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an inhibition of CaMKII/CREB1
mediated ABCB1 expression
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and Wei Zheng2*
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Ovarian cancer is one of the most lethal gynecological malignancies.

Recurrence or acquired chemoresistance is the leading cause of ovarian

cancer therapy failure. Overexpression of ATP-binding cassette subfamily B

member 1 (ABCB1), commonly known as P-glycoprotein, correlates closely

with multidrug resistance (MDR). However, the mechanism underlying aberrant

ABCB1 expression remains unknown. Using a quantitative high-throughput

combinational screen, we identified that terfenadine restored doxorubicin

sensitivity in an MDR ovarian cancer cell line. In addition, RNA-seq data

revealed that the Ca2+-mediated signaling pathway in the MDR cells was

abnormally regulated. Moreover, our research demonstrated that terfenadine

directly bound to CAMKIID to prevent its autophosphorylation and inhibit the

activation of the cAMP-responsive element-binding protein 1 (CREB1)-

mediated pathway. Direct inhibition of CAMKII or CREB1 had the same

phenotypic effects as terfenadine in the combined treatment, including lower

expression of ABCB1 and baculoviral IAP repeat-containing 5 (BIRC5, also

known as survivin) and increased doxorubicin-induced apoptosis. In this

study, we demonstrate that aberrant regulation of the Ca2+-mediated

CAMKIID/CREB1 pathway contributes to ABCB1 over-expression and MDR

creation and that CAMKIID and CREB1 are attractive targets for restoring

doxorubicin efficacy in ABCB1-mediated MDR ovarian cancer.
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Introduction

Ovarian cancer is one of the worst cancers and the major

cause of mortality among gynecologic tumors (1). Due to the

absence of clear early-stage symptoms, more than 75% of

ovarian cancer patients are diagnosed at an advanced stage,

with a 5-year survival rate of 20% (2–4). Currently, debulking

surgery followed by chemotherapy is the usual treatment for

ovarian cancer in an advanced stage (5). However, the

development of tumor resistance during treatment is common

and poses challenges in ovarian cancer therapy (6, 7). Indeed,

over 80% of cases respond to first-line treatment, yet 70% of

patients experience cancer recurrence within the first three

years (8).

Overexpression of ATP binding cassette subfamily B member 1

(ABCB1) is a well-known molecular mechanism responsible for

multidrug resistance (MDR) in malignancies such as ovarian cancer

(6, 9, 10). ABCB1, also known as P-glycoprotein 1 (P-gp), is an

ATP-driven efflux transporter that pumps substrates from cells. To

protect organs from toxins, it is abundantly distributed in the blood-

brain barrier, placenta, kidneys, and intestines (11). Numerous

anticancer medicines, including doxorubicin, vincristine,

paclitaxel, anthracyclines, and taxanes, are ABCB1 substrates (10,

11). Hence, overexpression of ABCB1 in cancer cells decreases

intracellular concentrations of these drugs and produces MDR (12).

Since co-administration of an effective ABCB1 modulator with

anticancer drugs was deemed to be a viable strategy for overcoming

ABCB1-mediated MDR malignancies, efforts have been made to

generate ABCB1 inhibitors in the past few decades. Despite the fact

that numerous ABCB1 inhibitors have been developed, their clinical

translation has been limited due to their low binding affinities,

excessive toxicity, or non-specificity (13, 14), indicating the need for

new ABCB1 transporter inhibitors or strategies to overcome the

MDR caused by ABCB1 overexpression.

Terfenadine is a histamine receptor H1 (HRH1) antagonist

that was once employed to treat allergy disorders. Recent studies

have demonstrated that terfenadine inhibits cell growth and

induces apoptosis in neoplastic mast cells, melanoma cells, and

breast cells via altering intracellular calcium homeostasis,

caspase activation, and the mitochondrial pathway (15–19).

Moreover, a synergistic effect of terfenadine and anticancer

drugs has been demonstrated in the treatment of breast cancer

and lung cancer (20, 21). However, it is unknown how

terfenadine functions in this combinational therapy.

Intriguingly, terfenadine has been related to a decrease in

calcium influx caused by L-type calcium channels (LTCC)

activation in rat and human cells (22, 23), showing terfenadine

can regulate intracellular calcium homeostasis. Calcium works as

a second messenger in cells to activate the downstream RNA

polymerase to trigger gene transcription, which is involved in

various cellular processes, such as cell division, proliferation, etc.

(24, 25). Ca2+ signaling alterations are linked to carcinogenesis,

tumor development, and metastasis (26). Moreover, it has been
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found that calcium signaling is connected with drug resistance.

Activation of transient receptor potential channels, for instance,

is associated with chemoresistance in a number of

malignancies (27).

