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Tumors meet their energy, biosynthesis, and redox demands through metabolic

reprogramming. This metabolic abnormality results in elevated levels of

metabolites, particularly lactate, in the tumor microenvironment. Immune cell

reprogramming and cellular plasticity mediated by lactate and lactylation increase

immunosuppression in the tumor microenvironment and are emerging as key

factors in regulating tumor development, metastasis, and the effectiveness of

immunotherapies such as immune checkpoint inhibitors. Reprogramming of

glucose metabolism and the “Warburg effect” in hepatocellular carcinoma

(HCC) lead to the massive production and accumulation of lactate, so lactate

modification in tumor tissue is likely to be abnormal as well. This article reviews

the immune regulation of abnormal lactate metabolism and lactate modification

in hepatocellular carcinoma and the therapeutic strategy of targeting lactate-

immunotherapy, which will help to better guide the medication and treatment of

patients with hepatocellular carcinoma.

KEYWORDS

lactate metabolism, lactylation, immune regulation, immunotherapy,
hepatocellular carcinoma
Introduction

Lactate has previously been mistakenly thought to be a metabolic waste product of

glycolysis under hypoxic conditions. However, the lactate shuttle hypothesis proposed by

Brooks in 1985 describes the role of lactate as fuel to coordinate systemic metabolism and

as signaling molecules to coordinate signaling between different cells, tissues, and organs
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(1, 2). As an important carbon source for cell metabolism, lactate

is involved in carbon cycling in vivo, and is also an important

signaling molecule in inflammatory and cancerous tissues (3).

Cancer cells metabolize glucose differently than normal cells.

Normal cells produce large amounts of lactate only under

hypoxic conditions, whereas tumor cells tend to convert

pyruvate to lactate even when sufficient oxygen is present

through the mitochondrial TCA cycle to support oxidative

phosphorylation to generate ATP, the process is an aerobic

glycolysis, also known as the “Warburg effect” (4, 5). Lactylation

is a novel post-translational modification (PTM) that includes

histone lactylation and non-histone lactylation (6–9). The large

amount of lactate produced by tumor tissue through aerobic

glycolysis provides a substrate for lactylation. The biological

function of lactylation in a range of diseases and cancers is

being investigated.

The occurrence, metastasis, invasion and drug resistance of

hepatocellular carcinoma (HCC) are largely influenced by the

tumor microenvironment, which contains complex interactions

between various immune or non-immune cells (10–14). Lactate

has emerged as a key regulator in maintaining cancer initiation,

progression, and immune escape, and lactate accumulation and

lactylation in HCC enhance the immunosuppressive properties

of tumor microenvironment(TME). The lactate metabolic

crosstalk in the TME may be an important factor affecting the

progression, immunotherapy and prognosis of HCC. By

targeting lactate metabolism and restoring the metabolic

adaptability of host anti-tumor immunity, the therapeutic

effect of cancer immune checkpoint blockade can be further

improved. Therefore, anti-lactate therapy combined with

immunotherapy has broad prospects.
Reprogramming of glucose
metabolism in HCC promotes
lactate production

Metabolic associated fatty liver (MAFLD) has been proposed as

a more appropriate new nomenclature for nonalcoholic fatty liver

disease (NAFLD) that more accurately reflects the drivers of the

disease (15). Altered liver metabolism is critical to the development

of liver disease, contributing to the progression of NAFLD and

nonalcoholic steatohepatitis (NASH), which progressively become

major risk factors for hepatocellular carcinoma (16). Lactate levels

in the blood and liver also increase with the severity of liver disease,

particularly from steatosis to NASH (17, 18). HCC cells are

metabolically different from normal hepatocytes. In order to meet

the demands of tumor tissue for energy, redox, and biosynthesis,

HCC cells exhibit active anaerobic glycolysis and aerobic glycolysis

(Warburg effect). In addition, metabolism-related enzymes and

transport proteins are reprogrammed (19, 20). Upregulated

glucose transporters (GLUTs) promote glucose uptake, increased
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expression of hexokinase (HK), phosphofructokinase 1 (PFK1) and

pyruvate kinase (PKM) accelerates glycolysis, and overexpression of

lactate dehydrogenase (LDH) drives the rapid conversion of

pyruvate to lactate (21). Ultimately one of the results of this

metabolic reprogramming is the production of large amounts

of lactate.
Production of lactate

Lactate is produced through abundant pathways in tumor

tissue, such as pentose phosphate pathway, malate-mediated

glutamine pathway, and citrate-mediated pyruvate production,

which ultimately lead to the secretion of lactate salts (Figure 1).

Glucose is transported into cancer cells by GLUT1/3 transporters

and then undergoes glycolysis to produce pyruvate. Under

positive oxygen conditions, pyruvate is converted to acetyl-CoA

by pyruvate dehydrogenase and releases carbon dioxide (CO2),

which enters the tricarboxylic acid (TCA) cycle. Under anaerobic

condit ions, glucose is metabolized to pyruvate by

phosphoenolpyruvate (PEP), which is then converted to lactate

by lactate dehydrogenase A (LDHA). Tumor cells meet the energy

requirements for growth and proliferation of cancer cells by

increasing glycolysis, while glucose is metabolized at a higher

rate by aerobic glycolysis (Warburg effect) (5). Compared with

lactate produced by complete oxidation of glucose in

mitochondria, tumor tissue produces 10-100 times more lactate

through aerobic glycolysis (22).

Glucose is the main metabolic substrate for lactate

production, and glutamine is also an important substrate for

lactate production. Tumor cells have a clear Warburg effect,

which is enough to support most of the requirements of the cell

for ATP synthesis, and the construction of lipids, proteins, and

nucleotides required for cell growth mainly comes from the TCA

cycle. But in these cells, their TCA cycle is intact, and this

requirement is met by high glutamine metabolism. They can

utilize the carbon backbone of glutamine as a respiratory

substrate, activate the NADPH-producing pathway, and

restore oxaloacetate to continue TCA cycle function (23, 24).

Continued glutamine metabolism provides an intermediate for

the TCA cycle and also makes aerobic glycolysis the best choice

for cancer growth (25). Glioblastomas, for example, convert

about 90 percent of glucose and 60 percent of glutamine to

lactate (24). Glutamine is converted to glutamate by

glutaminase, glutamate is converted to a-ketoglutarate by

glutamate dehydrogenase (GDH) in mitochondria, and then

a-ketoglutarate is converted to malate and then transported out

of the mitochondria, oxidized to pyruvate in the cell matrix, and

finally lactate is produced under the action of LDHA (26).

Glutamine can also provide carbon in the form of

mitochondrial oxaloacetate to generate citrate in the first step

of the TCA cycle, mediating lactate and lipid biosynthesis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1063423
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1063423
Glutamine also provides a carbon source to support the TCA

cycle during glucose starvation (27).

In addition to the above methods, activated immune cells can

also metabolize lactate, such as dendritic cells (DC) depending on

the Warburg effect (28). CD28-stimulated T cells rapidly increase

the expression of glucose transporters and the rate of glycolysis

(29, 30). In macrophages, monocarboxylate transporter 4 (MCT4)

is upregulated by the stimulation of TLR2 and TLR4, activating an

inflammatory response to increase the rate of glycolysis to

produce lactate (31). But they contribute less to lactate in the

tumor microenvironment because it depends on the number of

immune cells in the tumor microenvironment and their activation

status. In conclusion, the accumulation of lactate in HCC tumor

tissue is largely due to its active production pathway.
Metabolic reprogramming promotes
lactate production in HCC

To meet the demands for energy and biosynthesis, HCC

tumor tissues metabolically reprogram key enzymes of their

glycolysis. HCC tumors enhance glucose uptake by upregulating
Frontiers in Oncology 03
the glucose transporters GLUT1 and GLUT2 (32, 33), and HIF-1

is an important accelerator of this process (34). In addition,

KRAS mutation, BRAF mutation and activated AKT cascade

increased GLUT1 expression (35, 36).

