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Introduction: Glutamine is characterized as the nutrient required in tumor

cells. The study based on glutamine metabolism aimed to develop a new

predictive factor for pan-cancer prognostic and therapeutic analyses and to

explore the mechanisms underlying the development of cancer.

Methods: The RNA-sequence data retrieved from TCGA, ICGC, GEO, and

CGGA databases were applied to train and further validate our signature.

Single-cell RNA transcriptome data from GEO were used to investigate the

correlation between glutamine metabolism and cell cycle progression. A series

of bioinformatics and machine learning approaches were applied to

accomplish the statistical analyses in this study.

Results: As an individual risk factor, our signature could predict the overall survival

(OS) and immunotherapy responses of patients in the pan-cancer analysis. The

nomogram model combined several clinicopathological features, provided the

GMscore, a readable measurement to clinically predict the probability of OS and

improve the predictive capacity of GMscore. While analyzing the correlations

between glutamine metabolism and malignant features of the tumor, we

observed that the accumulation of TP53 inactivation might underlie glutamine

metabolism with cell cycle progression in cancer. Supposedly, CAD and its

upstream genes in glutamine metabolism would be potential targets in the

therapy of patients with IDH-mutated glioma. Immune infiltration and sensitivity

to anti-cancer drugs have been confirmed in the high-risk group.

Discussion: In summary, glutamine metabolism is significant to the clinical

outcomes of patients with pan-cancer and is tightly associated with several

hallmarks of a malignant tumor.
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Introduction

The precise control of cellular metabolic processes maintains

the morphology of the cells (1–3), but during transformation into

the malignant state, the cells acquire a series of hallmarks, including

metabolic reprogramming (4). The survival of tumor cells depends

on the intake of large amounts of nutrients. Therefore, metabolic

reprogramming is effectuated through alterations in several

signaling pathways to maintain the unlimited proliferative

capacity of tumor cells (2–5). Since Otto Warburg explicated

aerobic glycolysis (6), glucose metabolism has been the center of

tumor metabolic research, while only a few studies have focused on

other nutrients, such as glutamine. However, a recent study by

Bradley et al. (7) reported that the tumormicroenvironment (TME)

comprises the most sugar-consuming population in tumor-

associated macrophages (TAMs), which are primarily dependent

on sugar metabolism for energy supply. However, tumor cells show

a significant preference for glutamine metabolism. This finding has

greatly shaken the role of carbohydrate metabolism in tumor

metabolism in recent decades.

Glutamine is the most abundant free amino acid in circulation

(8) and is used as a ready source of carbon and nitrogen to support

biosynthesis, energy metabolism, and intracellular homeostasis of

tumor cells (9). Under the catalysis of glutamine-specific

glutaminase (GLS), glutamine is taken into cells via the

glutamine transporter protein ASCT2 (also known as SLC38A5)

and SN2 and is catabolized to glutamate; the increased expression

of this gene is essential for the development of cancer (10).

Subsequently, glutamine is further catabolized into a-
Ketoglutaric acid (a-KG) by glutamine dehydrogenase (GLUD),

and a group of transaminases (including GOT, GPT, and PSAT)

enters the tricarboxylic acid (TCA) cycle, which provides energy

for cell growth. Then, glutamine and its metabolites support the

synthesis of biomolecules, such as nucleic acids, proteins, and fatty

acids (11). In addition, glutamine plays a crucial role in cellular

autophagy, reactive oxygen species (ROS) stress, and the formation

of tumor microenvironment (7, 12, 13). Owing to the non-

negligible role of glutamine on cellular neo-metabolism, several

studies (14–16) have shown that glutamine deprivation leads to

tumor cell death.

In the present study, a series of bioinformatics and machine

learning approaches have been applied to investigate the potential

impact of glutamine metabolism on patient prognosis, immune

status, and treatment outcome in pan-cancer analysis and identify

critical pathways and genes involved in the process of glutamine

metabolism. The resulting specific glutamine metabolism-related

genes were used to construct a prognostic glutamine metabolism-

related risk score (GMscore) and predict the overall survival (OS)

of patients. The GMscore demonstrated stable and accurate

predictive capability than conventional clinical features. Next, we

constructed a scoring nomogram as a survival prediction model to

further improve the prediction accuracy. In addition, we observed

significant associations between glutamine metabolism and cell
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cycle processes, and CAD was significantly associated with

prognosis in glioma patients with IDH1 mutations. We also

evaluated the immune infiltration of patients in both risk cohorts

and provided valuable hints for anti-cancer drug and immune

checkpoint blockade (ICB) decisions based on glutamine

metabolism genes.
Materials and methods

Data acquisition and preprocessing

Publicly available transcriptome data with the matching

clinical annotation obtained from the Cancer Genome Atlas

program (TCGA, https://portal.gdc.cancer.gov/) were utilized as

discovery and validation cohorts, respectively. We randomly

categorized 70% of the 9370 (6559/9370) patients involved in 32

types of tumors, without samples of acute myeloid leukemia

(LAML), as the training set, and the remaining (2811/9370)

comprised the testing set. Additionally, 899 samples from the

International Cancer Genome Consortium (ICGC, https://dcc.icgc.

org/), four individual microarray datasets [GSE21653 (n=252),

GSE72094 (n=398), GSE17674 (n=44), GSE2748 (n=28)] form

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/), and two individual RNA-sequence datasets including 325

and 693 samples from Chinese Glioma Genome Atlas (CGGA,

http://www.cgga.org.cn/) were retrieved for further validation. We

also obtained 7862 normal samples in the Genotype-Tissue

Expression (GTEx) from USCS Xena (http://xenabroswer.net/

hub). As reported previously (17–19), all the microarray and

RNA-sequence data were normalized to transcripts per million

(TPM) values and log2 transformed. The gene sets of hallmarks of

cancer were retrieved from the Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/), and the

gene sets related to immune infiltration were obtained from a

previous study by Charoentong et al. (20). Somatic mutation data

of the 32 types of tumors sorted in the mutation annotation format

(MAF) files had been analyzed using the R package “maftools.”