In this work, using quantitative high-throughput

combinational screening (qHTCS), we found that terfenadine

reverses doxorubicin resistance in MDR ovarian cancer cells. In

addition, we demonstrate that terfenadine interacts directly with

calcium/calmodulin dependent protein kinase II delta

(CAMK2D) and inhibits the subsequent ectopic activation of

the CAMK2/cAMP responsive element binding protein 1

(CREB1) pathway in an ABCB1-mediated MDR ovarian

cancer line, A2780-ADR. In fact, either the CAMK2 or CREB1

inhibitor resensitizes doxorubicin-resistant ovarian cancer cells,

showing that the CAMK2/CREB1 pathway is a suitable target

pathway for future therapeutic development.
Materials and methods

Compounds and antibodies

Terfenadine was purchased from Sigma-Aldrich (catalog

number: T9625). Topotecan, paclitaxel, KN62, and KN93 were

obtained from Selleck Chemicals (catalog number: S1231, S1150,

S7422, and S7423). Rhodamine 123 was purchased from

MedChemExpress (catalog number: HY-D0186) Antibodies

used in experiments are listed in Table S1.
Cell culture

All the human ovarian cancer cell lines were purchased from

Sigma-Aldrich. Cells were cultured in RPMI 1640 medium with

10% fetal bovine serum (FBS) and 100 U/mL penicillin-

streptomycin at 37°C with 5% CO2.
Quantitative high-throughput
combinational screening

ATP content assay (Promega) was conducted according to

the manufacture’s protocols. Briefly, A2780-ADR cells were

plated at 500 cells/well in 5 µL of RPMI 1640 medium with

10% FBS and 100 U/mL penicillin-streptomycin in white, solid-

bottom 1,536-well plates and incubated 4 h at 37°C. Four

concentrat ions of compounds from the l ibrary of

pharmacologically active compounds (LOPAC, Sigma-Aldrich)

consists of 1,280 small molecules, the NIH Chemical Genomics

Center Pharmaceutical (NPC) collection with 4,265 compounds

(28), as well as the Mechanism Interrogation Plate (MIPE) with

1,920 compounds were added to assay plates at 23 nL/well using

a pintool station (WAKO Scientific Solutions, San Diego, CA).
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After a 72-h incubation at 37°C with 5% CO2, the mixture of

ATP LITE assay reagents was added to the assay plates at 5 µL/

well. After incubation for the indicated time, the luminescence

signal in the plates were detected using a ViewLux plate

reader (PerkinElmer).
Rhodamine123 accumulation assay

A2780-ADR cells were seeded onto 96-well plates at a

density of 5,000 cells/well. The cells were pretreated with 2.5

to 10 µM terfenadine for different time. After pretreatment, the

cells were incubated with 5 µM Rhodamine123 (Rh123) in

culture medium and kept in the dark at 37°C with 5% CO2 for

60 min. Plates were then washed twice with pre-warmed PBS,

filled with 100 µl/well PBS, and measured using a Tecan reader at

485 nm excitation and 535 nm emission.
Caspase activity assay and ATP content
cell viability assay

Caspase-3/7 activity assay (Caspase-Glo, Promega) and ATP

content cell viability assay (CellTiter-Glo, Promega) were

conducted according to the manufactures’ protocols. Ovarian

cancer cells were plated at 3,000 to 5,000 cells/well in 100 µL of

complete culture medium in white, solid-bottom 96-well plates

and incubated overnight at 37°C with 5% CO2. Compounds

were added to the assay plates at indicated concentrations at 100

µL/well diluted in medium. After a 24 h (caspase 3/7 assay and

ATP content cell viability assay) incubation at 37°C with 5%

CO2, the mixtures of assay reagents at 100 µL/well were added to

the assay plates. After incubation for the indicated times from

the protocols, the luminescence signal in assays plates were

detected in a ViewLux plate reader.
RNA-sequencing analysis

RNA-sequencing analysis of A2780 and A2780-ADR was

performed by Q2 Solutions as previously described (29, 30).

RNA was isolated by Qiagen miRNeasy Mini Kit. cDNA libraries

were generated using Illumina TruSeq Stranded mRNA sample

preparation kit (Illumina # RS-122-2103). Read counts of each

sample were normalized with DESeq and ran a negative

binomial two sample test to find significant genes in higher

transcript abundance in either sample. RNA sequencing data

have been deposited in Gene Expression Omnibus (GEO) under

accession number GSE177038.
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Western blotting

Cells were lysed in RIPA buffer (Cell Signaling Technology)

