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Preoperative prediction of
cytokeratin-19 expression for
hepatocellular carcinoma using
T1 mapping on gadoxetic acid-
enhanced MRI combined with
diffusion-weighted imaging and
clinical indicators

Yue Zhao1,2†, Xiaoliang Tan3†, Jingmu Chen3, Hongweng Tan3,
Huasheng Huang3, Peng Luo3, Yongsheng Liang3

and Xinqing Jiang1,2*

1Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China,
2Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, China, 3Department of
Radiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
Objectives: To explore the value of T1 mapping on gadoxetic acid-enhanced

magnetic resonance imaging (MRI) in preoperative predicting cytokeratin 19

(CK19) expression for hepatocellular carcinoma (HCC).

Methods: This retrospective study included 158 patients from two institutions

with surgically resected treatment-native solitary HCC who underwent

preoperative T1 mapping on gadoxetic acid-enhanced MRI. Patients from

institution I (n = 102) and institution II (n = 56) were assigned to training and

test sets, respectively. univariable and multivariable logistic regression analyses

were performed to investigate the association of clinicoradiological variables

with CK19. The receiver operating characteristic (ROC) curve and precision-

recall (PR) curve were used to evaluate the performance for CK19 prediction.

Then, a prediction nomogram was developed for CK19 expression. The

performance of the prediction nomogram was evaluated by its

discrimination, calibration, and clinical utility.

Results: Multivariable logistic regression analysis showed that AFP>400ng/ml

(OR=4.607, 95%CI: 1.098-19.326; p=0.037), relative apparent diffusion

coefficient (rADC)≤0.71 (OR=3.450, 95%CI: 1.126-10.567; p=0.030), T1

relaxation time in the 20-minute hepatobiliary phase (T1rt-HBP)>797msec

(OR=4.509, 95%CI: 1.301-15.626; p=0.018) were significant independent

predictors of CK19 expression. The clinical-quantitative model (CQ-Model)

constructed based on these significant variables had the best predictive

performance with an area under the ROC curve of 0.844, an area under the

PR curve of 0.785 and an F1 score of 0.778. The nomogram constructed based
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on CQ-Model demonstrated satisfactory performance with C index of 0.844

(95%CI: 0.759-0.908) and 0.818 (95%CI: 0.693-0.902) in the training and test

sets, respectively.

Conclusions: T1 mapping on gadoxetic acid-enhanced MRI has good

predictive efficacy for preoperative prediction of CK19 expression in HCC,

which can promote the individualized risk stratification and further treatment

decision of HCC patients.
KEYWORDS

hepatocellular carcinoma, cytokeratin 19, magnetic resonance imaging, T1
mapping, nomogram
1 Introduction

Hepatocellular carcinoma (HCC) is the third most common

cause of cancer-related death worldwide, with an increasing

incidence and mortality in the past 20 years (1). Although the

prognosis of patients with HCC has improved with advances in

surgical and imaging technology, the high rates of intrahepatic

recurrence after hepatectomy still remain a major challenge for

treatment of HCC, and two thirds of recurrences are within 5

years (2, 3). Recurrence after hepatectomy may be associated

with the degree of differentiation, microvascular invasion,

satellite focus and related gene expression, among which

cytokeratin 19 (CK19) expression is considered to be an

important influencing factor (4).

CK19 is well acknowledged as a biliary/progenitor cell

marker and a tumor stem cell marker, and plays an important

role in promoting malignant property of HCC (5). Compared

with patients with CK19-negative HCCs, CK19-positive HCCs is

associated with clinical aggressiveness due to more tumor

invasion, higher rate of lymph node metastasis intrahepatic

recurrence, and poorer prognosis after resection and liver

transplantation (6, 7). Therefore, understanding CK19

expression status of HCC at diagnosis can be significant for

better clinical decision making and improved prognosis.

However, since CK19 expression status can only be diagnosed

histologically (8), its use as a prognostic indicator for treatment

allocation is limited.