Glucose is converted into glucose-6-phosphate by

hexokinase (HK) after entering cells. Among HK family

members, HK2 and HKDC1 are up-regulated in HCC and are

associated with poor prognosis (37, 38). Silencing HK2 and

HKDC1 inhibited lactate flux, inhibited HCC cell proliferation

and migration in vitro, increased oxidative phosphorylation, and

metformin sensitivity (38, 39). The expression of HK2 is induced

in HCC by multiple mechanisms and oncogenic transcription

factors. HK2 was recently identified as a downstream target of

ZMYND8 in HCC cells, and high expression of ZMYND8 in

HCC was associated with glucose consumption, increased

lactate, and ATP production in HCC cells, and was associated

with patients with unfavorable clinicopathological features and

poor prognosis. Silencing ZMYND8 inhibited the proliferation

and migration of HCCLM3 cells in vivo (40). MACC1 and

STAT3 also enhance glucose metabolism and lactate production

through HK2 (41, 42). Blockade of FOXK1, EGFR, C-MYC

signaling inhibits HK2-mediated glycolysis (42–44).
FIGURE 1

Lactate is produced by a variety of pathways. Lactates are mainly produced by the aerobic glycolysis pathway and the glutamine pathway.
Glucose metabolism reprogramming in HCC promotes glucose uptake by the glucose transporter GLUT1/2. HK2, GAPDH, PKM2 and LDHA are
upregulated under the regulation of a variety of cytokines to accelerate lactate production. Glutamine is transported into mitochondria, where it
produces a-ketoglutaric acid under the action of GDH, followed by participation in the TCA cycle to produce malate, and finally transported out
of the mitochondria to produce lactate.
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has

been considered as a stably expressed reference gene in the past,

and GAPDH has been reported to be up-regulated in various

cancers (45). The interaction of GAPDH with hepatitis viruses

(HBV and HCV) induces hepatitis, as well as metabolically

enhances glycolytic capacity (46, 47).

The pyruvate kinase isoform PKL is an important enzyme

involved in the final step of glycolysis in normal hepatocytes,

while pyruvate kinase 2 (PKM2) is overexpressed in HCC cells

and is an independent predictor of recurrence and survival (48,

49). As an active protein kinase, PKM2 promotes hepatocellular

carcinoma cell proliferation by upregulating HIF-1a, Bcl-xl and
Gli1 expression (50). PKM2 plays a synergistic effect with ODC1,

which is an important enzyme involved in polyamine

metabolism (51), and is also affected by various signals such as

SNHG1 and CaMKKb, as well as the AKT pathway (52–54).

Genes related to polyamine metabolism are overexpressed in

HCC patients, which also links polyamine metabolism to

abnormal lactate metabolism promoting poor prognosis.

Decreased expression of PKM2 inhibits glucose uptake by

HCC cells and inhibits aerobic glycolysis (48). Altered

expression of the aforementioned enzymes supports glucose

flux in the glycolytic pathway, leading to an increase in the

end product of glycolysis, pyruvate, which is available for the

TCA cycle as well as lactate production.

The Warburg effect is a key event in hepatocarcinogenesis,

where pyruvate tends to be converted to lactate catalyzed by

lactate dehydrogenase (LDH) even under aerobic conditions. In

hepatocellular carcinoma cells, LDHA is overexpressed due to

downregulation of miR-383, triggering increased cell

proliferation, invasion and glycolysis (55), MYC, NFkB, HIF-

1a-mediated signaling enhances glycolysis in HCC by

promoting upregulation of LDHA (56–58). In contrast,

knockdown of LDHA significantly inhibited tumor growth

and metastasis of hepatocellular carcinoma as well as the

Warburg-like metabolic signature of mouse HCC (59, 60).

LDH levels in serum have been regarded as a prognostic

indicator in HCC patients treated with sorafenib, transarterial-

chemoembolization (TACE), and partial hepatectomy (61–63).

In addition to these enzymes as important regulators of the

Warburg effect, the Warburg effect is also regulated by other

complex mechanisms, such as the transcriptional activation of

PFKM by ZEB1 and the direct targeting of FBP1 by miR-517a to

enhance the Warburg effect of liver cancer (64, 65); PGC1a
inhibits the Warburg effect by regulating the WNT/b-catenin/
PDK1 axis (66).
Transport of lactate

Lactate is mainly transported by the monocarboxylate

transporter (MCT) on the cell membrane, MCT1 (SLC16A1)

mainly imports lactate, and MCT4 (SLC16A3) mainly exports
Frontiers in Oncology 04
lactate. MCT1 can also mediate lactate export under hypoxic

conditions (67–69). It has been reported that MCT4 is highly

expressed in HCC and promotes tumor progression (70), and

inhibition of CD147 or MCT1 inhibits lactate export and glucose

metabolism, and inhibits HCC proliferation (71). The poor

prognosis of multiple types of cancers is associated with high

expression of MCT1 and MCT4, such as glioma (72), breast

cancer (73), non-small cell lung cancer (74), colorectal cancer

(75), gastric cancer (76), cervical cancer (77) and

neuroblastoma (78).

G protein-coupled receptor 81 (GPR81) is a lactate-selective

receptor that is highly expressed in many tumor cell lines, such

as breast, colon, lung, hepatocellular, salivary gland, cervical, and

pancreatic cancers. The expression level of GPR81 affects tumor

growth and metastasis, and knockdown of GPR81 results in

significantly reduced growth and metastasis of pancreatic cancer

cells and breast cancer cells (79, 80). Inhibition of GPR81

signaling and thus angiogenesis is mediated by PI3K/AKT-

cAMP in response to CREB (81). Activation of GPR81

aggravates hepatic ischemia-reperfusion injury-induced remote

organ injury (82).This suggests that GPR81 is essential for

cancer cells to regulate lactate transport, tumor growth and

metastasis, angiogenesis, and lipolysis inhibition (79).
Lactate homeostasis and
metabolic abnormalities

Cells in humans typically have lactate concentrations of 1-3

mM at rest, and transiently increase to 15 mM during exercise,

however, in highly glycolytically active tumor cells, lactate

concentrations even reach 30-40 mM (83). Lactate is not only

a substrate for glycolysis, but also the main fuel for maintaining

the carbon cycle, and is rapidly exchanged in the body to provide

an energy substrate for cellular metabolism. Studies have shown

that, in addition to the brain, the contribution of glucose to the

tissue TCA cycle is indirect, but mainly through circulating

lactate. In genetically engineered lung and pancreatic cancer

tumors in fasted mice, lactate was the main source of carbon for

the TCA cycle (84). In addition, lactate and pyruvate together act

as a circulating redox buffer, balancing the NADH/NAD ratio

(85). Lactate is also reused by different cell subsets in the TME, a

phenomenon known as metabolic symbiosis (86). The function

of lactate depends on its concentration in the organism, and the

normal production and transport of lactate is the basis for

maintaining the lactate cycle in the body. Under the

coordinated action of oncogenes and tumor suppressors,

tumor cells produce a large amount of lactate through aerobic

glycolysis, local TME acidification, and the homeostasis of

lactate is severely disrupted in the TME. HIF-1a, c-MYC,

PI3K/AKT increase glycolytic flux by increasing the expression

of glucose transporter, hexokinase, phosphofructokinase (26).
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Pyruvate dehydrokinase (PDK) inhibits the activation of

pyruvate dehydrogenase (PDH) by phosphorylation,

preventing pyruvate from entering the mitochondria and being

converted to acetyl-CoA for the TCA cycle. Hypoxia-inducible

factor 1a (HIF-1a) stimulates the expression of PDK and

LDHA, resulting in the conversion of pyruvate to lactate (87).