supplemented with protease inhibitors (cOmplete ULTRA

Tablets, EDTA-free, Roche) and phosphatase inhibitor cocktail

(PhosSTOP, Roche). The cell lysates were centrifuged at 16,000

rpm for 30 min. Supernatant was collected for protein

quantitation with a BCA assay kit (Pierce BCA Protein Assay

Kit, Thermo Fisher Scientific). The supernatant with similar

protein concentrations were subsequently applied to Bis-Tris or

Tris-Acetate gels for protein separation. Proteins were

transferred to polyvinylidene difluoride (PVDF) membrane by

dry transfer (iBlot 2 Gel Transfer Device, both from Thermo

Fisher Scientific) or tank wet transfer. Immunoblot analysis was

p e r f o rm e d w i t h i n d i c a t e d a n t i b o d i e s a n d t h e

chemiluminescence signal was visualized with Luminata Forte

Western HRP substrate (EMD Millipore) in a BioSpectrum

system (UVP, LLC). The chemiluminescence intensity of the

band was calculated in the VisionWorks LS software

(UVP, LLC).
Cellular thermal shift assay

CETSA was performed as previously described (31). A2780-

ADR cells were harvested, rinsed with PBS, and re-suspended in

detergent-free buffer (25 mM HEPES pH 7.0, 20 mM MgCl2,

2 mM DTT) supplemented with protease inhibitors and

phosphatase inhibitor cocktail. The cell suspensions were lysed

via three freeze-thaw cycles with liquid nitrogen. The cell lysates

were centrifuged at 16,000 rpm for 20 min at 4 °C to pellet the

cell debris from the soluble fraction. The soluble portion were

diluted in detergent-free buffer and divided into two aliquots,

with or without 600 mM terfenadine treatment. After 60 min

incubation at room temperature, each sample was divided into

12 small aliquots in 50 mL/tube and individually heated at

different temperatures (37 to 70 °C with 3 °C interval) for

3 min in a thermal cycler (Eppendorf), followed by immediate

3 min cooling cycle on ice. The heated samples were centrifuged

at 20,000 × g for 20 min at 4 °C to remove the precipitates from

the soluble fractions. The supernatant was examined by western

b l o t t i n g w i t h CAMKI I a n t i b o d y . T h e r e l a t i v e

chemiluminescence intensity of each sample at different

temperatures was used to plot the temperature dependent

melting curve. The apparent aggregation temperature (Tagg)

was calculated by nonlinear regression. The statistically

significance between two curves were analyzed by extra sum-

of-squares F test. All data represent mean ± SEM of at least

3 replicates.
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Data analysis

The primary screen data were analyzed using customized

software developed internally (32). All data from the cell-based

assays were presented as the mean ± standard error of the mean

(SEM) with at least three independent experiments unless otherwise

stated. Half maximal inhibitory concentrations (IC50) of

doxorubicin or compounds were calculated using Prism software

(version 7, GraphPad Software, San Diego, CA). All imaging data

are presented as the mean ± SEM and represent data from cells in at

least 10 fields from three or more independent experiments. The

two-tailed unpaired Student’s test of the mean was used for single

comparisons of statistical significance between experimental groups.

One-way analysis of variance (ANOVA) with Bonferroni test was

used for multiple comparisons. Bliss independence with Prism or

SynergyFinder (33) was used to define synergistic or additive effects.
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Results

Terfenadine restores doxorubicin activity
to MDR ovarian cancer cells

To explore potential novel therapies for ABCB1-mediated

MDR ovarian cancer cases in the clinic, we conducted a qHTCS

against an ABCB1-overexpressing MDR ovarian cancer cell line,

A2780-ADR. Compared to the parental A2780 cells, the A2780-

ADR cells exhibited a higher expression and overall activity of

ABCB1, as demonstrated by a considerable rise in protein level

in Western blot detection and a significantly reduced cellular

accumulation of Rho123, an ABCB1 substrate (Figures 1A, B

and Figure S1A). The IC50 values of three ABCB1 substrates

(doxorubicin, topotecan, and paclitaxel) for the A2780-ADR

cells were 7.08 uM, 0.0081 uM, and 0.88 uM, which were
B

C

D

E

F

G

A

FIGURE 1

Terfenadine restores the activity of doxorubicin in MDR ovarian cancer cells. (A) Western blot analysis of ABCB1 in multidrug resistance (MDR)
ovarian cancer cells A2780-ADR and its parental cell A2780. A representative image was shown here. (B) Rho123 accumulation in A2780-ADR
and its parental cell A2780. (C) Dose-response curves of doxorubicin in MDR ovarian cancer cells A2780-ADR and its parental cell A2780. (D)
Cell viability of MDR ovarian cancer cells A2780-ADR treated with 2 mM doxorubicin (Dox), 5 mM tariquidar (Tar), or both for 48 hours. DMSO
was used as a non-treated control. (E) The heatmap shows 246 compounds were identified that efficiently inhibited the proliferation of A2780-
ADR cells as monotherapy in the first round of screening. The color represents the IC50 of each compound, as the scale bar showed. (F) The
heatmap shows enrichment of A2780-ADR for a strong response to specific drug categories (columns) combined with doxorubicin (rows).
Drug-category-response scores are based on IC50 (mM). (G) A2780-ADR dose-response curves to terfenadine in the presence of 0.1, 1, 10, and
25 mM doxorubicin (Dox). Statistical analysis was performed using a two-tailed t-test. ***p<0.001.
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significantly higher than 14 nM, 0.95 nM, and 0.0016 nM,

respectively, for the A2780 cells (Figure 1C and Figures S1B,

C). In the presence of tariquidar, a specific ABCB1 inhibitor,

their anticancer effectiveness against A2780-ADR cells also

increased (34) (Figure 1D and Figures S1D–F).

The qHTCS was performed in two stages. In the first stage,

we examined 6,016 pharmacologically active compounds as

single drugs at five doses in a luminescent cell viability assay

to narrow down the compound pairs. 246 compounds were

found that effectively inhibit the proliferation of A2780-ADR

cells with an IC50 < 10 µM (Figure 1E). To further identify

compounds that showed combination effects with doxorubicin,

these 246 compounds were evaluated at 11 concentrations in

combination with four doxorubicin concentrations at 0.1, 1, 10,

and 25 µM, separately. Consequently, 24 compounds were

identified as doxorubicin synergistic compounds in A2780-

ASR cells, as indicated by the decreasing IC50 of each drug as

the doxorubicin dose rose (Figure 1F and Table S2). Terfenadine

was selected for further investigation (Figure 1G) since the

mechanism of terfenadine and doxorubicin combination is

unknown and terfenadine’s anticancer activity has been

described (15, 16).
Terfenadine resensitizes doxorubicin-
induced apoptosis in MDR ovarian
cancer cells

With an IC50 of 4.8 µM, the inhibitory activity of terfenadine

as a single agent was confirmed in MDR A2780-ADR cells

(Figure 2A). As evidenced by the shifted toxicity curve in MDR

cells, the combined treatment significantly decreased the IC50 of

doxorubicin in a dose-dependent manner, indicating the potential

synergistic effect of these two drugs (Figure 2B).