Several studies have assessed the imaging findings associated

with poor prognosis for CK19-positive HCCs. For instance,

irregular tumor margin, rim arterial phase hyperenhancement,

lower tumor-to-liver apparent diffusion coefficient (ADC) ratio,

and lower tumor-to-liver signal intensity (SI) ratio at
02
hepatobiliary phase (HBP) imaging are considered to be

significant independent variables for potentially predicting

CK19-positive HCCs (9–11). Radiomics can extract a large

number of high-dimensional quantitative features from

multimodal medical images, and then reveal the correlation

between these features and the diagnosis, pathology, and

prognosis of the tumor (12). Recently, studies have used

radiomics based on MRI to predict CK19 in HCCs (13–16).

Radiomics has progressed quite significantly, but the following

problems remain. First, accurate image segmentation relies on

manual delineation, which is time-consuming and easily affected

by the operator. Second, the different designs of the image

features can lead to different analytic results (17, 18). Unlike

traditional radiomics, Deep learning (DL) models are capable of

automatic learning, extracting, and selecting image features for

prediction, and thereby can more comprehensively and

profoundly excavate information from images. Chen Y et al.

(19) fully utilized the image information including intratumoral

and peritumoral regions of the hepatic lesions through a DL

algorithm, providing more valuable relevant information for

better prediction of CK19 expression. Although DL-based model

is a promising approach, there are still some problems in the

application, such as the black box problem, non-transparency of

decision-making, and difficulty in interpretation from the

clinical aspect (20). Thus, a feasible and quantitative method is

urgently needed to predict CK19 expression in HCC patients. T1

mapping is a non-invasive method for quantitative analysis of

T1 value in tissues. It reflects the intrinsic characteristics of

tissues and is not affected by scanning sequence parameters (21).

Moreover, it is positively proportional to the concentration of

gadolinium contrast agent in tissues, and can more accurately

and objectively reflect the uptake of gadoxetic acid (22). To our
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knowledge, the quantitative evaluation of CK19 expression of

HCC using T1 mapping has not been reported. Therefore, the

purpose of this study was to preoperatively identify CK19

expression status of HCC by T1 mapping on gadoxetic acid-

enhanced MRI.
2 Materials and methods

2.1 Study patients

This study was a retrospective study, which was approved by

the hospital ethics Committee, and patients were exempted from

signing informed consent. The flow chart of data collection and

research design is shown in Figure 1. We retrospectively

collected patients from Zhanjiang Central People’s Hospital

(Institution I) and Guangzhou First People’s Hospital

(Institution II). Inclusion criteria were as follows (1): Single

HCC was pathologically diagnosed after hepatectomy and

immunohistochemical examination of CK19 was performed

(2); Gadoxetic acid-enhanced MRI examination was

performed within 2 weeks before surgery, including T1

mapping in the pre-enhanced and 20-minute hepatobiliary

phase (HBP) after gadoxetic acid injection (3); Complete

clinical and pathologic data. Exclusion criteria were as follows

(1): administration of other preoperative antitumor therapies,

such as radiofrequency ablation, transcatheter arterial

chemoembolization (TACE), etc. (2); more than one tumor or

having satellite nodules (3); presence of macrovascular invasion

or extrahepatic spreading (4); unrecorded pathologic findings of

CK19 (5); suboptimal MR image quality for interpretation. MR

images of 102 patients from institution I were used as the

training set to establish prediction models to predict CK19
Frontiers in Oncology 03
expression in HCC. The predictive performances of models

were evaluated by test sets (56 cases from institution II).
2.2 Clinicopathological analyses

Preoperative laboratory indicators included Alpha

Fetoprotein (AFP), Alanine aminotransferase (ALT), Aspartate

aminotransferase (AST), Glutamyl transpeptidase (GGT),

Alkaline phosphatase (ALP), Albumin (ALB), Total bilirubin

(TBIL), Direct bilirubin (DBIL), Serum creatinine (Scr),

Prothrombin time (PT) and International Normalized ratio

(INR), Neutrophils to lymphocyte ratio (NLR), Platelet to

lymphocyte ratio (PLR).