C-MYC is an oncogene that stimulates glycolysis as well as the

expression of LDHA. LDHA is one of the key enzymes in the

conversion of glucose and glutamine to lactate. Increased activity

of LDHA, increased glycolysis, and increased production of

lactate, inhibiting LDHA activity affects cancer cell

proliferation (88).

Lactate accumulation in tumor tissue is a combined result of

increased production and decreased clearance. The net clearance

of lactate by the healthy liver accounts for 70% of the systemic

clearance, showing higher clearance than other organs (89).

P300/CBP-associated factor (PCAF)-mediated acetylation of

LDHB reduces LDHB activity and inhibits lactate clearance,

leading to lactate accumulation, which exacerbates lipid

deposition and inflammatory responses in NAFLD and

NAFLD progression (90). In conclusion, the abnormal

metabolism of lactate is regulated by a complex network of

genes. In addition to genes that directly regulate glucose

metabolism and lactate formation, oncogenes and tumor

suppressor genes such as HIF-1 and MYC are also involved in

glucose metabolism reprogramming during carcinogenesis (21),

the interaction of these genes is shown in Figure 2.
Lactylation of HCC

Histone lactylation

Post-translational modifications of histones, such as

methylation, acetylation, phosphorylation, and ubiquitination,

maintain homeostasis by regulating DNA transcription,

replication, and repair, and their misregulation is closely

related to the occurrence and development of many diseases

(91). With the application of high-sensitivity mass spectrometry,

some new short-chain Lys acylations of histones have been

discovered, such as propionylation (Kpr), butyrylation (Kbu),

2-hydroxyisobutyrylation (Khib), Succinylation (Ksucc) et al

(92). Zhang et al. first predicted and identified lysine

lactylation (Kla) as a novel histone modification stimulated by

endogenous lactate. They used MS/MS analysis to identify 26

and 16 histone Kla sites from human MCF-7 cells and mouse

bone marrow-derived macrophages (BMDM), respectively (9)

(Figure 3A). Yang et al. identified 27 histone Kla sites from

gastric cancer AGS cells (8). Mouse cancer models show that the

expression of the M2-like gene Arg1 is positively correlated with

histone Kla levels. Zhang et al. knocked down LDHA or used

glycolysis inhibitors during M1 polarization of macrophages

induced by lipopolysaccharide (LPS) and interferon gamma
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(IFN-g). The results showed decreased lactate production as

well as global histone Kla levels, decreased ARG1 expression,

and decreased histone Kla levels at the ARG1 promoter (9).

Stefanie Dichtl et al. also confirmed that the expression of ARG1

in LPS-stimulated cells was mediated by IL-6, and the increase of

ARG1 was dependent on the increase of lactate levels (93). The

study identified four pathways of increased histone lactylation

(1): Increased glucose to increase glycolysis; (2) Rotenone, an

inhibitor of the mitochondrial respiratory chain complex I,

drives glycolysis; (3) Hypoxia; (4) M1 macrophage

polarization (9).

So how does lactate mediate histone lactylation

modification, and how does histone lactylation change the

transcriptional landscape? Existing studies have shown that

lactoyl-CoA produced by endogenous or exogenous (mostly

endogenous) lactate, the acetyltransferase p300 acts as a writer

to transfer the lactosyl group to the lysine tails of histones to

create a modification called lactylation (9). Both lactylation and

acetylation prefer lysine (Lys) as a residue of epigenetic

modifications, and they compete for the same enzyme p300.

However, how these enzymes decide which epigenetic

modification to encode in histones remains a mystery, possibly

regulated by differential recruitment of cofactors in response to

cellular metabolic dynamics (94). In addition to the enzymatic

transfer of lactyl-CoA to lysine, lactyl-glutathione (LGSH) is

hydrolyzed by glyoxalase 2 (GLO2) to generate glutathione and

D-lactate, the lactate moiety is nonenzymatically transferred

from LGSH to lysine residues to form lactylat ion
FIGURE 2

PPI network of interactions between lactate
metabolism-related genes.
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modifications (95). Recent studies have shown that Class I

histone deacetylases (HDAC1-3) act as erasers to exhibit

delactylase activity in vitro (96, 97), Sirtuins are potential non-

histone delactate enzymes (98). However, it is not clear which

enzymes produce the intermediate molecule Lactyl-CoA, which

enzymes recognize histone lactylation as “readers”, and more

“writers” and “eraser” are yet to be discovered (Figure 3B). ChIP-

seq data showed that H3K18la, like H3K18ac, was enriched in

the promoter region (± 2 kb around the transcription start site)

and indicated steady-state mRNA levels. In contrast to

H3K18ac, the increased H3K18la marked more genes than the

decreased H3K18la, and most genes marked by elevated

H3K18la were specific. Zhang et al. took advantage of a cell-

free, recombinant chromatin-templated histone modification

and transcription assay, and they demonstrated that histone

Kla plays a direct role in transcriptional regulation. In this assay,

acetyl-CoA is replaced by L-lactyl-CoA, showing strong p53-

dependence, p300-mediated H3 and H4 lactate salting, and

effects on transcription. The H3 and H4 mutations eliminate

p300 and p53-dependent transcription. These findings suggest

that transcription is directly mediated by histone lactylation

rather than mediating other transcription factors in the nucleus
Frontiers in Oncology 06
(9). Furthermore, H3K18la is enriched not only at the promoter

but also at the active enhancer in a tissue-specific manner (99).

Eva Galle et al. calculated ChromHMM state enrichment over

ENCODE’s database of cell type agnostic candidate cis-

regulatory elements (cCRE). They found that each

ChromHMM state enriched with a distal enhancer-like

sequence (dELS) was always marked with H3K18la. H3K18la

marks active promoters and active enhancers, which are

typically marked by H3K27ac (typical mark of active

promoters and activity enhancers). And a considerable part of

the presumed dELS only H3K18la peak marker, but not

H3K27ac peak marker, indicating that dELS has additional

H3K18la-specific effects. Research on histone lactylation is still

in its infancy, and delving into how this post-translational

modification affects the transcriptional landscape will broaden

our horizons in the treatment of disease (99).

Current studies have demonstrated that various disease

states are regulated by histone lactylation. Increased histone

lactylation correlates with inflammation-induced macrophage

death. Phosphoinositide 3-kinase (BCAP) promotes the

transition of macrophages from an inflammatory state to a

repair state through histone lactylation in response to

microbial ligands and various deleterious signals (100). Lung

myofibroblasts promote the fibrotic activity of macrophages

through lactate-induced histone lactylation in macrophage

profibrotic gene promoters (101). A clinical study by Chu

et al. showed that histone H3K18 lactylation aggravated the

severity of septic shock in patients (102). Macrophages can take

up lactate through MCT and promote HMGB1 lactylation

through the p300/CBP pathway. Inhibiting lactate levels in

vivo or inhibiting lactate signaling can reduce exosomal

HMGB1 lactylation levels, thereby ameliorating multiple

microbial sepsis (103). Yang et al. further identified the

lactylation modification site HMGB1-K43la in HMGB1 (8).