RNA-sequence data of the glutamine metabolism inhibition and

the 24 patients who received anti-PD1 therapy were retrieved from

GEO [GSE120345 (n=10), GSE115821(n=24)] and normalized

into TPM values.

Establishment of the
prognostic GMscore

Glutamine metabolism engages in many biological pathways,

including the TCA cycle, biosynthesis, TME formation,

autophagy, ROS, and signal transduction. Consequently, we

combined the results of several latest reports (9, 21–26) and

gene sets of glutamine metabolism from MsigDB (27). As a

result, 118 genes (Supplemental Table 1) converged as the initial

biomarkers of glutamine metabolism for signature training.
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Subsequently, the R package “coxph” was used to calculate

the HR value and p-value for each gene involved in the initial

biomarkers to assess the correlations of the expressions of the

118 genes in the OS of patients in the TCGA training set.

Subsequently, 67 candidates, with a threshold of p-value<0.001,

were entered into the least absolute shrinkage and selection

operator (LASSO) Cox regression model via the action of a

penalty parameter (l) to the Cox regression model that led to

zero coefficients. In our studies, 25 genes retained their

coefficients with an optimal l after LASSO regularization.

Furthermore, Mantel test was used to identify genes that have

the same expression mode. After excluding such genes, a

GMscore for each sample, based on the expression of the last

21 genes, was calculated as follows:

GMscore =o
n

i=1
Coefficients mRNAið Þ  �  Expression mRNAið Þ

Survival analysis

The patients were divided into two risk groups, GMscore-high

and GMscore-low cohorts, respectively, based on the median value

of GMscore. Then, the Kaplan–Meier method was used to plot the

survival curves, and the log-rank test was applied to estimate the

differences in the prognosis between the two risk cohorts.

Multivariate Cox regression analysis was used to assess the risk

significance for survival. Moreover, R package “survConcordance”,

a time-dependent concordance index (C-index) was used to

compare the predictive probability among different variables.
Construction of comprehensive
prognostic models

A comprehensive scoring nomogram was generated to

improve the predictive capacity for survival via a combined

GMscore with detailed clinicopathological features, including

gender, age, stage, and cancer types. In addition, calibration

curves for predictions of 1-, 3-, and 5-year OS were plotted to

compare with the actual OS. Using the R package “TimeRoc”,

time-dependent receiver operating characteristic (tROC) analysis

was conducted to estimate the accuracy of the nomogram and

compare the predictive capacity among different variables.
Single cells analysis

The RNA-sequence data (read counts and TPM value) of 1067

single cells, which included cells in different cell cycles retrieved

from the GEO database (GSE146773). Then, pseudo time

trajectory analysis was performed to speculate the development

correlation of the clusters with R package “monocle2”, and plot the

expressions of genes engaged in glutamine metabolism against the

development of cell cycle progress.
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Immune infiltration analysis

Gene set enrichment analysis (GSEA), accomplished with an

R package “clusterProfiler”, was used to enrich the genes highly

regulated in the GMscore-high cohort. Four algorithms, named

ESTIMATE (28), xCell (29), CIBERSORT (30), and Tumor

Immune Estimation Resource (TIMER, cistrome.shinyapps.io/

timer) (31), were used to measure the absolute and relative

abundance of immune cells between the different cohorts. In

addition, the tumor purity of each sample was assessed by the

ESTIMATE algorithm. Cytolytic activity (CYT) score was

defined as the geometric mean of PRF1 and GZMA (32).
Additional bioinformatic and
statistical analyses

Based on the requirements of R package, R (v.4.2.1 and v.4.0.0,

http://www.r-project.org) was applied for all statistical analyses. The

Mantel test was used to evaluate the correlations among the

expressions of genes using the R package “linkET”. The R

package “clusterProfiler” was applied to complete the enrichment

analysis. Protein-protein interaction (PPI) network was constructed

using STRING database and “Cytoscape” software. Based on the

transcriptome data (TPM value) from the TCGA training set, z-

scores of initial biomarkers and five gene sets of hallmarks of cancer

were calculated by the “z score” algorithm provided by R package

“GSVA”. The R package “DESeq2” was utilized to identify the

differential genes between the two cohorts with RNA-sequence data

(read counts). The R package “pRRophetic” was used to reckon the

sensitivities of commonly used chemotherapeutic drugs and target

epidermal growth factor receptor (EGFR) drugs of each patient. The

responses to ICB therapy of samples from TCGAwere predicted by

the TIDE algorithm (33). Then, the R package “randomForest”, a

random forest algorithm was applied to screen the critical

candidates related to the prediction of ICB therapy responses

among initial biomarkers. The R package “pROC” was used to

plot the ROC curves and calculate the area under the curve (AUC)

to evaluate the feasibility of the model. p-value<0.05 was considered

statistically significant.