The diagnostic criteria for HCC were based on

morphological criteria defined by the World Health

Organization. The expression of CK19 was semiquantitatively

evaluated by immunochemical staining. The hepatocytes and

bile ducts of normal liver tissues were used as negative and

positive controls, respectively. Tumors were classified as negative

(<5% of tumor cells) or positive (≥5% of tumor cells) for CK19

by an experienced pathologist who was blinded to clinical and

imaging information.
2.3 Magnetic resonance
imaging protocol

MRI examinations in all patients from institution I and

institution II were performed using a 1.5T (Magnetom Aera;

Siemens Healthcare) and 3.0T (Magnetom Trio A Tim; Siemens

Healthcare) MR scanner, respectively. The scanning range

covered from the top to the lower edge of the liver with an 8-
FIGURE 1

Study flowchart. CK19, Cytokeratin 19; HCC, hepatocellular carcinoma.
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channel phased-array coil as the receiver coil. Gadoxetic acid-

enhanced MRI was obtained including the pre-enhanced,

enhanced arterial phase (AP, 20–40s), portal phase (PVP, 50–

70s), equilibrium phase (EP, 100–120s), and 20min HBP images.

Gadoxetic acid (Primovist; Bayer Schering Pharma, Berlin,

Germany) was injected into the cubital vein at a flow rate of

1.0 ml/s and a dose of 0.025 mmol/kg, followed by 20 ml of

normal saline for flushing. A more detailed description of the

MRI methods and specific sequences and parameters of MRI

scans are shown in Supplementary Materials 1.1 and Table S1.
2.4 Imaging analysis

Preoperative MRI images were retrospectively analyzed on

the Picture Archiving and Communication System (PACS). The

semantic and quantitative MRI features were evaluated by two

abdominal radiologists independently (reader 1 [TAN XL] and

reader 2 [CHEN JM] both with 6 years of experience in liver

imaging) who were blinded to the patients’ clinical and

pathologic information. Discrepancies in semantic features

were resolved by consensus after reevaluating the images.

Quantitative characteristics were obtained by averaging the

estimates of two readers. One reader [TAN XL] repeated

the assessment in the same manner after 2 weeks to minimize

the memory effect to evaluate intraobserver agreement. The

intra- and inter-class correlation coefficients (ICCs) were

calculated to measure the intra- and inter-rater reproducibility

of semantic and quantitative characteristics, respectively.

Semantic MRI features include 1) Tumor margin; 2)

Hemorrhage; 3) Necrosis; 4) Fat component; 5) Target sign; 6)

Washout; 7) Rim Arterial phase hyperenhancement (rim

APHE); 8) Corona enhancement; 9) Intratumoralarteries; 10)

Radiologic capsule; 11) Peritumoral hypointensity on HBP. A

detailed description of semantic MRI features is provided in

Supplementary Material 1.2. All quantitative measurements

were performed manually on the PACS. The region of interest

(ROI) was placed as far as possible in the area with obvious

enhancement of lesion to avoid necrosis, hemorrhage, fat and

artifacts. The area of ROI was about 1.0~1.5 cm2; the same lesion

was measured three times with the same ROI, and then average

amounts were calculated. The signal intensity (SI) of tumor and

surrounding normal liver parenchyma were measured at Pre,

AP, PVP, EP and HBP images respectively, and then the tumor

to liver contrast ratio (TLR) was calculated. Additionally, ADC

values of the lesion and surrounding normal liver parenchyma

were measured on the ADC images, and tumor-to-liver ADC

values were calculated (recorded as relative ADC, rADC);

precontrast and postcontrast T1 relaxation time were

measured before and 20 minutes after the administration of

the contrast medium (recorded as T1rt-Pre and T1rt-HBP,
Frontiers in Oncology 04
respectively), and reduction rate of T1 relaxation time (rrT1rt)

was calculated. The description and formulas of quantitative

parameters are detailed in the Supplemental Materials 1.2.
2.5 Postoperative follow-up

All HCC patients were regularly monitored for recurrence

via CT or MRI once every 3 months for 2 years after resection.