Glis1 acts as a reprogramming factor to promote somatic

reprogramming by enhancing histone acetylation (H3K27ac)

and lactylation (H3K18la) at pluripotent gene loci (104). Histone

Kla is also widely distributed in the brain, and the level of histone

H1Kla in the brain increases in response to the expression of the

neuronal activity marker c-Fos and the neural excitation induced

by Repeated social defeat stress (SDS) (105). H3K18la is involved

in remodeling transcriptome expression and activates

transcription in brain neurons (97).

Cancer cells produce more lactate than normal cells through

the “Warburg effect”, so it is likely that histone lactylation in

tumors is abnormal (106) (Table 1). Yu et al. found for the first

time that the level of histone lactylation was significantly up-

regulated in ocular melanoma, and inhibition of histone

lactylation could effectively inhibit tumor progression. Their

study found that histone lactylation promotes YTHDF2

expression in ocular melanoma, and that YTHDF2 binds to

m6A sites on the mRNAs of PER1 and TP53 to mediate RNA

degradation, thereby driving carcinogenesis (107). Lactate in the
A

B

FIGURE 3

Histone lysine lactylation site and the production of lactylation.
(A) Histone lysine lactylation site. (B) Lactate metabolism can
induce epigenetic remodeling through histone lactylation. After
lactate produces lactyl-CoA, the lactosyl group is transferred by
p300 to the lysine tail of the histone protein, forming a
lactylation modification. Lactyl glutathione (LGSH) hydrolyzed to
produce lactate, which forms lactylation modifications through
non-enzymatic reactions. HDAC1-3 is a potential delactinase. It
is unclear which enzymes produce lactyl-CoA and which
enzymes recognize histone lactylation.
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TME induces METTL3 expression in tumor-infiltrating myeloid

cells (TIMs) through histone lysine K18 lactylation, METTL3

lysine K281 and K235 lactylation-mediated RNA m6A

modification leads to tumor immune escape by promoting the

immunosuppressive function of TIM (108). Disturbed lactate

metabolism in non-small cell lung cancer (NSCLC) mediates the

expression of genes such as HK-1 and IDH3G through histone

lactylation, regulating mitochondrial homeostasis as well as

cellular metabolism (109). Inactive von Hippel-Lindau (VHL)

is an important factor in the pathogenesis of clear cell renal cell

carcinoma (ccRCC), which exerts oncogenic effects by inducing

histone lactylation to activate platelet-derived growth factor

receptor beta (PDGFRb) expression. In turn, PDGFRb
positively feedback regulates histone lactylation (110). Histone

lactylation at the promoter of Gram-negative bacteria-derived

lipopolysaccharide in colorectal tumor tissues reduces the

binding efficiency of the inhibitory factor YY1, resulting in the

overexpression of LINC00152 to promote colorectal cancer cell

migration and invasion (97).

Lactate can induce the expression of liver injury-related

genes, leading to acute liver failure (113). Accumulation of

lactate is responsible for histone lactylation in inflammation

and cancer. The formation of histone lactylation modification

mainly depends on the enzymatic transfer of lactyl-CoA, Varner

et al. first quantitatively measured lactyl-CoA in hepatoma cells.

They showed that lactyl-CoA is quantifiable at 1.14 × 10-8 pmol

per cell in HepG2 cell culture and 0.0172 pmol mg-1 tissue wet

weight in mouse heart. These leves are similar to crotonyl-CoA,

but significantly less 20-350 times less than majo acyl-CoAs

including acetyl-, propionyl- and succinyl-CoA (114). Pan et al.

isolated liver cancer stem cells (LCSCs) from MHCCLM3 and

Hep3B cell lines with significantly higher lactate levels than

those in HCC cells. They identified that the increase of two

histone H3 lactylation sites (H3K9la, H3K56la) effectively

promoted the progression of HCC. The levels of Pan Kla and

histones H3K9la and H3K56la in liver cancer were positively

correlated with the expression of cancer malignancy markers
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(the stemness marker CD133, the proliferation marker BCL2,

the cancer cell proliferation marker Ki67, and the glycolysis

enzyme LDHA). Inhibition of LDHA was able to reduce lactate

levels in LCSCs and inhibit lactylation. Demethylzeylasteral

(DML) inhibits LCSC-induced tumorigenicity by inhibiting

histone H3 lactylation (112). Intracellular lactate production

and histone lactylation levels are elevated under hypoxic

conditions, inhibition of pyruvate dehydrogenase and lactate

dehydrogenase activities using sodium chloroacetate and

sodium oxalate, respectively, could attenuate the hypoxia-

induced elevation effect. Under positive oxygen conditions,

human lactate production and histone lactylation were

completely inhibited in HepG2 cells after knockdown of

LDHA and LDHB (9).
Non-histone lactylation

During the dynamic metabolic homeostasis of tissues, part of

the lactate produced by the cells is involved in metabolism, while

the other part is received to participate in epigenetic

modification and non-histone lactylation. Lactylation was

originally discovered on human histones (9), and recent

studies have shown that lactylation is a gross modification of

human cells and tissues. Digging of the Meltome Atlas revealed

that glycolytic enzymes in human cells are heavily lactated,

particularly K147 of fructose-bisphosphate aldolase A

(ALDOA) (7). Yang et al. identified 2375 Kla sites in 1014

proteins in gastric cancer AGS cells (8). Gu et al. established a

solid tumor model of liver cancer by subcutaneously injecting

Hepa1-6 cells into B6 mice, and injected lactate dehydrogenase

inhibitor (LDHi) to reduce LDH activity. It was found that the

lactate concentration in the tumor of the mice was significantly

reduced, and the immunomodulatory effect of Treg cells in the

TME was inhibited. Lactate levels are elevated, and lactate levels

are elevated in Treg cells. Lactate enhances TGF-bR1-mediated

TGF-b signaling by regulating the lactylation of Lys72 residues
TABLE 1 Lactylation in Disease.

Disease Modification site Cell Protein targets Gene targets Reference

Lung fibrosis Lysine Macrophages (101)

Septic shock H3K18
HMGB1-K43

Macrophages (8, 102, 103)

Ocular melanoma K3K18 YTHDF2 m6A (107)

Colon cancer H3K18 TIMs METTL3 m6A (108)

NSCLC Lysine HK-1
IDH3G

(109)

ccRCC Lysine Macrophages PDGFRb (110)

HCC
HCC

MOESIN-Lys72
H3K9la, H3K56la

Tregs (111)
(112)
f
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in MOESIN, which is involved in the metabolic reprogramming

of Treg cells (111).

Abnormal lactate metabolism is an important feature of liver

cancer, and NMR analysis showed that HCC displayed high

levels of lactate and low levels of glucose compared with distant

non-tumor tissues (NTT) (115). The elevated lactate

concentration detected in the serum of HCC patients also

confirmed that this is the result of abnormal lactate

metabolism in liver cance (116). Taken together, this abnormal

lactate metabolism is critical for the maintenance of tumor

growth and progression in HCC, and plays an important role

in the lactylation of tumor cells histones as well as non-

histone proteins.
Lactate promotes
immunosuppressive TME

The TME of HCC is composed of complex components such

as tumor cells, immune cells, stromal cells, and blood vessels.