Results

Identification of a set of 21 glutamine
metabolism-associated genes

First, the HR and p-values of each gene involved in the 118

initial biomarkers were calculated based on the transcriptome

data with the matching clinical annotation of the TCGA pan-

cancer training set (Figure 1A). After applying a filtering

threshold of p-value<0.001, 67 candidates were entered into

LASSO logistic regression analysis (Figure 1B). A ten-fold cross-

validation was used to overcome the over-fitting effect
frontiersin.org
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(Figure 1C), confirming an optimal l value of 0.01507538;

finally, 25 glutamine metabolism-related genes retained their

coefficients. Subsequently, a Mantel test was conducted on the 25

genes (Figure 1D), and SLC1A3, SLC38A7, TGFB1, LDHA,

PSAT1, EGLN1, SLC7A11, CXCL8, and SHMT2 showed a

significant correlation with patients’ OS. We also observed

high correlation coefficients between MIOS and GFPT1,

SLC25A12 and MAPK8, PYCR1 and SLC25A22, LDHA and

CXCL8, and MIOS and MAPK8. To overcome the over-fitting

effect caused by a large number of samples in pan-cancer

analysis, we randomly removed one of the paired genes

(MIOS, SLC25A12, PYCR1, and LDHA) and further analyzed

the 21 glutamine metabolism-related genes.
Establishment and validation of GMscore

A total of 21 genes were identified and used to establish a

signature to predict the OS of the pan-cancer patients based on

their coefficients and expression levels (TPM value). Thus, a

GMscore for each sample was calculated via the established

formula mentioned before. While comparing the GMscores

among the 32 types of tumors, we observed that the tumors
Frontiers in Oncology 04
originating from the brain, such as GBM and LGG exhibited the

highest GMscore; also, distinct disparities were observed between

dead patients and those who were still alive (Figure 2A). Then,

multivariate Cox regression analysis was performed on four

variables, including GMscore (continuous value), gender (male

or female), age (continuous value), and stage (I–IV), and the results

demonstrated that the GMscore was an independent risk factor

among all the variables (p<0.001) in TCGA training set for

validating the effectiveness of the signature (Figure 2B). The

results were validated in the TCGA test cohort (Figure 2C).

Furthermore, to measure the predictive capacity of GMscore, we

compared the C-index of the four variables, and the results showed

that the GMscore ranked first among all the variables in the

training set (Figure 2D); a similar conclusion was obtained in the

TCGA test cohort (Figure 2E). Next, we divided the training set

samples into two risk groups according to the median value of

GMscore. Kaplan–Meier analysis proved that patients with high

GMscore had poor OS in the training set (p<0.001, Figure 2F) and

had been verified in the test and external validation sets from

ICGC, respectively (p<0.001, Figure 2G, H). Moreover, to prove

that the GMscore could be effective in specific tumors, Kaplan–

Meier analysis was conducted on 32 types of tumors

independently. Consequently, we exhibited the top four cancer
A B

D

C

FIGURE 1

A set of 21 glutamine metabolism-related genes was identified. (A) Exhibition of HR and p-values of 118 genes calculated by univariate Cox
regression analysis. (B) 67 genes entered into the LASSO Cox proportional risk model with a threshold of p-value<0.001. (C) 25 genes with their
coefficients were filtered with the optimal l. (D) Correlations of expression level among 25 candidates and the genes related to survival were
assessed using the Mantel test.
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types (KIRC, LUAD, MESO, and UCEC) that showed significant

differential prognosis between different risk cohorts

(Supplementary Figures 1A–D). Four individual datasets

retrieved from GEO demonstrated the correctness of the result

(Supplementary Figures 1E–H). In addition, RNA-sequence data

fromCGGA, collected from a large number of glioma patients, had

been used for further validation. As expected, distinct differences

were detected in the OS between the two risk groups

(Supplementary Figures 1I, J). It was worth noting that there was

a distinct difference in the baseline when we compared the

GMscore of sequence data retrieved from TCGA and CGGA,

respectively (Supplementary Figure 1K), indicating that differences

in our dietaries or ethnicities might have a great effect on GMscore.
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Therefore, defining ethnic origin should be better concerned when

we are conducting patient risk assessments in clinics. In summary,

these results revealed that GMscore was an individual risk factor

distinct from other clinicopathological features but an ideal model

with a better predictive probability of prognosis compared to

these features.
Construction of an integrated model for
predicting the OS of pan-cancer

In order to equip GMscore with an excellent predictive

capacity and provide an individual risk assessment for each
A

B
D E

F G H

C

FIGURE 2

Establishment and validation of the GMscore in pan-cancer. (A) Distribution of GMscore among 32 types of cancers. *p < 0.05; **p < 0.01; ***p < 0.001.
(B, C) Multivariate Cox regression demonstrated that GMscore is an independent risk factor among all variables in the TCGA training and test cohorts.
(D, E) The c-index of GMscore ranked first among all parameters in both cohorts. (F–H) Kaplan-Meier analysis was used to validate patients with low
GMscore who showed improved prognosis in the TCGA training and test cohorts and ICGC cohort, respectively.
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patient, we established an integrated scoring nomogram by

combining the GMscore with other clinicopathological

features, including gender (male or female), age (continuous

value), stage (I–IV), and cancer types of patients (Figure 3A).