The recurrence status included new intrahepatic lesions and/or

extrahepatic metastasis and the criteria were as follows: 1) new

intrahepatic lesions with typical imaging features of HCC, or

confirmed by histopathology, or with tumor stain during

postoperative TACE; 2) extrahepatic metastasis confirmed by

typical imaging features or histopathological analysis.
2.6 Statistical analysis

A Student t-test (mean ± standard deviation) or Wilcoxon

rank-sum test (median, P25 ~ P75) was performed for continuous

variables. The categorical variables were compared by c2. The ICCs
of quantitative data between the two observers was calculated.

Spearman coefficient was used for correlation analysis between

quantitative parameters and CK19 status. Multivariable logistic

regression analyses were performed to identify the independent

predictors of CK19-positive HCCs. Akaike Information Criterion

(AIC) was used to determine the optimal prediction model. The

receiver operator characteristic (ROC) curve was used to evaluate

the performance of predicting the expression of CK19. The

comparison of different area under ROC (AUROC) curves was

conducted by DeLong’s test. In view of the imbalance between the

patients with CK19-negative HCCs and those with CK19-positive

HCCs, we further used the F1 score and the area under the

precision-recall curve (AUPRC) to compare performances, as

these methods are more informative in the evaluation of binary

classifiers on imbalanced data sets. Calibration curve was used to

assess the consistency of nomogram. Decision Curve Analysis

(DCA) was used to evaluate the clinical utility of nomogram by

quantifying the net benefit under different threshold probabilities. R

software (version 3.4.1) was used for analysis. All differences were

considered statistically significant with a p value of <0.05.
3 Results

3.1 Clinicopathological features of the
training and test sets

A total of 102 patients from institution I were included in

this study, including 35 CK19-positive HCCs and 67 CK19-
frontiersin.org
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negative HCCs. 56 patients from institution II were included,

among which 20 were positive and 36 were negative regarding

CK19 expression. The distribution of clinicopathological

features in the training and test sets is shown in Table 1. The

results of univariable analysis of clinical factors in the training

set showed that AFP and NLR were significant variables

associated with CK19 expression (P<0.05, Supplementary

Table S2).
Frontiers in Oncology 05
3.2 MRI features of HCCs related to
CK19 expression in the training set

The results of univariable analysis of semantic features in the

training set showed that CK19-positive HCCs more frequently

showed nonsmooth tumor margin (p=0.035), target sign

(p=0.005) and corona enhancement (p=0.043) compared to

CK19-negative HCCs (Supplementary Table S3).
TABLE 1 Baseline clinical and pathological characteristics of the training and test sets.

Characteristic Total (n = 158) Training set (n = 102) Test set (n = 56) p value

Age (years) 47 (42 – 63) 55 (50 - 66) 52 (45 - 63) 0.285

Gender (male) 146 (92.4%) 93 (91.2%) 53 (94.6%) 0.619

HBsAg 0.096

Negative 29 (18.4%) 18 (17.6%) 11 (19.6%)

Positive 129 (81.6%) 84 (82.4%) 45 (80.4%)

ALT (U/l) 34.00 (21.50 - 55.00) 34.00 (25.50 - 55.25) 31.50 (20.00 - 54.00) 0.693

AST (U/l) 41.00 (25.50 - 49.25) 42.00 (26.00 - 48.25) 41.50 (23.00 - 55.25) 0.936

GGT (U/l) 54.00 (37.50 - 118.75) 53.00 (37.50 - 109.75) 53.50 (36.75 - 120.25) 0.853

ALP (U/l) 85.50 (68.75 - 106.50) 83.00 (68.00 - 104.00) 87.00 (69.50 - 108.25) 0.457

ALB (g/l) 39.35 (36.30 - 42.42) 39.80 (36.58 - 42.75) 38.50 (35.70 - 40.70) 0.102