Due to the Warburg effect, tumor cells secrete lactate into the

TME, reducing the pH of the TME. Lactate acts as an

immunosuppressive factor to promote tumor progression by

hindering T cell and natural killer (NK) cell function or

supporting the suppression of TAMs, MDSCs, and regulatory

T cells (Tregs) (Figure 4).
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T cell

The rate of lactate production and secretion by tumor cells

and activated T lymphocytes was significantly increased, and the

large amount of lactate and increased acidity of the TME

inhibited the proliferation of activated T cells and the

production of cytokines (117). Lactate secreted by tumor cells

hinders T cell function, especially the lytic function of CD8 T

cells, by modulating the redox state of nicotinamide adenine

dinucleotide (NAD) and (NADH) (118). Lactate inhibits the

proliferation and cytokine production of 95% of human

cytotoxic T lymphocytes (CTLs) and reduces cytotoxicity by

50%. A high lactate environment in the TME blocks

monocarboxylate transporter-1 (MCT-1) export resulting in

abnormal CTL lactate metabolism and impaired function (117).
NK cell

High levels of lactate in the TME interfere with the secretion

of the antitumor cytokines INF-g, perforin, and granzyme B in T

cells and NK cells, thereby promoting tumor immune escape and

growth. Lactate-pretreated NK cells inhibited NK cell

cytotoxicity by downregulating the expression of NKp46 (119,

120). In addition, high levels of acidic lactate environments are

not conducive to the proliferation of natural killer T cells (NKTs)

and affect their activity and function (121).
FIGURE 4

Lactate promotes the production of an immunosuppressive microenvironment. The tumor microenvironment is mainly composed of tumor
cells, anti-tumor immune cells, tumor-promoting immune cells, blood vessels and cytokines. Lactate acts as an immunosuppressive factor that
hinders cytotoxic action in T cells and NK cells while supporting the immunosuppressive function of TAMs, MDSCs and Tregs to promote tumor
immune evasion. Lactate also promotes hypoxia and angiogenesis that aggravates the immunosuppressive nature of TME.
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TAMs

Macrophages regulate immune responses to pathogens,

maintain tissue homeostasis and participate in tissue repair and

remodeling (122). M1-type macrophages tend to be more pro-

inflammatory phenotypes, whereas M2-type macrophages

primarily play a role in immune regulation, tissue remodeling,

and tumor progression (123). Tumor-associated macrophages

(TAMs) typically exhibit pro-inflammatory and anti-tumor

activities, and gradually polarize to the M2 phenotype as tumors

progress. MCTs take up tumor-derived lactate on the cell

membrane of TAMs to induce vascular endothelial growth factor

(VEGF), L-arginine arginase-1(ARG1) and the expression of the

transcriptional repressor ICER through HIF-1a, and promoting

M2-like polarization of TAMs. This process can support tumor

growth and suppress antitumor immune responses (124, 125).
MDSCs

MDSCs are the most prominent myeloid-derived cell

population that exerts extensive immunosuppressive functions,

inhibiting innate immunity and adaptive immunity in the TME

by preventing dendritic cell maturation, inhibiting NK cell

toxicity and T cell activation, and promoting Tregs

differentiation (126). The number of myeloid-derived

suppressor cells (MDSC) is reduced in LDHA knockdown

mice, and exogenous lactate increases MDSCs production

mediated by GM-CSF and IL-6, and these cells have

significant NK inhibitory activity (120). Lactate increases

MDSCs activity through GPR81/mTOR/HIF-1a/STAT3
pathway and its inhibition of NK cell, antitumor T cell activity

(120, 127).
Tregs

Regulatory T cells (Tregs) are significantly enriched within

tumors, and tumor-infiltrating Tregs require lactate uptake to

support their proliferative and immunosuppressive functions

(128). Lactate-activated Tregs have reduced glucose uptake, and

instead show increased MCT1 to accelerate lactate uptake,

increased LDHA activity, and enhanced immunosuppressive

capacity (129).
Lactate mediates the expression of
immunosuppressive molecules and
their receptors

PD-1, as a surface molecule that transmits immunosuppressive

signals, is expressed on the surface of immune cells such as activated
Frontiers in Oncology 09
T cells, B cells, and NK cells (130). Activated PD-1 promotes tumor

immune escape by inhibiting the activation of immune cells and the

secretion of related antitumor factors (131). PD-1 expression is

complexly regulated, and its expression is rapidly induced after T

cell receptor (TCR) activation (132). The TGF-b/Smad pathway

plays an important role in this process, and blocking TGF-b can

significantly inhibit the expression of PD-1 (133). NFATc1 is

activated after TCR activation, then NFATc1 enters the nucleus

and binds to DHS-C region within the conserved region C (CR-C)

located at the transcription initiation point 5’, thereby activating

Pdcd1 transcription (134, 135). Blimp-1 inhibits the expression of

NFATc1 and displaces it from CR-C, thereby removing the

induction effect after TCR activation, resulting in inhibition of

PD-1 gene transcription (136). TCR can also promote the

expression of PD-1 and attenuate the T cell response in

conjunction with IFN-a (137). In macrophages and T cells, IFN-

a can promote PD-1 expression through the JAK/STAT signaling

pathway (138). IFN-a increases PD-1 expression by activating

JAK1 and TYK2 and inducing the binding of ISGF3 complexes

(STAT1/STAT2/IRF9) to ISRE located at the promoter CR-C (139).

In addition, IL-6 or IL-12 enhances PD-1 expression by changing

the structure of chromatin and activating STAT3 and STAT4.

Other cytokines in the tumor microenvironment are also able to

regulate PD-1 expression, such as gamma-chain cytokines IL-2, IL-

7, IL-15, and IL-21. Although these cytokines-induced PD-1

expression does not affect the expansion and survival of

peripheral T cells, it can inhibit cytokine secretion in T

lymphocytes when TCR is involved (140) (Figure 5).

PD-L1 on tumor cells binds to PD-1 on immune cells and

mediates negative feedback for various lymphocyte activation

(141). In TME, to avoid T cell attack, cancer cells hijack

inflammatory factors IFN-g , TNF-a , IL-6-mediated

inflammatory pathways to enhance PD-L1 expression (142–

144). IFN-g is often considered an inducer of PD-L1 and is

produced in large quantities when T cells and NK cells are

activated (145). IFN-g binds to its receptor to activate the JAK/

STAT pathway, preferentially inducing the expression of the

transcription factor interferon response factor 1 (IRF1) via

STAT1 (146). IRE1/2 constitutes the binding site of IRF1 in

the PD-L1 promoter and regulates the transcription of PD-L1 in

HCC (147). In addition, the PI3K/AKT pathway, activated by

IFN-g, also upregulated the expression of PD-L1 in tumors

(148). IFN-g can also activate the NF-kB pathway, which in

turn mediates the expression of PD-L1 (149). TNF-a can be

released by activated TAMs, which is a major driver of

inflammation, while it also drives EMTs to regulate PD-L1

expression (150). In addition to EMT, TNF-a upregulates PD-

L1 expression by activating NF-kB and ERK1/2 signals (143).

The inflammatory factor IL-6 triggers the expression of PD-L1

in the JAK/STAT3 and MEK/ERK signaling pathways (144,

151). Previous studies have also demonstrated that increased

IL-6 in HCC activates the STAT3/c-MYC/miR-25-3p pathway,

resulting in a decrease in protein tyrosine phosphatase receptor
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O (PTPRO), which downregulates PD-L1 expression by

regulating JAK2-STAT1/3 activation (152). In addition,

STAT3 can act directly on the promoter of PD-L1 to regulate

the expression of PD-L1 (153).