This action led to a readable and quantitative measurement for

the GMscore to clinically predict the probability of adverse

events that could be provided for each sample. The calibration

curves were plotted to confirm the accuracy of the

comprehensive model (Figure 3B). The results showed that the

predictions of 1-year (green dotted line), 3-year (blue dotted

line), and 5-year (red dotted line) OS were close to the ideal

performance (45° line), suggesting that the correction of the

model could be well-described. tROC analysis compared the

predictive probability of nomograms with GMscore alone, which

shows that the predictive capacity of nomograms was always

higher than the GMscores in both the training and test sets

(Figure 3C). Furthermore, compared to the other four variables,

the nomogram exhibited the highest prediction of OS

(Figure 3D). As a result, we concluded that combining
Frontiers in Oncology 06
GMscore with conventional clinicopathological features played

a critical role in the clinical assessment of patients.
GMscore was significantly correlated
with cell cycle progression

As mentioned before, normal cells acquire a series of

hallmarks of the malignant tumor during the process of

transforming into a malignant state (4). Recent studies (7,

34–36) illustrated that the process of glutamine metabolism

and the enzymes involved play a significant role in many

biological pathways, including angiogenesis, immune

infiltration, epithelial-mesenchymal transition (EMT), and

mitosis. Thus, to investigate the connections between

glutamine metabolism and the hallmarks of malignant

tumors, we searched the gene sets of EMT, angiogenesis,

response to inflammation, and cell cycle procession (CCP)

from MSigDB. Additionally, the gene sets related to immune
A B

DC

FIGURE 3

An integrated prognostic model was constructed to improve the estimation of survival probability for pan-cancer. (A) A comprehensive
nomogram was generated to predict the OS possibilities at 1, 3, 5, and 10 years. ***p < 0.001. (B) Calibration curves of 1-year (green dotted
line), 3-year (blue dotted line), and 5-year (red dotted line) prediction were close to the ideal performance (45°, grey line). OS, overall survival.
(C) Predictive efficiency of the nomogram signature was better than GMscore in the TCGA training and test cohorts. (D) Time-dependent ROC
analysis provided a robust capability to predict the OS probability compared to the other conventional characters.
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infiltration were retrieved from a study by Charoentong et al.

(20). We qualified all the features, including EMT,

angiogenesis, inflammation, immune infiltration, CCP, and

glutamine metabolism for each sample using the z-score

algorithm. Subsequently, we calculated the Pearson ’s

correlation coefficient (r) between glutamine metabolism

and these malignant features, respectively, and showed

significant correlations between glutamine metabolism and

malignant features (p<0.001); the strongest correlation was

observed between glutamine metabolism and CCP (R=0.91,

p<0.001, Figure 4A). Interestingly, only a few studies have

been reported on glutamine metabolism and CCP in recent

years. To explore how these correlations are distributed, we

observed the associations in various cancer types. The results

demonstrated that a strong correlation was retained in almost

all tumor types since R>0.9 (p<0.001, Supplementary

Figure 2A). Moreover, we also investigated the correlations

between glutamine metabolism and the other four features

successively, and the top eight cancer types with the highest

value were presented for each feature (Supplementary

Figures 2B–E).

To elucidate the correlation between glutamine metabolism

and CCP, we retrieved single-cell RNA-sequence data from 346

cells in the G1 phase, 334 cells in the S phase, and 387 cells in

G2M phase (37). Based on the differential genes among the

three clusters (Figure 4B), we conducted a pseudo time

trajectory analysis to speculate on the developmental

correlat ions among the three clusters (Figure 4C,

Supplementary Figure 3A) and found that these cells were

divided into three clusters at different states (Supplementary

Figure 3B); this finding supported the significance of our study.

According to the chronological order of development among

clusters (Figure 4D), we plotted the expressions of the genes

involved in the glutamine metabolism processes, downloaded

from MSigDB (Figure 4E). The heatmap illustrated that the

genes involved in decomposing glutamine to enter the TCA

cycle gathered in cluster 2, while those engaged in the

biosynthesis were enriched in cluster 1, which correspond to

the G1 and S phases, respectively. Next, we selected the genes at

key points of decomposing glutamine and observed their

change in expressions along with development. Interestingly,

the genes involved in glutamine metabolism are highly

expressed only in the G1 phase (Supplementary Figures 3C–

F). Furthermore, the RNA-sequence data of glutamine

inhibitor-treated mice cell lines retrieved from GEO showed

that the expression levels of these genes (Asns, Gfpt1, Ctps1,

Cad, Pfas, Gmps, Fasn, Ppat, Asnsd1, Glyatl1, Nr1h4, Acly,

Glud1, Ctps2, Bloc1s6, Glul, Cps1, Gls, Gls2, Gfpt2, Lgsn) were

down-regulated obviously (Supplementary Figure 3G). Based

on these results, we supposed that cells uptake abundant

glutamine in the G1 phase to produce substantial energy to

satisfy the biosynthesis and mitosis, and a part of glutamine

and metabolites participate in the process of biosynthesis
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during the S phase. In order to explain this phenomenon,

KEGG enrichment analysis was used for the differential genes

of cell clusters in the G1 phase (Figure 4F). Moreover, a PPI

network was generated with the initial biomarkers (Figure 4G).