To quantify these enhanced anticancer effects, we computed

the combinational index (CI) (CI<1, synergism; CI=1, additive;

CI>1, antagonism) (35). The mean CI value was 0.35, showing

that the interaction in A2780-ADR cells is synergistic (Figure 2C).

To further evaluate the synergism and determine the best

synergistic concentration, effects were investigated using a dose-

response matrix and analyzed using the zero interaction potency

(ZIP) model (33, 36). As a result, terfenadine exhibited a

synergistic effect with doxorubicin. The average ZIP synergy

scores for A2780 cells and A2780-ADR cells were 2.874 and

4.403, respectively (Figures 2D, E). Notably, in resistant cells, the

synergy score reached 49.80 when resistant cells were treated with

3.33 µM terfenadine and 1.11 µM doxorubicin, which was higher

than the highest score of 22.39 in sensitive cells, showing a greater

synergistic effect in MDR cells than in their parental cells,

indicating that terfenadine will target the abnormally activated

pathway associated with ABCB1 overexpression in MDR cells. In

addition, the combination therapy lowered cell counts in a nuclear

staining-based counting assay (Figure 2F), enhanced caspase-3/7
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activity (Figure 2G), and promoted PARP cleavage (Figure 2H

and Figure S2A), suggesting that the A2780-ADR cells were

induced to undergo apoptosis. During the expanded testing,

terfenadine had a comparable effect on the toxicity of paclitaxel

and topotecan for A2780-ADR cells (Figures S2B, C).
Neither hERG nor H1R were the
functional targets of terfenadine in
the combination

To investigate the mechanism underlying this synergistic effect,

we first examined two conventional terfenadine targets: the

histamine H1 receptor (H1R) (37) and the human ether-a-go-go-

related gene (hERG) channel (38). Terfenadine was reported as an

antagonist of the H1R and is a prodrug that is converted to

fexofenadine in the liver (37). Nevertheless, it was withdrawn

from the market due to its ability to inhibit the hERG channel

(38). The dose-response curve for doxorubicin as monotherapy was

nearly comparable to the dose-response curve for doxorubicin in

conjunction with the H1R-specific inhibitor fexofenadine (39)

(Figure 3A). The CI for doxorubicin and fexofenadine was

0.9819, showing that their effect was additive, not synergistic

(Figures 3A, B). In a second attempt, tannic acid (TA), a blocker

of the hERG channel, was recruited (40). Even while TA decreased

cell viability at higher concentrations, the dose-response curve for

the combined therapy was similar to that of the doxorubicin

treatment alone (Figure 3C). The CI value for the combination of

doxorubicin and TA was 1.1867, showing that there was no synergy

between the two drugs (Figures 3C, D). In addition, western blot

revealed no difference in H1R and KCNH2 protein expression

between A2780 andA2780-ADR cells, indicating that these proteins

are not essential for MDR development (Figure 3E and Figure S3).

These findings indicated that the synergistic effect of terfenadine

and doxorubicin was not the result of terfenadine inhibiting the

H1R or the hERG channel.
Terfenadine increased the intracellular
accumulation of doxorubicin in MDR
ovarian cancer cells by repressing ABCB1

We questioned whether terfenadine impacts the expression or

function of ABCB1 in these MDR ovarian cancer cells, as ABCB1

overexpression was essential for the chemoresistance of A2780-

ADR. Indeed, terfenadine decreased the expression of the ABCB1

protein in a dose-dependent manner (Figure 3F and Figure S4A).

The reduction of ABCB1 was also found following doxorubicin

and terfenadine treatment (Figure 3G and Figure S4B). In

addition, in the ABCB1 activity experiment, terfenadine boosted

Rho123 accumulation dose-dependently, indicating the decreased

cellular ABCB1 activity. The Rho123 signal achieved a plateau

when the concentration exceeded 5 µM (Figure 3H). In a time-
frontiersin.org
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course study, the intracellular level of Rho123 continued to

increase until terfenadine-induced apoptosis occurred

(Figure 3I). Moreover, combination treatment significantly

enhanced doxorubicin levels in A2780-ADR cells (Figures 3J,
Frontiers in Oncology 06
K). These findings imply that terfenadine decreased the expression