TBIL (umol/l) 14.62 (11.00 - 18.12) 14.82 (11.34 - 18.56) 14.30 (10.60 - 17.78) 0.685

DBIL (umol/l) 4.04 (2.70 - 6.41) 4.56 (2.81 - 6.41) 3.35 (2.40 - 5.08) 0.057

SCr (U/l) 75.50 (67.15 - 87.00) 75.00 (67.00 - 86.85) 76.00 (68.28 - 87.30) 0.648

PT (s) 11.90 (11.40 - 12.50) 11.80 (11.50 - 12.60) 11.95 (11.40 - 12.58) 0.956

INR 0.673

≤1.0 67(42.4%) 42 (41.2%) 25 (44.6%)

>1.0 91(57.6%) 60 (58.8%) 31 (55.4%)

NLR 2.02 (1.54 - 3.55) 2.47 (1.86 - 3.42) 2.02 (1.59 - 3.62) 0.603

PLR 106.67 (72.50 - 150.65) 109.94 (71.15 - 149.87) 105.87 (73.30 - 166.82) 0.965

AFP (ng/ml) 24.25 (4.72 - 135.41) 18.95 (4.39 - 97.42) 28.51 (5.43 - 445.00) 0.256

Edmondson-Steiner 0.394

Grade I-II 89 (56.3%) 60 (58.8%) 29 (51.8%)

Grade III-IV 69 (43.7%) 42 (41.2%) 27 (48.2%)

Ki-67 index 27% (10% - 40%) 20% (10% - 40%) 30% (15% - 40%) 0.369

CK-19 positive 54 (34.2%) 35 (34.31%) 19 (33.9%) 0.961
fron
Continuous variables are presented as median (inter-quartile range, IQR). Categorial variables are presented as number (percentage). p-values represent the result of comparison of the
training set with the test set.
HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; ALP, alkaline phosphatase; ALB, albumin;
TBIL, total bilirubin; DBIL, direct bilirubin; SCr, serum creatinine; PT, prothrombin time; INR, international normalized ratio; NLR, neutrophil to Lymphocyte ratio; PLR, platelet to
Lymphocyte ratio; AFP, alpha fetoprotein; CK19, cytokeratin 19.
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Agreement analysis of quantitative parameters indicated that

ICCs were all above 0.70 (0.70 ~0.86, p<0.001, Table 2), which

proved that the two radiologists were consistent in the analysis of

quantitative features. Correlation analysis showed that T1rt-Pre

(r=0.352, p<0.001) and T1rt-HBP (r=0.366, p<0.001) were

moderately positively correlated with CK19. rADC (r=-0.358,

p<0.001) and HBP-TLR (r=-0.309, p=0.002) were moderately

negatively correlated with CK19. There was no statistical

significance between other MRI quantitative parameters and

CK19 (p>0.05) (Supplementary Table S4).

rADC, HBP-TLR, T1rt-Pre and T1rt-HBP between CK19-

positive and negative HCCs groups showed significant statistical

differences (Table 2 and Figure 2). The univariable

discriminative performances of the above quantitative

parameters were detailed in the Supplementary Table S5.

Among these quantitative parameters, T1rt-HBP had the

highest diagnostic performance in predicting CK19-positive

HCCs, with an AUROC of 0.712, sensitivity and specificity of

80.00% and 62.29%, respectively. The AUC of HBP-TLR was

0.681, the sensitivity and specificity were 74.29% and 59.70%,

respectively. The AUC of rADC was 0.710, the sensitivity and

specificity were 68.57% and 68.66%, respectively.
3.3 Development and validation
of predictive models for CK19-
positive HCCs

Multivariable logistic regression showed AFP>400ng/ml

(p=0.037, OR=4.607, 95%CI: 1.098-19.326), rADC ≤ 0.71

(p=0.030, OR=3.450, 95%CI: 1.126-10.567), T1rt-HBP>797
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msec (p=0.018, OR=4.509, 95%CI: 1.301-15.626) were

indep enden t p r ed i c t o r s o f CK19 -pos i t i v e HCCs

(Supplementary Table S6).