As a result, the G1 phase and the process of glutamine

metabolism were regulated by TP53.
The landscape of genomic alterations
between different risk cohorts and CAD
is important to patients with IDH1
mutant glioma

Since the development of cancer is often accompanied by

alterations in the genome, we identified the top 15 genes with the

most frequent mutations in various risk groups, respectively

(Figures 5A, B). As shown in the oncoplots, TP53 occupied the

first position among the genes both in the GMscore-high and -low

cohorts. A lollipop plot illustrated the different spots of mutation in

TP53, while more frequency and locations of mutations were

defined in the GMscore-high cohort compared to the -low cohort

(Figure 5C). Moreover, we compared the cumulative mutated

proportion of classic carcinogenic pathways (Supplementary

Figure 4A), which showed that the TP53 signaling pathway

ranked first among all variables. Baslan et al. (38) demonstrated

that the occurrence and development of cancer relied on an ordered

determined genome evolution caused by the accumulation of TP53

inactivation. Combining the results in this study, we hypothesized

that the cells lost precise regulation of the cell cycle and glutamine

metabolism due to TP53 mutations. Moreover, the GMscore-high

cohort, with frequent mutations of TP53, exhibited a poor

prognosis. Then, we found some key genes that might be

beneficial to clinical decisions and appropriate drug choices

(Supplementary Figure 4B). Subsequently, co-occurrence and

mutually exclusive mutations have been compared between the

two risk groups, and a distinctive exclusion of IDH1 was observed

(Figure 5D). Simultaneously, the forest plot showed that IDH1

owns the highest OR among all mutated genes (Figure 5E).

Considering these results might account for the IDH1 mutation

occurring in glioma (39), we analyzed IDH1 in specific tumors,

including LGG and GBM in the TCGA cohort (Figure 5F,

Supplementary Figure 4D); IDH1 exhibited the highest mutation

frequency in TCGA LGG cohort (77%). Additionally, exclusive

mutations of IDH1 were plotted (Supplementary Figure 4C). Two

recent studies (40, 41) revealed that IDH1-mutant glioma cells are

hypersensitive to drugs targeting enzymes in the de novo pyrimidine

nucleotide synthesis pathway. As a major material in the process of

synthesizing pyrimidine, glutamine is catalyzed by carbamoyl-

phosphate synthetase 2, aspartate transcarbamylase,

dihydroorotase (CAD) to supply nitrogen to the pyrimidine,

which has become a key step in the synthesis of pyrimidine. Our

data also presented that the expression level of CAD decreased

evidently after inhibiting the glutamine metabolism
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(Supplementary Figure 4E). We then explored the correlation

between the expression CAD and prognosis based on the median

value of the different expression levels of CAD in the LGG and

GBM cohorts from the TCGA database. Consequently, a

significantly poor prognosis was observed in patients with high

CAD expression in the LGG cohort (p<0.05), which was

accompanied by the highest mutation frequency of IDH1

(Figure 5G). In the GBM cohort, which did not present mutated

IDH1, no differences were observed between the expression level of

CAD and prognosis (p>0.05, Supplementary Figure 4F). To validate

the conclusion further, we retrieved the RNA-sequence data of
Frontiers in Oncology 08
patients with glioma in CGGA, showing that high expression of

CAD had a poor prognosis (Figure 5H, I).
Different immune characteristics
between the GMscore-high
and -low cohorts

Regarding the immune infiltration between two risk cohorts, a

series of bioinformatic methods were conducted to evaluate the

immune landscape. Together, a threshold with FDR q<0.0001 and |
A

B D

E F G

C

FIGURE 4

GMscore was significantly correlated with cell cycle progression. (A) Correlations between glutamine metabolism and hallmarks of the
malignant tumor. (B) Differential genes among G1, S, and G2 phases. (C) Pseudo time trajectory analysis conjectured the developmental
correlations of the clusters based on the differential genes. (D) Pseudo time trajectory analysis exhibited the developmental direction of the
three clusters. (E) The expression level of genes involved in glutamine metabolism was enriched in two distinctive clusters. (F) Significantly
upregulated genes in the G1 phase were enriched in the p53 signaling pathway. (G) PPI network revealed the critical gene regulating the
metabolism of glutamine: TP53.
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log2FoldChange|≥2 defined 252 upregulated and 667

downregulated genes in the GMscore-high cohort (Figure 6A).

GSEA analysis was conducted based on the differential genes, and

the results showed that the upregulated genes in the GMscore-high

cohort were enriched in many pathways that were related to

immunity with a threshold of FDR q<0.001 and normalized

enrichment score (NES)>2 (Figure 6B). The cytokine activity

pathway ranked first with NES=2.47 (Supplementary Figure 5A).

Additionally, we observed IL-10 as a pivotal regulator in cytokine

activity via a PPI network (Supplementary Figure 5B), and the

expression level of IL-10 elevated significantly in the GMscore-high

cohort (Supplementary Figure 5C). These results indicated a high

immune infiltration in the GMscore-high cohort. The latest

findings reported that elevated IL-10 was closely associated with

exhausting CD8+ T cells (42–44). Through measuring the number

of CD8+ T cells of each patient by the TIMER algorithm, we found

that CD8+ T cells decreased in the GMscore-high cohort
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(Supplementary Figure 5D). Next, we compared the common

immune checkpoints, including PDCD1 (also known as PD-1),

LAG3, TIGIT, CTLA4, HAVCR2, CD47, CD274 (also known as

PD-L1), CD276, and other indicators, such as INFG, CYT score,

and TMB. All these features were elevated in the GMscore-high

cohort significantly (p<0.05, Figures 6C–F), which was consistent

with a previous report (45). In addition, these results might indicate

there was a better therapeutic response in the GMscore-high cohort.