and activity of the multidrug efflux pump ABCB1 in A2780-ADR

cells, which resulted in the accumulation of doxorubicin

and apoptosis.
B
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FIGURE 2

Terfenadine restores doxorubicin-induced apoptosis in MDR ovarian cancer cells (A) Terfenadine dose-response curves of MDR ovarian cancer
cells. (B) Dose-response curves for doxorubicin in MDR ovarian cancer cells in the absence or presence of terfenadine (Ter). (C) A Bar graph
showing the synergistic effects of terfenadine (Ter) and doxorubicin (Dox) on MDR ovarian cancer cells. Calculated CI values are presented
below the plots. (D, E) Synergy matrixes (bottom) and surface plots (top) show the synergy between doxorubicin and terfenadine on A2780 (D)
and A2780-ADR (E) cells (n = 3). (F) Nuclear staining of MDR ovarian cancer cells treated with the indicated concentration of doxorubicin (Dox),
terfenadine (Ter) or both. DMSO was used as a non-treated control. (G) Caspase3/7 activity in MDR ovarian cancer cells treated with the
indicated concentration of doxorubicin (Dox), terfenadine (Ter) or both. DMSO was used as a non-treated control. (H) Western blot analysis of
PARP in MDR ovarian cancer cells after treated with 2 mM doxorubicin (Dox), 5 mM terfenadine (Ter), or both for 24 h. ACTB was used as the
loading control. All values represent the mean ± SEM (n = 3 replicates). Western blot images were shown as one of three repeated experiments.
Statistical analysis was performed using two tailed t-test (*** p < 0.001).
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FIGURE 3

Terfenadine reverses MDR in ovarian cancer cells by repressing ABCB1 expression (A) Dose-response curves for doxorubicin (Dox) in the
presence or absence of 10 mM fexofenadine (Fex) in MDR ovarian cancer cells. (B) Cell viability of MDR ovarian cancer cells treated with 2 µM
doxorubicin (Dox), 10 µM fexofenadine (Fex), or both for 48 hours. DMSO was used as a non-treated control. (C) Dose-response curves of the
MDR ovarian cancer cells to doxorubicin (Dox) in the presence or absence of 4 mM tannic acid (TA). (D) Cell viability of MDR ovarian cancer cells
treated with 2 µM doxorubicin (Dox), 5 µM tannic acid (TA), or both for 48 hours. DMSO was used as a non-treated control. (E) Western blot
analysis of hERG channel (KCNH2) and HRH1 in MDR ovarian cancer cell and its sensitive parental A2780 cell. (F) ABCB1 Western blot analysis in
MDR cells treated with the indicated terfenadine (Ter) concentration. DMSO was used as a non-treated control. GAPDH was used as a loading
control. (G) ABCB1 Western blot in MDR cells treated with 2 µM doxorubicin (Dox), 5 µM terfenadine (Ter), or both. DMSO was used as a non-
treated control. GAPDH was used as a loading control. (H) Rho123 accumulation in MDR ovarian cancer cells treated with the indicated
concentration of terfenadine (Ter) for 6 h. (I) Rho123 accumulation in MDR ovarian cancer cells treated for indicated time with 5 mM terfenadine
(Ter). (J, K) Doxorubicin intracellular accumulation in MDR ovarian cancer cells or its parental sensitive A2780 cells treated for 6 hours with 2 µM
doxorubicin (Dox), 5 µM terfenadine (Ter), or both. All values represent the mean ± SEM (n = 3 replicates). All values represent the mean ± SEM
(n = 3 replicates). Western blot images were shown as one of three repeated experiments. Statistical analysis was carried out using a two-tailed
t-test (* p < 0.05, *** p < 0.001).
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Calcium pathway was altered in
MDR cells

To further investigate the potential targets and mechanisms of

drug resistance, we used RNA-seq to assess the transcriptional

differences between A2780 and A2780-ADR. A total of 5,694
Frontiers in Oncology 08
genes with a fold change of > 2 and a p-value < 0.05 were

identified as differentially expressed genes (DEGs) (Figure 4A),

including 2,755 genes that were over-expressed and 2,939 genes

that were under-expressed in the A2780-ADR cells. The gene

ontology (GO) enrichment study revealed 13 calcium-related

biological processes which caught our attention (Figure 4B). The
B
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FIGURE 4

Calcium pathway is important in MDR generation. (A) A volcano plot of the genes that were up- and down-regulated in A2780-ADR cells versus
A2780 cells. The genes are considered significant changes when the p-value is < 0.05 and the fold change is > 2-fold. (B) Gene ontology (GO)
enrichment analysis revealed that 13 calcium-related biological pathways were activated in the A2780-ADR cell when compared to its parental
A2780 cell. (C) Gene-Pathway network showed most of the DEGs were clustered in the processes of cytosolic calcium ion transport,
homeostasis, and response. (D) The KEGG calcium signaling pathway (p < 0.0001) was also exhibited the significance in gene set enrichment
analysis (GSEA). (E) Heatmap: the unsupervised hierarchical clustering showed 177 genes regarding calcium pathway showed the perfect
separation in the GSEA.
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Gene-Pathway network showed that the majority of DEGs were

clustered in the cytosolic calcium ion transport, homeostasis, and

response processes (Figure 4C), indicating this MDR cell line

possessed abnormal calcium signaling.

In addition to the preliminary analysis, a gene set enrichment

analysis (GSEA) was conducted to identify probable biological

pathway enrichment from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway database. This study uncovered the

difference in the KEGG calcium signaling pathway (p<0.0001) as

well (Figure 4D). Using all 177 genes involved in the calcium

pathway, unsupervised hierarchical clustering revealed a clear

separation of these two cell types (Figure 4E), demonstrating a

major modification in the calcium homeostasis of MDR cells.

Collectively, these findings suggest that the calcium signaling

pathway is associated with the MDR phenotype in the A2780-

ADR cells.
Terfenadine overcomes MDR by
inhibiting the CAMK2/CREB1 pathway

Among the proteins implicated in the calcium signaling

pathway, RNA-seq data revealed dysregulation of calcium/

calmodulin-dependent protein kinase II (CaMK2) members.