Clinical model (C-Model), semantic model (S-Model),

quantitative model (Q-Model), clinical-semantic model (CS-

Model), clinical-quantitative model (CQ-Model), semantic-

quantitative model (SQ-Model) and clinical-semantic-

quantitative model (CSQ-Model) were constructed based on

clinical (AFP, NLR), semantic (nonsmooth margin, target sign,

peritumoral enhancement) and quantitative (HBP-TLR, rADC,

T1rt-Pre, T1rt-HBP) variables, respectively. Stepwise regressions

based on the AIC were used to further select the above variables

to construct multivariable logistic regression models for CK19-

positive HCCs in the training dataset (Supplementary Table S7).

Interestingly, semantic features were excluded during the

stepwise regressions analysis of CSQ-Model, so the CSQ-

Model was equivalent to the CQ-Model. The predictive

efficacy of each model is shown in Table 3. CQ-model had the

largest AUROC (0.844, 95%CI: 0.754-0.933) (Figure 3). ROC

analysis among models was followed by the DeLong test to

compare the predictive performance (Supplementary Table S8).

Precision-recall curve further illustrated similar results that CQ-

Model had the largest AUPRC (0.785) (Figure 4) and F1

score (0.778).

Based on CQ-Model, a nomogram was developed to predict

CK19-positive HCCs (Figure 5), and the C-indexes in the training

and test set were (0.844, 95%CI: 0.759-0.908) and (0.818, 95%CI:

0.693-0.902), respectively. The calibration curve showed that the

probability of CK19-positive HCCs predicted by the CQ-Model was

in good agreement with the actual probability (Supplementary

Figure S1). Decision curve analysis demonstrated that CQ-Models
TABLE 2 Comparison of quantitative MRI parameters between CK19-negative and positive HCCs in training set.

CK19-negative
(n = 67)

CK19-positive
(n = 35) t/z value p value

ICC

Intra- Inter-

Tumor size (cm) 3.84 (2.50 - 5.75) 4.04 (2.68 - 7.66) z=-0.219 0.223 0.86 0.83

rADC 0.88 ± 0.27 0.68 ± 0.13 t=3.838 <0.001* 0.83 0.80

AP-TLR 1.41 ± 0.38 1.31 ± 0.30 t=1.247 0.215 0.86 0.83

PVP-TLR 0.92 (0.78 - 1.24) 0.86 (0.73 - 1.05) z=-1.589 0.112 0.82 0.79

EP-TLR 0.83 (0.72 - 1.04) 0.81 (0.68 - 0.94) z=-1.195 0.232 0.86 0.84

HBP-TLR 0.60 ± 0.17 0.48 ± 0.18 t=3.161 0.002* 0.83 0.81

T1rt-Pre (msec) 1304.97 ± 228.39 1490.41 ± 258.21 t=-3.721 <0.001* 0.78 0.75

T1rt-HBP (msec) 757.97 ± 152.24 890.69 ± 180.92 t=-3.914 <0.001* 0.77 0.73

rrT1rt 0.41 ± 0.13 0.39 ± 0.12 t=0.571 0.570 0.73 0.70
frontie
*p<0.05. Continuous variables are presented as median (inter-quartile range, IQR) or mean ± standard deviation. Categorial variables are presented as number (percentage).
rADC, relative apparent diffusion coefficient; AP, arterial phase; PVP, portal venous phase; EP, equilibrium phase; HBP, hepatobiliary Phase; TLR, tumor to liver contrast ratio; TEI, tumor
enhancement index; RTE, relative tumor enhancement; RER, relative enhancement ratio; Pre, pre-enhancement; T1rt, T1 relaxation time; rrT1rt, reduction rate of T1 relaxation time; CK-
19, cytokeratin 19; ICC, intraclass correlation coefficient.
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provided larger net benefit across the range of reasonable threshold

probabilities compared with the treat-all strategy and treat-none

strategy (Supplementary Figure S2).