As many scientists had confirmed that the effect of glutamine on T

cells depends on the cell type and state (23, 25, 45), to analyze

different infiltration of other cells in the tumor microenvironment,

three algorithms (ESTIMATE, CIBERSORT, and xCell) were used

to measure the absolute and relative abundance of immune cells

between the different cohorts. ESTIMATE demonstrated that the

GMscore-high cohort was characterized by significantly high

immune, stromal, and estimate scores and low tumor purity

(Figure 6G, Supplementary Figure 5E). CIBERSORT was applied
I
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FIGURE 5

Genomic alterations between two risk groups and CAD is crucial to patients with IDH1 mutant glioma. (A, B) Top 15 most frequently mutated
genes exhibited in two risk cohorts. (C) A lollipop plot showed the different spots of TP53 between the two risk cohorts. (D) Exclusive mutations
related to IDH1 were observed in the GMscore-high cohort. (E) TP53 ranked first, and IDH1 owned the highest OR among all mutated genes
***p < 0.001. (F) Top 15 frequently mutated genes were illustrated in the LGG cohort. (G–I) Correlation between the expression of CAD and
survival in TCGA LGG cohort, CGGA cohort, and patients with a primary tumor in CGGA cohort.
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to evaluate the relative abundance of various immune cells, and the

M2 macrophage was maximal (Figure 6H, Supplementary

Figure 5F). The results of CIBERSORT and xCell (Figure 6I) are

consistent with TIMER that CD8+ T cells decreased evidently in the

GMscore-high cohort. And we found that many different types of

cells were elevated in the GMscore-high cohort. Besides, we proved

that the GMscore-high cohort, which with lower glutamine

metabolic, presented a higher number of dendritic cells (DCs) as

reported (46). Our data also matched a well-known report that IL-

10 may play a vital role in the antitumor effect through DCs (47). In

addition to DCs, the number of other immune cells like Th1 cells

was up-regulated in the GMscore-high cohort.
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Sensitivity predictions of anti-cancer
drugs and immunotherapy

Based on the results before, we characterized the GMscore-

high cohort with a lower metabolic level of glutamine. Some

studies (48–50) pointed out that the endogenous nucleophile

glutathione (GSH) could bind covalently with cisplatin, which

may contribute to cisplatin resistance. This hinted to us that there

might be a better therapeutic response of chemotherapeutic drugs

in the GMscore-high cohort. Next, we investigated the differential

sensitivities of commonly used chemotherapeutic drugs, including

Cisplatin, Paclitaxel, and Methotrexate, and target EGFR drugs,
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FIGURE 6

Immune characteristics between the GMscore-high and GMscore-low cohorts. (A) Differential genes between the two cohorts are shown in the
volcano plot. (B) GSEA illustrated that the upregulated genes in the GMscore-high cohort were enriched in many immune-related pathways.
GSEA, gene set enrichment analysis; NES, normalized enrichment scale. (C) The representative immune checkpoints, including PDCD1, LAG3,
TIGIT, CTLA, CD47, CD274, and CD276, were significantly elevated in the GMscore-high cohort. (D–G) The GMscore-high cohort was
characterized by significantly high INFG expression, CYT score, TMB, immune score, stromal score, and ESTIMATE score. (H, I) CIBERSORT and
xCell algorithm qualified 28 and 67 types of immune cells between the two cohorts, respectively, and high immune infiltration was observed in
the GMscore-high cohort. *p < 0.05; **p < 0.01; ***p < 0.001.
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such as Gefitinib and Cetuximab in each risk cohort with R

package “pRRophetic”. (51). As we expected, the estimated IC50

value was significantly elevated in the GMscore-low cohort,

indicating that the GMscore-high cohort might provide an

improved outcome (Figures 7A–E). Nevertheless, our

aforementioned data (Figure 2A) suggested that the malignancy

of tumors might be negatively correlated with their mean

GMscore. To confirm this hypothesis, data collected from the

United States, the United Kingdom, and China (52) were further

analyzed in order to avoid the errors caused by geographical,

medical technology, and dietaries. The results suggested a

significant negative correlation between the patients’ average

five-year survival rate and GMscore (the United States: R=-0.77,

p=0.0014; the United Kingdom: R=-0.76, p=0.0015; China: R=-

0.71, p=0.0064, Supplementary Figures 6A-C). Sankey diagram

showed the source of tumor types for patients in different risk

cohorts (Supplementary Figure 6D). In order to improve the

predictions of immunotherapy response in patients with different

glutamine metabolism characteristics, we developed a brand new

signature named glutamine metabolism immunotherapy response

score (GMIRS) based on the initial biomarkers. As a result, the

118 genes with two optimal parameters (mtry=40, ntree=2000,

Figure 7F) were ranked by two methods in the random forest

analysis (Figure 7G). Then, the 16 overlapped candidates were

input into LASSO regulation analysis (Figure 7H), and ten-fold

cross-validation was conducted to overcome the over-fitting effect

(Supplementary Figure 6E). Finally, 15 genes (SLC38A5, CTPS2,

SEH1L, L2HGDH, JAK2, TGFB1, E2F3, EPAS1, SIRT5, PPAT,

TET1, EIF2A, MIOS, PYCR1, SDHD) were selected to construct

the predictive model. ROC analysis was applied to validate the

accuracy, following which we observed that the response of ICB

therapy could be predicted in the TCGA training and testing

cohorts (GMIRS=0.9173, GMIRS=0.9162, Figure 7I, J).