In addition to the inflammatory signaling pathway, RAS/

MEK/ERK signaling can regulate the expression of the PD-L1

gene through crosstalk with inflammatory signaling (132).

When MEK i s inh ib i t ed , I FN- g - i nduced STAT1

phosphorylation and PD-L1 transcription are also inhibited

(154). Conversely, activation of the MEK/ERK pathway

increases PD-L1 expression (132). Hepatocyte growth factor

(HGF) activates Met and epidermal growth factor receptor

(EGFR) activation also regulate PD-L1 expression through the

RAS/MEK/ERK pathway (154–156).

Studies have shown that certain oncogenic signaling

pathways can also promote tumor immune escape by driving

the expression of PD-L1. Chromatin Immunoprecipitation

(ChIP) analysis showed that the oncogene MYC bound to the

PD-L1 promoter and directly regulated the expression of PD-L1

at the transcription level (157), and Kim et al. also confirmed

that positive expression of MYC correlated with PD-L1

expression in NSCLC (158). The pharmacological inactivation

of MYC weakens mRNA levels of PD-L1 and re-establishes anti-

tumor immunity in TME (159). Hypoxia is typical of most

tumor microenvironments and is achieved by activating a range

of hypoxia-inducible factors (HIFs), and this response can also
Frontiers in Oncology 10
lead to increased expression of PD-L1 (160). Specifically, the

promoter of PD-L1 contains HIF-1a response elements, and

HIF-1a and HIF-2a have been shown to interact with the

hypoxia response element (HRE) in the PD-1 promoter (161,

162), and it have been demonstrated in a variety of tumors (163,

164). NF-kB can induce HIF-1a by directly binding to the

promoter of HIF-1a, so the NF-kB pathway can enhance the

expression of PD-L1 in synergy with HIF-1a (156, 165). In

addition, the interaction of TAZ with the transcription factor

TEAD directly regulates the transcription of PD-L1

(166) (Figure 5).
Lactate regulates the expression of
PD-1 and PD-1

In TME with high glycolysis in hepatocellular carcinoma,

lactate inhibits the function of effector T cells as well as activates

the function of immunosuppressive cells (e.g., Treg) by directly

upregulating the expression of PD-1 and PD-L1 (167). In

addition to direct regulation, the expression of PD-1 and PD-

L1 is mainly activated by the cascade of the above cytokines and

related signaling pathways, while lactate has been shown to be

involved in multiple signaling pathways that can activate PD-1

and PD-L1 expression(Figure 5).
FIGURE 5

Lactate mediates the expression of PD-1 and PD-L1. PD-1 and PD-L1 are mainly activated by a cascade of specific cytokines and related
signaling pathways. Lactate regulates PD-1 and PD-L1 expression through TGF-b/SMAD, IL-6/STAT3, HGF/MET signaling pathways, and
cytokines and proteins such as IFN-g, TNF-a, HIF-1a, and GPR81.
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TGF-b/SMAD pathway

TGF-b is involved in regulating PD-1 transcription, its

expression increases in cancer in a lactate-dependent manner,

accumulates in the tumor microenvironment, and TGF-b
function is also increased by the increase of lactate (168, 169).

Lactate upregulates the TGF-b/Smad pathway and coordinates

the expression of TGF-b1/Snail and TZ/AP-1 to activate EMT-

related genes (170, 171). Lactate-induced oxidoreductase NOX2

mediates TGF-b activation, promotes phosphorylation of TGF-b
receptors and subsequent Smad 2/3-Smad4 colocalization (172).

TGF-b attenuates tumor response to PD-L1 blockade by

promoting the exclusion of T cells. In mice with progressive

liver metastases, blocking TGF-b signaling increased tumor

sensitivity against PD-1/PD-L1 therapy, promoting T cell

penetration into tumor centers to function (173, 174). In

addition, lactate regulates TGF-b and downstream SMAD3

signaling in regulatory T cells through MOESIN lactylation

(111). In summary, there may be a regulatory cascade between

lactate and PD-1 or PD-L1, with TGF-b functioning as an

intermediate molecule. As a positive feedback loop that

promotes lactate-TGF-b signaling cycling as a danger signal,

tumor cells may produce more TGF-b promote PD-1

expression, thus evading immune surveillance (168).
IL-6/STAT3

High concentrations of IL-6 in the tumor microenvironment

were identified as one of the main causes of cancer growth, and

lactate plays an important role in the expression of IL-6 and the

activation of the STAT3 signaling pathway. Extensive studies

have shown that lactate-induced acidosis promotes IL-6

expression, possibly due to acidosis activating ERK1/2 and p38

signaling in cells (175, 176). Lactate mediates partial crosstalk

between tumor cells and macrophages, and also promotes the

secretion of IL-6 and upregulates the expression of HIF1a (177).

Higher IL-6 levels were also detected in patients with high

expression of H3K18la, indicating that lactate and lacttylation

modifications jointly regulate IL-6 secretion (102). In addition, a

significant correlation was observed between IL-6 and lactate

dehydrogenase (178). Lactate-induced IL-6/STAT3 signaling in

inflammatory macrophages occurs simultaneously with histone

lactylation (93), and when the IL-6/STAT3 pathway is inhibited,

lactate production is reduced in turn (179).

Lactate also activates the STAT3 signaling pathway

independently of IL-6, and lactate enhances STAT3 expression

through ERK1/2 as well as phosphorylation of EZH2 enhancers

(180, 181). Lactate not only enhances mRNA levels of TGF-b,
but also promotes M2 macrophage polarization by accelerating

p-STAT3, while STAT3 inhibitors eliminate this lactate salt-
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mediated macrophage polarization (169). Whole-cell lysates that

block STAT3 stimulate the activation of T cells and NK cells and

enhance the infiltration of toxic CD8 T cells in HCC tumor

tissue, also reducing TGF-b production (182).
HGF/MET

HGF and its receptor MET play a key role in the occurrence

and metastasis of liver cancer, and lactate can regulate the

expression of HGF (183). Lactate produced by tumors leads to

an increase in HGF in NF-kB in cancer-associated fibroblasts,

which in turn activates MET/Ras/REK signaling in tumors (184,

185). MCT1 regulates lactate transport and knocks down the

expression of MCT1, resulting in blockage of signaling of HGF

receptor MET. How lactate regulates the expression of PD-L1

through HGF/MET deserves further study (186).
IFN-g

IFN-g appears to play a dual role in the tumor

microenvironment, synergistic with granzyme B-mediating tumor

killing of toxic T cells (187). On the other hand, IFN-g also mediates

the expression of immunosuppressive molecules to promote tumor

immune escape, and lactate participates in regulating this process

(145). In HCC, tissues with high IFN-g characteristics are often

accompanied by elevated expression of PD-L1 (145). Lactate

accumulation at the site of chronic inflammation not only

directly promotes PD-1 expression, but may also upregulate PD-1

by promoting IFN-g transcription (188). In tumors, lactate

significantly upregulated IFN-g levels of M2 tumor-associated

macrophages and promoted apoptosis of T cells through the PD-

1/PD-L1 pathway (189). LDHA is a rate-limiting enzyme for lactate

production processes, and LDHA promotes IFN-g expression

through histone acetylation in epigenetic modifications (190).
TNF-a

In solid tumors, lactate accumulation leads to acidification of

the tumor microenvironment, affecting the function and

phenotype of cells in the microenvironment (177). Among

them, lactate-mediated acidic environment significantly

upregulates the expression of TNF-a, an inflammatory

mediator, and activates ERK1/2 signaling (175). HCC tumor

tissues with high glycolytic macrophages showed higher

glycolysis rates, produced more lactate, and mediated the

upregulation of PD-L1 induced by inflammatory factors such

as TNF-a, blocking TNF-awhich could inhibit the expression of

PD-L1 in 40%-50% of tumor macrophages (191).
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HIF-1a