4 Discussion

In this study, we successfully developed and tested a

nomogram based on T1 mapping on gadoxetic acid-enhanced

MRI, which was used to individually predict CK19 expression in

HCC, demonstrating good predictive efficiency and clinical

utility. The nomogram is easy for clinical application and can

facilitate personalized risk stratification and further treatment

decisions for patients with CK19-positive HCC.

Our study showed that elevated preoperative serum AFP levels

(>400ng/ml) were an independent factor of CK19-positive HCCs,

which is consistent with previous studies (11). AFP is an important

tumor marker for HCC and has been confirmed to be associated

with CK19 expression. In HCC patients, elevated serumAFP level is

positively correlated with poor differentiation, microvascular

invasion and tumor recurrence (23, 24), which is consistent with

the biological behavior of CK19-positive HCCs with high
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aggression. Through comparative analysis, we found that

combining preoperative serum AFP level of HCC patients can

improve the predictive performances of semantic and quantitative

MRI model. In addition, we also found that nonsmooth tumor

margin, target sign and peritumoral enhancement on MRI were

closely correlated with CK19 status in HCC. Multivariable analysis

based on semantic MRI features showed that target sign was an

independent factor associated with CK19-positive HCCs, which

was similar to the findings of Hu et al. (10). Previous studies have

indicated that target sign was an important independent predictor

for the diagnosis of intrahepatic cholangiocarcinoma (ICC), which

is related to the pathological morphology of peripheral

hyperproliferation and central stromal fibrosis (25, 26). The

formation of stromal fibrosis seemed to be more common in

CK19-positive HCCs than in CK19-negative HCCs, which

indicated the morphological characteristics of CK19-positive HCC

could be between those of typical HCC and ICC (5, 27). Based on

semantic MRI features of HCC, the accuracy and sensitivity for

prediction of CK19 expression were limited in our study, which was

similar to the results of previous studies (9, 10); therefore, there

remain limitations to its application in daily practice.
TABLE 3 Performance of CK19-positive HCCs prediction models in training set.

Models ACC SEN SPE PPV NPV AUROC AUPRC F1 Score

C-Model 0.617 0.886 0.477 0.469 0.889 0.718 0.610 0.613

S-Model 0.696 0.714 0.687 0.543 0.821 0.713 0.533 0.617

Q-Model 0.784 0.743 0.806 0.667 0.857 0.814 0.741 0.703

CS-Model 0.774 0.600 0.865 0.700 0.805 0.761 0.658 0.646

CQ-Model 0.843 0.800 0.866 0.757 0.892 0.844 0.785 0.778

SQ-Model 0.804 0.771 0.821 0.692 0.873 0.826 0.768 0.729
fro
C-Model, Clinical model; S-Model, semantic model; Q-Model, quantitative model; CS-Model, clinical-semantic model; CQ-Model, clinical-quantitative model; SQ-Model, semantic-
quantitative model; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating
characteristic curve; AUPRC, area under the precision recall curve.
FIGURE 2

The violin plots show the comparison of relative apparent diffusion coefficient (rADC) and tumor-to-liver signal intensity ratio on the
hepatobiliary phase (HBP-TLR) (A), T1 relaxation time of pre-contract (T1rt-Pre) and hepatobiliary phase (T1rt-HBP) (B) between CK19-negative
and CK19-positive groups. CK19, Cytokeratin 19; HCC, hepatocellular carcinoma.
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We conducted correlation analysis between quantitative

MRI parameters and CK19 status, and the results showed that

the correlation degree between quantitative parameters based on

T1 mapping and CK19 status was higher than that based on

signal intensity (SI). T1 relaxation time is an absolute value,

which is not affected by scanning sequence parameters, and is

proportional to the concentration of gadolinium contrast agent

in the tissue (28), while SI is a relative value, the difference of

technical factors will affect the value of SI, and does not have a

linear relationship with the concentration of contrast agent, so

T1 relaxation time is more accurate and reliable than SI. This has

been demonstrated in the evaluation of liver function in patients

with HCC and staging hepatic fibrosis (29, 30). In addition, the

correlation between quantitative parameters based on T1

mapping and CK19 is also better than relative ADC values.