Specifically, CAMK2D is highly up-regulated, and CAMK2B is

down-regulated (Figure 5A). The rise of CAMK2D and its active

form, phosphorylated-CAMK2D (T286), in A2780-ADR cells

was confirmed by Western blotting (Figure 5B and Figure S5A).

In addition, we detected an increase in the phosphorylation of

CREB1 at S133, although RNA and protein levels remained

unchanged (Figures 5B, C and Figure S5A). As revealed by these

results, they indicated the CAMK2/CREB1 pathway was

overactive in the A2780-ADR cells.

To determine if terfenadine blocked the CAMK2/CREB1

pathway, the expression of related proteins was measured

following terfenadine administration. After 24 hours of treatment,

dose-dependent reductions in CAMK2D and phosphorylated

CAMK2D were observed. Meanwhile, CREB1, ABCB1, and

baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)

were also reduced (Figure 5D and Figure S5B). The protein

BIRC5, also known as survivin, suppresses apoptosis by inhibiting

caspase activation. As CREB1 is a transcription factor located in the

nuclei and is activated by direct binding of CAMK2, we also

examined their levels in the nuclei and found that terfenadine

dose-dependently decreased the CAMK2D and the phosphorylated

CREB1 in the nuclei (Figures 5D, E and Figures S6A, B), indicating

a decrease in the activating and nuclear entry of CAMK2D in the

presence of terfenadine.

A cellular thermal shift assay (CETSA) was conducted to assess

if terfenadine directly binds to CAMK2D to prevent its activation.

CAMK2D’s apparent aggregation temperature (Tagg) was

evaluated in the absence or presence of terfenadine in A2780-
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ADR cell lysates (Figure 5F and Figure S6C). The best-fit curve for

the terfenadine-treated group shifted significantly from that of the

DMSO control (p< 0.001). Figure 5G shows that terfenadine

reduced the Tagg of CaMK2D protein from 57.4 to 54.2°C,

indicating that it thermally destabilized CAMK2D. Together with

the other studies demonstrating that CREB1 regulates ABCB1

expression (41, 42), our findings suggest that terfenadine may

prevent cells from apoptosis by regulating the Ca2+-mediated

CAMK2/CREB1 pathway through binding directly to CAMK2D,

thereby causing its destabilization in cells and reducing the

activation of CREB1 and subsequent ABCB1 expression.
CAMK2/CREB1 pathway is the promising
therapeutics target for the ABCB1
mediated MDR of ovarian cancer

To confirm further that CAMK2D was a target for MDR

combination therapy, we recruited KN62, a CaMK2 specific

inhibitor, for our investigation (43). KN62 reduced the

expression and activity of ABCB1 in A2780-ADR cells,

consistent with the terfenadine therapy (Figures 6A, B and

Figure S7A). Moreover, KN62 inhibited the expression of

BIRC5 and the phosphorylation of both CAMK2D and CREB1

in A2780-ADR cells (Figure 6A). The IC50 of doxorubicin

dropped from 2.4 µM (doxorubicin alone) to 0.17 µM

(doxorubicin paired with 5 µM KN62) in A2780-ADR cells

when KN62 was administered in combination with doxorubicin

(Figure 6C). This was a synergistic combination (CI < 1)

(Figure 6D). Notably, KN62 had the same effect as terfenadine

in the combination with doxorubicin, decreasing ABCB1 and

BIRC5 expression and increasing cleaved PARP (Figures 6E, F).

Although the phosphorylated CAMK2D was lowered in either

terfenadine or KN62 treatment alone, there was no difference in

CAMK2D phosphorylation in combination treatments with either

of them with doxorubicin. In contrast, CREB1 phosphorylation

remained lower in the combined treatment, indicating that

CAMK2 inhibitors repressed the CAMK2/CREB1 pathway

(Figures 6E. F and Figures S8A, B). Furthermore, KN93,

another CAMK2-specific inhibitor, reduced ABCB1 activity and

increased doxorubicin-induced cell death in A2780-ADR cells

(Figures S9A, B). These findings suggest that inhibiting CAMK2

could resensitize MDR cells to doxorubicin.

To determine if blocking CREB1 would similarly resensitize

MDR cells to doxorubicin, A2780-ADR cells were treated with

the selective CREB1 inhibitor 3i (also known as 666-15 (44).

Consistent with the CAMK2 inhibitors, ABCB1 and BIRC5,

along with CREB1 phosphorylation, decreased after treatment

with 666-15 (Figure 6G and Figure S7B). Under the 666-15

treatment, the total ABCB1 activity similarly dropped in a dose-

dependent manner (Figure 6H). In addition, the combination of

doxorubicin and 666-15 killed MDR cells A2781-ADR
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synergistically (CI < 1) (Figure 6I). Together, inhibition of the

Ca2+ mediated CAMK2D/CREB1 pathway appears to be a

promising therapeutic target for doxorubicin resensitization in

ABCB1-mediated MDR ovarian cancer.
Discussion

Resistance to chemotherapy, whether inherited or acquired,

is a significant obstacle in cancer treatment. Several mechanisms
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of drug resistance have been postulated, with the multiplication

and expression of phosphorylated ABCB1 protein, an energy-

dependent drug efflux pump, being one of the most extensively

investigated (45). Studies in vitro have demonstrated that high

levels of ABCB1 expression are associated with MDR in multiple

cell lines and that the degree of overexpression correlates with

the amount of resistance (46). Research on patients with ovarian

cancer has found that high levels of ABCB1 expression are

inversely related to chemotherapy response and progression-free

survival (47). Consequently, ovarian cancer patients continue to
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FIGURE 5