In HCC tumor tissues, PD-L1 is produced in a HIF-1a-
dependent manner by macrophages with a high glycolytic

phenotype (191). Even if tumor cells metabolize glucose

through the “Warburg effect”, the accumulation of its product

lactate salts will further induce hypoxia, which in turn will

further promote lactate production, and HIF-1a is an

important regulator of this process (192). The expression of

HIF-1a protein increased significantly in THP-1 macrophages

co-cultured with cancer cells treated with lactate, and the HIF-

1a pathway was involved in coordinating PD-L1-mediated

immune escape. After transfection of THP-1 cells with HIF-1a
siRNA, the redistribution of M2-TAM subsets and the

expression of PD-L1 were reversed (189). HIF-1a is essential

for lactate-mediated activation of GPR81/mTOR/HIF-1a/
STAT3 pathway, and inhibition of lactate production in tumor

cells or HIF-1a expression in MDSC can restore the immune

re sponse o f an t i tumor T ce l l s ( 127) . When the

immunosuppressive factor macrophage migration inhibitor

(MIF) is inhibited, the lactate production of melanoma cells is

significantly reduced, and the expression of HIF-1a and PD-L1

is also significantly reduced (193).
GPR81

Lactate evades the surveillance of the immune system by

activating GPR81 in tumor cells to induce the production of PD-

L1 in tumor cells (194). Lactate-mediated activation of GPR81

reduces intracellular cAMP levels and inhibits protein kinase A

(PKA) activity, leading to activation of the transcriptional

coactivator TAZ, while TAZ/YAP/TEAD enhances PD-L1

promoter activity (195). The double blockade of lactate/GPR81

and PD-1/PD-L1 significantly increased the antitumor effect of

metformin and even caused tumor regression (196). In addition,

lactate-activated STAT3 is also able to directly activate the

GPR81 promoter and activate its expression (181). This also

proves that as a powerful transcription factor, lactate-mediated

STAT3 can not only directly induce the expression of PD-1 and

PD-L1, but also activate the expression of PD-1 and PD-L1 by

other regulatory genes.
Lactate promotes hypoxia
and angiogenesis

In the hypoxic tumor microenvironment, hypoxia-inducible

factor 1 (HIF1) promotes hypoxic glycolysis and angiogenesis by

binding to its receptor, which in turn further aggravates hypoxia.

Lactate released by tumor cells activates angiogenesis-promoting
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signaling and is a well-established promoter of angiogenesis.

Overall, lactate is involved in angiogenesis through the following

mechanisms (1): Induced polarization of TAMs to M2

phenotype, increased expression of VEGF and Arg1, and thus

stimulated angiogenesis (197) (2); MCT1-mediated activation of

the NF-kB/IL-8 pathway in endothelial cells drives endothelial

cells to form blood vessels (198) (3); Activation of GPR81

increases the secretion of AREG, which further increases the

production of VEGF and promotes angiogenesis (79) (4);

Stimulate the production of cytokine IL-23, which further

induces the expression of IL-10, TGF-b, VEGF and MMP9

(199, 200) (5); Support the activation of HIF-1a and

upregulate VEGF by inhibiting prolyl hydroxylase (PHD)

through 2-oxoglutarate (192, 201).
The future of anti-lactate combined
with immunotherapy for HCC

The efficacy and safety of immunotherapy in the treatment

of solid tumors make it an ideal treatment option for the

treatment of HCC. So far, a variety of immunotherapies have

been clinically tested and achieved effective results, such as

immune checkpoint inhibitors (ICIs), which have become

mature HCC treatments (202).

Immune checkpoints are surface molecules that transmit

inhibitory signals on the surface of immune cells, including but

not limited to programmed cell death protein-1 (PD-1),

cytotoxic T lymphocyte antigen 4 (CTLA-4), T cell Ig and

ITIM domain (TIGIT), T cell immunoglobulin domain and

mucin domain-3 (TIM-3), Lymphocyte activation gene 3

(LAG3), B and T lymphocyte attenuator (BTLA) (203). Solid

tumors, including HCC, evade antitumor immune responses

through such inhibitory immune receptors (204). PD-1 and

CTLA-4 are members of the CD28 family, expressed on most

immune cells, and by binding to their ligands, transmit

inhibitory signals to T cells to promote tumor immune escape

(205, 206). ICIs are monoclonal antibodies that can block the

binding of immune checkpoints to their ligands and block the

transduction of inhibitory signals, thereby restoring the activity

of T cells to exert immune recognition and immune attack to

enhance anti-tumor immune responses. The PD-1 inhibitors

nivolumab (207) and pembrolizumab (208), PD-L1 inhibitor

atezolizumab (209), and the CTLA-4 inhibitors ipilimumab

(210) and tremelimumab (211) have been tested individually

or in combination in large clinical trials. The results suggest that

some patients have lower response rates to ICI therapy alone due

to a lack of tumor-infiltrating T cells. The immunotherapy effect

of single ICIs has not been satisfactory, and the above findings

suggest that lactate modulates the immune response in the TME

by modulating the pH of the TME, lactate-dependent pathways,

lactate-mediated signaling, and histone modifications.
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Therefore, anti-lactate combined with immunotherapy has

broad prospects (Figure 6; Table 2).
Targeting glycolysis

Active glycolysis is an important source of lactate, and

inhibition of glycolysis appears to be more capable of

suppressing lactate due to the “Warburg effect” in cancer cells.

Glucose uptake is the first rate-limiting step in glycolysis, and

inhibition of glucose transporters may have therapeutic benefits

in the treatment of hyperglycolytic tumors. Small-molecule

GLUT1 inhibitors such as the natural products Resveratrol

(227, 228), Quercetin (229, 230), Kaempferol (231) and

Curcumin (232), and the non-natural products WZB117 (233,

234), STF‐31 (235, 236), BAY-876 (237), NV-5440 (238) can

effectively inhibit the progression of various cancers including

HCC. 2-Deoxy-D-glucose (2-DG) as a glucose analog is a

competitive inhibitor of glucose metabolism (239). Studies

have shown that 2-DG and sorafenib synergistically inhibit the

proliferation of HCC cells and sorafenib resistance (212, 213). 3-

Bromopyruvate(3-BrPA), a HK2 inhibitor, reduces the

proliferation and motility of HCC cells. It is also able to

enhance the efficacy of sorafenib in an in vivo model of HCC

and can also be considered as a potential clinical chemosensitizer

to optimize the index of CNU treatment (214–216). These

glycolysis inhibitors also require extensive clinical trials to

evaluate their safety and efficacy in patients.
Target lactate synthesis

Lactate accumulation mediated by abnormally high

expression of LDHA is a common and major feature of cancer

metabolism (240), so targeting LDHA is a safe and effective

strategy that has been tested clinically. Oxamate as an inhibitor

of LDHA enhanced the antitumor activity of sorafenib, imatinib

and sunitinib in HCC (217). Quinoline-3-sulfonamides and

Galloflavin, which are inhibitors of LDHA, can inhibit HCC

tumor proliferation (218, 219). LDH levels can also predict the

prognosis of patients with a variety of ICI-treated tumors, such

as patients with advanced esophageal squamous cell carcinoma

(ESCC) and non-small cell lung cancer (241, 242).
Target lactate transport

MCT1/4 and GPR81 mediate the exchange of lactate on the

tumor cell membrane and are also important factors in tumor

aggressiveness, and blocking lactate transport is a potential

target for cancer therapy (79, 243). Dual blockade of the

lactate/GPR81 pathway and the PD-1/PD-L1 pathway

significantly inhibits tumor growth and induces tumor
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regression, while increasing the number of CD8 T cells in