Additionally, RNA sequence data of 24 patients who received

anti-PD1 therapy from GEO was used for further validation, and

the results exhibited a high GMIRS with 0.8696, as

expected (Figure 7K).
Discussion

Herein, we generated a brand-new gene signature to guide

the clinical decision-making of patients. A recent study (7)

showed that high glutamine metabolism is a significant feature

of tumor cells. The specific demand of tumor cells for glutamine

makes it possible to develop new clinical predictions, treatment

plans, and imaging strategies. Next, we used relevant genes

involved in glutamine metabolism and regulation processes as

the initial biomarkers. Finally, 21 genes related to glutamine

metabolism (CPS1, ME1, ASNS, SLC1A3, DEPDC5, SLC38A7,

SLC7A5, TGFB1, MAPK8, WDR24, PSAT1, EGLN1, SDHC,

GLUD1, SLC7A11, CXCL8, BCL2, SLC25A22, SHMT2, GFPT1,

and SDHD) were selected by machine learning to construct a
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prognostic gene signature related to glutamine metabolism.

Among these, SLC38A7 and SLC7A5 are proteins used for

glutamine transportation, GLUD1 and PSAT1 are necessary

for glutamine catabolism, and some key enzymes (CPS1 and

ASNS) involved in the biosynthesis of glutamine and its

metabolites participated in the construction of this model. We

divided the patients into two metabolic risk groups using the

median value of signatures. After validating with significant

clinical data, patients with low-risk scores showed improved

prognoses. Furthermore, by combining a series of clinical

features, we could accurately predict the OS of patients.

The unique metabolism of tumor cells often drives the

development of other malignant characteristics. In the

correlation analyses between glutamine metabolism and

hallmarks of malignant tumors, a correlation was established

between glutamine metabolism and cell cycle progression.

Accumulating evidence (53) indicated that glutamine

deprivation causes cell stagnation in the S phase. According to

the current results, this phenomenon could be attributed to the

lack of energy and raw materials in the biosynthesis of tumor

cells during the S phase. Based on recent studies, we observed

specific expression of glutamine metabolism-related genes in

1067 cells during the G1 (346 cells), S (334 cells), and G2M (387

cells) periods, respectively. We found that genes involved in

glutamine uptake and catabolism into the TCA were highly

expressed at the beginning of the G1 phase, while genes that used

glutamine as a substrate to participate in biosynthetic steps were

enriched in the S phase. RNA-sequence data from mice treated

by inhibitor of glutamine metabolism confirmed that the

expression level of these genes decreased indeed, while the

change in vivo would be discussed in future. To further

explore the reason for this phenomenon, we performed an

enrichment analysis based on cycle-specific differential genes.

The results showed that the G1 phase was regulated by the P53

signaling pathway, as described previously. The analysis of the

metabolic regulation of glutamine revealed that the

accumulation of TP53 gene inactivation might be the link

between glutamine and G1 phase regulation during the

development of tumor cells. Nonetheless, the specific

mechanism has not yet been clarified in our study, which will

be proved in future experiments.

A recent study (54) found that the survival of IDH1

mutated glioma cells was dependent on the de novo

synthesis of pyrimidine. The specific inhibition on DHODH,

the key enzyme of pyrimidine synthesis, could have a very

good effect on the treatment of patients with IDH1 mutant

glioma. As a major enzyme in its upstream, CAD plays a key

role in glutamine participation in pyrimidine synthesis. The

comparison of the prognosis of patients with different

expression levels implied that the use of targeted inhibitors

of glutamine-related genes involved in CAD and its upstream

cou ld be an op t ima l t r ea tment fo r IDH mutan t

glioma patients.
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Based on the impact of glutamine metabolism on the

immune microenvironment mentioned by Vander et al. (46,

55), we compared the differences in immune infiltration

among patients in different risk groups. The high-risk scores

were accompanied by high immune cell infiltration and

activation of immune pathways. Among them, the cytokine

activation pathway ranks first with NES=2.47. We identified

IL-10 as the pivotal regulator in cytokine activity, and its level

was upregulated significantly in the GMscore-high cohort. As

an immunosuppressive factor, IL-10 is thought to be

associated with exhausting CD8+ T cells (42–44). Besides,

Leone RD et al. (56) showed that varied glutamine metabolic

states can shape the TME into different immune landscapes.

They proved that glutamine was vital for proliferating CD8+ T

cells, and lacking glutamine can accelerate the depletion of

CD8+ T cells and exhibit a higher expression level of

immunosuppressive molecules such as PD-1 and LAG-3,
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which is constant with our result. Intriguingly, some studies

(47, 57) illustrated that a half-life-extended IL-10–Fc can

expand terminally exhausted CD8+ tumor-infiltrating

lymphocytes (TILs) directly, which means IL-10 may

function positively in the anti-tumor process. This might be

the reason why DCs was up-regulated in the GMscore-high

cohort with elevated IL-10. In addition to DCs, the other

immune cells like Th1 cells, which recruit and activate

macrophages and cytotoxic T cells mainly by expressing

CD40L and cytokines like INFG and IL-2, also elevated in

GMscore-high group (58). This suggested an up-regulation of

macrophages and type II interferon (IFN) response.

Consequently, all these conclusions indicated that the gene

signature constructed in this study might be effective in

guiding clinical treatment.