Terfenadine overcomes MDR in ovarian cancer cells by inhibiting the CAMK2/CREB-mediated pathway. (A) Normalized read counts of the CAMK2
family in MDR ovarian cancer cells and its parental sensitive ovarian cells (A2780) obtained in the RNA-seq analysis. (B) Western blot analysis of p-
CAMK2 (T286), CAMK2 (pan), p-CREB1 (s133), and CREB1 in MDR sensitive ovarian cells (A2780). GAPDH was used as the loading control. (C) RNA-
seq normalized read counts of CREB1 in MDR ovarian cancer cells and its parental sensitive ovarian cancer cells A2780. (D) Upper panel: Western
blot analysis of p-CAMKII (T286), CAMKII (pan), p-CREB1 (s133), CREB1, ABCB1, and BIRC5 in MDR ovarian cancer cells treated for 24 hours with
terfenadine (Ter). GAPDH was used as the loading control. Lower panel: Western blot analysis of CREB1 and p-CREB1 (s133) in the nucleus of MDR
ovarian cancer cells treated with terfenadine (Ter) for 6 h. Histone H3 (H3C1) was used as the loading control. (E) Western blot analysis of CAMK2D
in the cytosol or nucleus of terfenadine (Ter)-treated MDR ovarian cancer cells for 6 hours. GAPDH and H3C1 were used as the loading controls for
cytosol protein and nucleus protein, respectively. (F, G) Cellular thermal shift assay (CETSA) for the binding of terfenadine to CAMKIID in MDR
ovarian cancer cell lysate. (F) Representative western blot images for the CESTA. (G) Tagg curves of CaMKIID in MDR ovarian cancer cells in the
presence of DMSO or 600 µM of terfenadine. All statistical analysis was performed using a two-tailed t-test (*** p < 0.001).
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FIGURE 6

Inhibiting the CAMK2/CREB pathway reversed MDR in ovarian cancer cells. (A) Western blot of p-CAMK2 (T286), CAMK2 (pan), ABCB1, p-CREB1
(s133), CREB1, and BIRC5 in KN62-treated MDR ovarian cancer cells for 24 h. (B) Rho123 accumulation in MDR ovarian cancer cells treated for
6 h with 5 µM KN62. DMSO was used as non-treated control. Statistical analysis was performed using a two-tailed t-test (*** p < 0.001). (C)
Dose-response curves of MDR ovarian cancer cells to doxorubicin (Dox) in the presence or absence of 5 µM KN62. (D) Synergistic effects of
KN62 and doxorubicin (Dox) on MDR ovarian cancer cell killing. The bar graph shows the cell viability of MDR ovarian cancer cells treated for
48 h with doxorubicin, KN62, or both. Calculated CI values are presented below the plots. (E) Western blot of p-CAMK2 (T286), CAMK2 (pan),
ABCB1, p-CREB1, CREB1, c-PARP, CHOP, and BIRC5 in MDR ovarian cancer cells treated for 24 h with 2 µM doxorubicin (Dox), 5 µM
terfenadine (Ter), or both. (F) Western blot of p-CAMK2 (T286), CAMK2 (pan), ABCB1, p-CREB1, CREB1, c-PARP, CHOP, and BIRC5 in MDR
ovarian cancer cells treated for 24 h with 2 µM doxorubicin (Dox), 5 µM KN62, or both. (G) Western blot of ABCB1, p-CREB1 (s133), CREB1, and
BIRC5 in MDR ovarian cancer cells treated for 24 h with 666-15. (H) Rho123 accumulation in MDR ovarian cancer cells treated for 6 h with 666-
15. DMSO was used as non-treated control. Statistical analysis was performed using a one-way ANOVA with Tukey’s HSD correction (*** p <
0.001). (I) Synergistic effects of 666-15 and doxorubicin (Dox) on MDR ovarian cancer cell killing. The bar graph shows the cell viability of MDR
ovarian cancer cells treated for 48 h with doxorubicin, 666-15, or both. Calculated CI values are presented below the plots.
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be in need of a therapeutic for effectively overcoming MDR.

Using qHTCS, this work found a group of doxorubicin

potentiators in an ABCB1-mediated MDR ovarian cancer cell

line. Among these, we demonstrated that terfenadine restored

the activity of doxorubicin by inhibiting the CAMK2/CREB1

pathway, resulting in decreased expression of ABCB1 and

BIRC5. In addition, inhibiting the CAMK2/CREB1 pathway

resensitized MDR ovarian cancer cells to not only doxorubicin

but also paclitaxel and topotecan, which are clinically employed

to treat ovarian cancer (48).

Terfenadine has been shown to restore the activity of

doxorubicin in the MCF-7/ADR human breast cancer cells

and the L1210/VMDRC.06 murine leukemia cells (49), and the

activity of epirubicin in killing drug-resistant non-small cell lung

cancer (20). In spite of this, the target and mechanism by which

terfenadine restores chemotherapeutic activity in MDR cancer

cells remain unknown. Notably, neither H1R nor hERG

inhibitors were able to duplicate the synergistic effects of

terfenadine on the MDR cancer cells, indicating that other

biological mechanisms may be involved in the reversal of

chemosensitivity. To investigate the unique target of

terfenadine in combinational chemotherapy for MDR cancer,

the global gene expression of doxorubicin-sensitive and

-resistant cell lines was profiled using RNA sequence.