tumor tissue and increasing IFN-g secretion in lymph nodes

(196). In lactate-mediated TME, PD-1 is more expressed in

Tregs than in effector T cells. MCT1 upregulation in Tregs and

its downstream lactate signaling promote resistance to anti-PD-

1 therapy in HCC patients (244). MCT1 inhibitor AZD3965 was

combined with anti-ICIs to enhance the immunity of antigen-

specific CD8 T cells to tumors, effectively inhibiting tumor

growth (220). AR-C155858, BAY-8002 and Londonamine

(LND) also showed effective MCT1 inhibitory and

immunomodulatory activities, and the cytotoxicity of some

anti-tumor drugs (such as anti-PD-1) of HCC was increased

after LND treatment (221–225). MCT4 targeted inhibition

destroys intracellular pH homeostasis and initiates self-

apoptosis of HCC cells (245), and MCT4 inhibitor VB124

enhances T cell infiltration and the potency of anti-PD-1

immunotherapy in HCC mice (226).

In addition to targeting glycolysis, lactate production and

transport, targeting mTOR pathways also play an important role

in regulating lactate metabolism. Water-soluble rapamycin

analogues (temsirolimus, everolimus), ATP-competitive mTOR

inhibitors (MLN0128, AZD2014, PP242), and dual PI3K/mTOR

inh i b i t o r s (NVP -BEZ235 , LY3023414 , PQR309 ,

XH00230381967, SN20229799306, GSK2126458, PKI-587)

have been used to treat a variety of cancers (246). Although

the efficacy of mTOR inhibitors alone is limited, mTOR

inhibitors exert anti-HCC tumor activity in synergy with anti-

PD-1 therapy (247). The concentration of lactate in the tumors

of HCC individuals who responded to PD-1 inhibitor therapy
FIGURE 6

Anti-lactate therapy combined with ICIs. Single immune
checkpoint inhibitors are less effective in treatment, while
simultaneous targeting of glycolysis, lactate production, and
transport are more effective.
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and the level of MOESIN lactylation in Treg cells were lower

than in the unresponsive individuals. Anti-lactate combined

with immunotherapy has a stronger anti-tumor effect, so ICIs

and anti-lactate combination therapy is a potential treatment

direction (111).
Conclusion

Multiple evidence shows that lactate plays an important role

in regulating tumor cell metabolic reprogramming, remodeling

TME, and regulating anti-tumor immunity, and lactate

modification is an important way for lactate to function.

Metabolic reprogramming resulting in active glycolysis increases

lactate levels and lactylation in the TME. The production and

accumulation of lactate plays a key role in HCC. We believe that

accelerated uptake of glucose and aerobic glycolysis in tumor

tissue increases the production, accumulation and release of

lactate. Acidification of the TME and persistently high lactate

levels lead to abnormal signaling that promotes the formation of

an immunosuppressive tumor microenvironment, thereby

supporting tumor immune escape. One of the consequences of

abnormal lactate metabolism is an abnormal increase in

lactylation levels, and the increase in lactylation levels can be

observed in a variety of diseases and cancers.

Cancer immunotherapy seems to be one of the most

promising treatment modalities over the past decade. At

present, immune checkpoint PD-1/PD-L1 inhibitors have been

studied in multiple clinical trials, but only a few patients have

benefited from them. Lactate not only plays a role in TME as an

immunosuppressive molecule, but also participates in regulating

the expression of other immunosuppressive molecules such as

PD-1 and PD-L1, thereby exerting immunosuppressive effects

and affecting the therapeutic effect of immune checkpoint

inhibitors. Therefore anti-lactate combined immunotherapy
Frontiers in Oncology 14
appears to be a more promising treatment modality. In

addition to targeting glycolysis, lactate synthesis and transport,

epigenetic modifying enzymes may also be new therapeutic

targets. Overall, targeting lactate metabolic pathways combined

with immune checkpoint inhibitors may be able to more

selectively modulate immune cell activity, and lactate

modification may be beneficial for in-depth study of more

diseases and their processes.

These findings about lactylation are still in their infancy,

only lactylation is known to be written into enzyme p300, it is

not clear which enzymes recognize lactylation, and more

lactylation “writers” as well as “readers” and “erasers” have yet

to be discovered. Studies have shown that in a variety of cancers,

key enzymes involved in glucose metabolism are rich in non-

histone lactate salt modifications, how do they in turn regulate

lactate metabolism? Is there crosstalk between lactate

modifications and other PTMs? These details all deserve

further study.
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Glossary

PTM Post-translational modification

HCC Hepatocellular carcinom

TME Tumor microenvironment

MAFLD Metabolic associated fatty liver

NAFLD Nonalcoholic fatty liver disease

NASH Nonalcoholic steatohepatitis

CO2 Carbon dioxide

TCA Tricarboxylic acid

PEP Phosphoenolpyruvate

LDHA Lactate dehydrogenase A

GDH Glutamate dehydrogenase

DC Dendritic cells

MCT Monocarboxylate transporter

HK Hexokinase

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

PKM2 Pyruvate kinase 2

LDH Lactate dehydrogenase

TACE Transarterial-chemoembolization

GPR81 G protein-coupled receptor 81

PDK Pyruvate dehydrokinase

PDH Pyruvate dehydrogenase

HIF-1a Hypoxia-inducible factor 1a

PCAF P300/CBP-associated factor

NK Natural killer

Tregs Regulatory T cells

CTLs Cytotoxic T lymphocytes (CTLs)

NKTs Natural killer T cells

TAMs Tumor-associated macrophages

VEGF Vascular endothelial growth factor

ARG1 Arginase-1

MDSCs Myeloid-derived suppressor cells

PHD Prolyl hydroxylase

BMDM Bone marrow-derived macrophages

INF-g Interferon gamma

LGSH Lactyl-glutathione

GLO2 Glyoxalase 2

(Continued)
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HDAC Class I histone deacetylases

BCAP Phosphoinositide 3-kinase

TIMs Tumor-infiltrating myeloid cells

NSCLC Non-small cell lung cancer

VHL Inactive von Hippel-Lindau

ccRCC Clear cell renal cell carcinoma

PDGFRb Platelet-derived growth factor receptor beta

LCSCs Liver cancer stem cells

ALDOA Aldolase A

LDHi Lactate dehydrogenase inhibitor

NTT Non-tumor tissues

PD-1 Programmed cell death protein-1

CTLA-4 Cytotoxic T lymphocyte antigen

TIGIT T cell Ig and ITIM domain

TIM-3 T cell immunoglobulin domain and mucin domain-3

LAG3 Lymphocyte activation gene 3

BTLA B and T lymphocyte attenuator

2-DG 2-Deoxy-D-glucose

3-BrPA 3-Bromopyruvate

ESCC Esophageal squamous cell carcinoma
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