Our data proved that lower drug resistance and higher

immune infiltration indicated better therapeutic response in
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FIGURE 7

Impact of glutamine metabolism on anti-cancer drugs and immunotherapy. (A–E) Predictions of ICD50 values of the commonly used
chemotherapy drugs (Cisplatin, Paclitaxel, and Methotrexate) and EGFR-targeted drugs (Gefitinib and Cetuximab) were significantly low in the
GMscore-high cohort. (F) A random forest algorithm was applied to screen for the significant candidates related to the response of
immunotherapy. (G) 15 genes were overlapped in the two ranking methods. (H) LASSO logistic regression analysis was used to construct a
robust signature to predict the immunotherapy response. (I–J) GMIRS exhibited an AUC of 0.9173 and 0.9162 in the TCGA training and test
cohorts, respectively. (K) GMIRS could describe the responses (AUC=0.8696) in patients treated with anti-PD1.
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the GMscore-high cohort. The comparison of the sensitivity of

chemotherapy drugs and targeted drugs of patients in different

risk groups revealed that the results did meet our expectations.

As we mentioned above, GMscore has different distribution

characteristics among tumors, and GMscore is normally elevated

in some neoplasms of high malignancy such as glioma and

pancreatic cancer while shows lower levels in some low

malignancy tumors such as thyroid cancer, breast cancer, and

prostate cancer. And We found that the majority of patients in

the high-risk cohort were from highly malignant tumors.

Tumors with high malignancy are characterized by recurrence

and deterioration easily, directly leading to shorter OS in

patients in the GMscore-high cohort. In addition, we found

that the CD8+ T cell number in the GMscore-high group was

significantly lower than that in the GMscore-low cohort, which

may also result in the shorter OS of patients in the GMscore-

high cohort. Furthermore, gene signatures derived from

glutamine metabolism genes could predict the patient’s

response to immunotherapy. These results guided the clinical

medication of patients.

Taken together, glutamine metabolism is closely related to

several malignant features of tumors, especially cell cycle disorder.

Various metabolic levels predict different prognoses of patients.

Various metabolic levels are observed under different immune

landscapes. Therefore, the unique metabolic characteristics of

patients may guide the personalized treatment of patients.
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SUPPLEMENTARY FIGURE 1

Lower GMscore had an OS probability in many cohorts among various
databases. (A–D) Kaplan–Meier analysis was used to validate patients with

low GMscore who had improved prognoses in KIRC, LUAD, MESO, and
UCEC cohorts from TCGA. (E–H) Kaplan-Meier analysis was used to

validate patients with low GMscore with better prognoses in the four

individual cohorts from GEO. (I, J) Kaplan-Meier analysis was used to
validate the patients with low GMscore who had better prognoses in

CGGA cohorts with 325 and 693 patients, respectively. (K) Significantly
difference of baseline of the GMscores was observed among RNA-

sequence data retrieved from TCGA and CGGA.

SUPPLEMENTARY FIGURE 2

Significant correlations between glutamine metabolism and hallmarks of
the malignant tumor. (A) Significant correlations between glutamine

metabolism and cell cycle progression among 32 types of cancer. (B)
Top 8 significant correlations between glutamine metabolism and EMT.

(C) Top 8 significant correlations between glutamine metabolism and
immune infiltration. (D) Top 8 significant correlations between glutamine

metabolism and angiogenesis. (E) Top 8 significant correlations between

glutamine metabolism and inflammation.

SUPPLEMENTARY FIGURE 3

GMscore was significantly correlated with cell cycle progression. (A)
Distribution of three clusters in pseudo time trajectory analysis. (B)
Pseudo time trajectory analysis divided the cells into three clusters by

state. (C–F) The expression of critical genes in charge of glutamine

metabolism in different types of cells. (G) The expression level of critical
genes decreased after inhibiting glutamine metabolism.

SUPPLEMENTARY FIGURE 4

Genomic alterations between two risk groups and CAD is crucial to
patients with IDH1 mutant glioma. (A) A cumulative mutated proportion

of classic carcinogenic pathways between different risk cohorts. (B) The
possible genes that could be used to guide clinical decisions. (C) Co-
occurrence and exclusive mutations in the TCGA LGG cohort. (D) The top

15 frequently mutated genes were illustrated in GBM cohorts. (E) The
expression level of CAD decreased after inhibiting glutamine metabolism.

(F) No significance (p>0.05) was detected in the prognosis based on the
expression level of CAD in the GBM cohort.
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SUPPLEMENTARY FIGURE 5

Different immune characteristics between the GMscore-high and -low
cohorts. (A) The cytokine activity pathway ranked first in the GSEA with an

NES of 2.47. (B) A PPI network was constructed, which revealed that the
most important gene in the cytokine activity pathway is IL-10. (C) The
expression level of IL-10 elevated in the GM-high cohort. (D) TIMER
showed lower CD8+ T cells infiltration in GMscore-high cohort. (E) The
GMscore-high cohort was characterized by significantly low tumor purity.
(F) CIBERSORT algorithm was used to reveal that macrophage M2

accounts for the highest proportion among all the immune cells.
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SUPPLEMENTARY FIGURE 6

Impact of glutamine metabolism on anti-cancer drugs and
immunotherapy. (A–C) Negative correlation between the average five-

year survival rate of each tumor and its matched GMscore. (D) Sankey
diagram showed the source of tumor types for patients in different risk

cohorts. (E) The optimal l was identified with ten-fold-cross-validation.
SUPPLEMENTARY TABLE 1

Initial biomarkers of glutamine metabolism.
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