The reason may be that T1 relaxation time reflects the inherent
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characteristics of tissues and can directly reflect the proliferation

of tumor, while the ADC value can only indirectly reflect the

proliferation of tumor through the diffusion of water molecules

(31). therefore, the quantitative parameters based on T1

mapping are more closely related to the CK19 status. In

general, T1 relaxation time of HCC correlated with CK19

status, and tumor proliferation was more active in CK19-

positive HCCs compared with CK19-negative HCCs, resulting

in prolonged T1 relaxation time. The univariable analysis of

quantitative parameters showed that T1rt-HBP had the best

efficiency for predicting CK19-positive HCCs, possibly because

the T1 relaxation time was proportional to the concentration of

gadolinium contrast agent, and more gadolinium contrast agent

enters the tumor tissue at the HBP, thereby shortening the T1

relaxation time. Therefore, T1rt-HBP can more accurately

predict CK19-positive HCCs.
FIGURE 3

Receiver operator characteristic curves of CK19-positive HCC prediction model. CK19, Cytokeratin 19; HCC, hepatocellular carcinoma.
FIGURE 4

Precision-Recall Curves of CK19-positive HCC prediction model. CK19, Cytokeratin 19; HCC, hepatocellular carcinoma.
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To identified the best model for predicting CK19-positive

HCCs, stepwise regressions based on the AIC were used to select

variables to construct different predictive models. Our study

showed that the CQ-model combining AFP and quantitative

features had the best predictive performance. Some radiomics

studies (13–16) showed that radiomics scores had good diagnostic

efficacy in predicting CK19 expression. In the study by Wang W

et al. (13), the combined model achieved a higher AUC than in

our study for predicting CK19 expression (0.959 vs 0.844), albeit

using a single-institution set. Besides, Yang F et al. (16). reported

similar AUC for identifying CK19 status (0.857) with their

radiomics signatures extracted from multisequence MRI,

However, the AUCs of the two validation sets were only 0.726

and 0.790, respectively. Similarly, Chen Y et al. (19). achieved

good results in predicting CK19 expression by DL model, but the

DL model did not perform well in the test set (AUC), with AUCs

of only 0.614 and 0.750 in the two test sets, respectively. The small

sample size of the test set or the differences in MRI protocols may

affect the robustness of the model. Undoubtedly, radiomics is a

promising approach, but these studies are limited by image

segmentation and standardization to the detriment of clinical

practice. In contrast, our proposed CQmodel is relatively easier to

implement clinically, and the combination of quantitative MRI

features (T1rt-HBP, rADC) and clinical information (AFP) can

provide complementary information in building the model and

improve the predictive performance. Meanwhile, the application

of the CQ-Model in external test data demonstrated good

robustness with different MRI scanners and with different

parameter settings. We suggest that T1 mapping can be

integrated as an additional protocol in gadoxetic acid-enhanced

MR imaging for evaluating CK19 expression status in HCC, and

T1 relaxation time is expected to provide additional information

for predicting CK19-positive HCCs, which is preliminary and

warrants further validation.

There were several limitations to our study. First, this is a

retrospective study and only single HCC was selected, which
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may have selection bias in data homogeneity. Second, the small

sample size of the test set may affect the robustness of model.

Therefore, the prediction model needs to be further optimized

through large-scale and multicenter studies in future studies.

Third, we did not calculate the T1 relaxation time ratio of tumor

to liver parenchyma because the presence of liver cirrhosis might

have some influence on the results.
5 Conclusions

In summary, T1 mapping on gadoxetic acid-enhanced MRI

combined with Diffusion-weighted Imaging and AFP can help

predict the CK19 expression status in HCC, which is expected to

provide important guiding value for the subsequent treatment

and prognostic assessment of HCC patients. These results

warrant further validation in future randomized trials to test

the clinical utility of our imaging signature in combination

with clinical-radiologic criteria to guide individualized

therapeutic selection.
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