
and a myriad of technical challenges to be overcome before its

routine implementation in clinical settings (69). At this stage,

developing standardized protocols for sHLA-based biomarker

research would be an important initial step to ensure analytical

validity and quality of future studies.
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