Importantly, calcium signaling-related pathways were shown

to be aberrantly regulated in MDR cells, indicating that

calcium homeostasis was disrupted. Indeed, our work

demonstrated the abnormal expression of CAMK2 family

members, particularly CAMK2D, which is dramatically

overexpressed in MDR cells, and terfenadine treatment

inhibits the CAMK2D phosphorylation in a manner

comparable to that of the CAMK2 inhibitor KN62.

Intriguingly, terfenadine has been related to a decrease in

calcium influx caused by L-type calcium channels (LTCC)

activation in rat cerebellar neurons and human atrial myocytes

(22, 23), showing terfenadine can regulate intracellular calcium

homeostasis. However, the target of terfenadine for this function

remains unclear. Moreover, activation of CAMK2 can further

activate LTCC by binding to and phosphorylating the COOH

terminus of LTCC (50, 51). Using the CETSA assay, we

demonstrated the direct binding of terfenadine to CAMK2D

in our study, as indicated by a protein melting curve shift after

the addition of terfenadine to the cell lysate. Interestingly, the

melting curve of the CAMK2D protein was shifted to the right in

the presence of terfenadine, indicating instability of the

CAMK2D protein upon heating when bound to terfenadine.

As equilibrium binding ligands typically increase protein

thermal stability by a factor proportionate to the concentration

and affinity of the ligand, the CETSA assay will typically

demonstrate a leftward change in the melting curve of the

protein (52). However, multiple situations have been reported
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experimentally in which equilibrium-binding ligands destabilize

proteins, i.e., decrease the melting temperature of the protein by

an amount proportionate to the ligand’s concentration and

affinity (53, 54). This type of protein instability may cause

aggregation and degradation of target proteins in cells,

resulting in further protein reduction. In our study, we

demonstrated that terfenadine administration lowered CAMK2

protein in a dose-dependent manner. Based on our findings, it is

possible to speculate that terfenadine’s inhibition of CAMK2

protein leads to the deactivation of LTCC, thereby reducing

calcium influx in neurons and myocytes.

Unfortunately, terfenadine has been linked to cardiac death in

at least 125 and 14 cases in the United States and United

Kingdom, respectively (55), and the Food and Drug

Administration (FDA) recommended its removal from the

market in 1997 due to its pro-arrhythmic risk for long QT-

related Torsades de Pointes (TdPs) (56, 57). Although

numerous structural derivatives with a relatively low toxicity

profile, such as fexofenadine (58), have been developed, their

activity and target for MDR cancer treatment have yet to be

investigated. Therefore, it is preferable to identify

pharmacologically accessible downstream targets in this calcium

cascade for MDR treatment. In recent years, CAMK2 has

garnered a great deal of attention for its pivotal role in the

arrhythmias of chronic illness (59). The isoform-specific

inhibitor of CAMK2D (the main cardiac isoform of CAMK2)

could be used to target the cardiac-specific pathology of

autonomously activated CAMK2 in diabetes (60), while

avoiding off-target effects in other tissues, such as a and b
isoforms of CAMK2, and disruption of memory formation in

the hippocampus (61). A recent clinical trial revealed that the

CAMK2 inhibitor appears to be well accepted and safe among

patients (62), suggesting that it should pave the way for future

development of CAMK2 inhibitors in other conditions, such as

the treatment of MDR cancer patients.

Considering that CAMK2 activation can phosphorylate

and activate CREB1 (63) and that phosphorylated CREB1

binds to the CRE binding site in the ABCB1 promoter and

promotes ABCB1 expression (64), CAMK2 activation will

induce ABCB1 expression in cancer cells, resulting in MDR.

Therefore, reducing CREB1 activity is an additional promising

MDR cancer therapeutic target. In fact, CREB has already been

identified as a candidate for oncogenic signaling in a variety of

tumor types (65), particularly in leukemia and glioma (66,

67). In the current work, an aberrant increase in CREB1

phosphorylation was observed in MDR cells, and inhibition

of CREB1 decreased ABCB1 expression and activity, indicating

that CREB1 is a viable target for MDR reversal in cancer

therapy. Despite the recent developments, CREB inhibitors

are exclusively used in preclinical research. The lack of

pharmacokinetic and pharmacodynamic responses, as well as
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toxicity reports, makes it unlikely that any of them will be used

in clinical practice currently, despite the fact that some of them

look to be highly promising. In addition, the use of CREB

inhibitors has been hampered by numerous limitations, such as

lower bioactivity in living systems and off-target binding. This

necessitates a more comprehensive characterization and

development prior to clinical application.

In this study, we reported that the CAMK2/CREB pathway,

particularly CAMK2D, is a promising target for reversing

ABCB1-mediated drug resistance in ovarian cancer (Figure 7).

However, the in vivo activity of their inhibitors requires further

investigation. Additionally, we demonstrated once more that

integrating qHTCS and gene expression data is an effective

approach for identifying novel agents with combinational

effects and their underlying mechanisms.
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An illustration of terfenadine function in combinational treatment with doxorubicin.
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