
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Rudolf A. Werner,
University Hospital
Würzburg, Germany

REVIEWED BY

Anns Sarnelli,
Scientific Institute of Romagna for the
Study and Treatment of Tumors
(IRCCS), Italy

*CORRESPONDENCE

Arman Rahmim
arman.rahmim@ubc.ca

SPECIALTY SECTION

This article was submitted to
Radiation Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 06 October 2022
ACCEPTED 11 November 2022

PUBLISHED 15 December 2022

CITATION

Rahmim A, Brosch-Lenz J,
Fele-Paranj A, Yousefirizi F, Soltani M,
Uribe C and Saboury B (2022)
Theranostic digital twins for
personalized radiopharmaceutical
therapies: Reimagining theranostics via
computational nuclear oncology.
Front. Oncol. 12:1062592.
doi: 10.3389/fonc.2022.1062592

COPYRIGHT

© 2022 Rahmim, Brosch-Lenz,
Fele-Paranj, Yousefirizi, Soltani, Uribe
and Saboury. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Perspective
PUBLISHED 15 December 2022

DOI 10.3389/fonc.2022.1062592
Theranostic digital twins for
personalized radiopharmaceutical
therapies: Reimagining
theranostics via computational
nuclear oncology

Arman Rahmim1,2,3*, Julia Brosch-Lenz2, Ali Fele-Paranj2,3,
Fereshteh Yousefirizi2, Madjid Soltani2,4, Carlos Uribe1,2,5

and Babak Saboury2,6

1Department of Radiology, University of British Columbia, Vancouver, BC, Canada, 2Department of
Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada, 3School of Biomedical
Engineering, University of British Columbia, Vancouver, BC, Canada, 4Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, ON, Canada, 5Department of Functional
Imaging, BC Cancer, Vancouver, BC, Canada, 6Department of Radiology and Imaging Sciences,
Clinical Center, National Institutes of Health, Bethesda, MD, United States
This work emphasizes that patient data, including images, are not operable

(clinically), but that digital twins are. Based on the former, the latter can be

created. Subsequently, virtual clinical operations can be performed towards

selection of optimal therapies. Digital twins are beginning to emerge in the field

of medicine. We suggest that theranostic digital twins (TDTs) are amongst the

most natural and feasible flavors of digitals twins. We elaborate on the

importance of TDTs in a future where ‘one-size-fits-all’ therapeutic schemes,

as prevalent nowadays, are transcended in radiopharmaceutical therapies

(RPTs). Personalized RPTs will be deployed, including optimized intervention

parameters. Examples include optimization of injected radioactivities, sites of

injection, injection intervals and profiles, and combination therapies. Multi-

modal multi-scale images, combined with other data and aided by artificial

intelligence (AI) techniques, will be utilized towards routine digital twinning of

our patients, and will enable improved deliveries of RPTs and overall healthcare.

KEYWORDS

digitals twins, theranostics, personalized medicine, radiopharmaceutical therapies,
molecular imaging
Introduction

Patient data, including images, are not the end, but only the beginning of a complex

path. They provide the basis for healthcare providers and clinicians to diagnose diseases
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and to make wise treatment and care decisions for patients. This

involves thought-experiments by clinicians: if I pursue treatment

plan A, what will happen? What if I prescribe treatment plan B?

What about plan C, and so on. Digital twins are virtual avatars of

individual patients designed precisely to aid with that. They are

not merely images. They embody biological and physiological

relationships. They will not fit existing DICOM formats, as we

are used to for images. This is not about manipulating images as

we are used to with existing powerful software, but about

experimenting with digital versions of our patients, i.e. virtual

therapies, to answer questions about therapy effects and to

propose optimal treatments for individual patients.

Digital twins have been used extensively in engineering for

years, and oncology is just now at the cusp of utilizing them (1).

In the original industrial context, digital twins have involved use

of mathematical and computational models to virtually

represent a physical object, predict its behavior, and facilitate

decision-making to improve that behavior in the future (2). As

an example, digital twinning was defined by NASA in 2010 as an

“integrated multi-physics, multi-scale, probabilistic simulation

of a vehicle or system that uses the best available physical

models, sensor updates, etc., to mirror the life of its flying

twin” (3). More recently, digital twins have been used to refer

to methods that can collect large datasets with accurate

mathematical models to characterize important aspects of the

spatial and temporal dynamics of the phenomena being studied.

The idea of creating and using digital twins to encapsulate

patient dynamics and to individualize the care of patients has

grown in popularity. More specifically for oncology, this is

related to improvements in experimental techniques for

quantitatively characterizing cancer as well as improvements

in the mathematical and computational sciences (2). These

include development of tissue-scale models for 1) identifying

pathophysiological characteristics of tumors (4), 2) predicting

spatiotemporal changes of tumor size, shape, tumor cell density,

and response to administered therapies (5, 6), and 3) identifying

and optimizing treatment options on a patient-specific basis.

These have created significant interest in developing and

utilizing image-guided digital twins for clinical oncology (7).

Medical imaging data from procedures such as x-ray CT, MRI

and PET, can provide longitudinal in vivo measurements of

cancers of individuals, and can be used to inform modeling at

the tissue scale.

Building a digital twin starts with a blueprint of human

biology (digital template) and then integrates all that we know

about a patient during one’s lifetime (personalization). It can be

updated with real-time data (e.g. patient’s overall health

condition and existing diseases, diagnostic imaging,

histopathologic results from biopsies as well as pre- and intra-

therapeutic imaging or cumulative absorbed radiation doses)

reflecting history and current condition of the patient. It will

have different versions, representing the patient’s evolution at

different points in time. Importantly, it can be used for virtual
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simulation of interventions and to predict their effects to aid

physicians in complex treatment planning scenarios towards

improved personalized therapies.

A patient’s digital twin can be created using advanced biomedical

imaging, which includes patient-specific measurements of tumor

growth and response as well as noninvasive, serial observations of

the patient’s physical state’s spatiotemporal variations. Medical

imaging information gathered from patients can be used to

initialize and customize mathematical models. The image-guided

mathematical model parameters enable personalized digital

representations of patient disease and tumor characteristics,

allowing for forecasting of treatment and patient response. The

objective is to improve treatment outcomes for specific patients, by

developing patient-individual models to simulate disease progression

and treatment outcomes as well as to pinpoint mechanistic

explanations for patients’ varying responses to treatment (8, 9).

There are increasing interests and efforts in the space of

digital twinning of patients (10, 1). And we believe that amongst

the most natural, feasible and on-the-near-immediate-horizon

approaches to digital twins are so-called theranostic digital twins

(TDTs), which we describe next.
Theranostic digital twins

Theranostics in nuclear medicine is a rapidly emerging field

of practice, in which the same target is used for molecular

imaging as well as molecular targeted radiopharmaceutical

therapies (RPTs) (11). As an example, if cancer cells in a

patient express a particular receptor, and we design a molecule

to bind to that target, then radiolabeling such a molecule with an

isotope that decays via the emission of gamma rays or positrons

(that lead to gamma rays) enables molecular imaging, while

radiolabeling with an isotope that emits particles (e.g. alpha or

beta particles, or Auger electrons) enables RPTs.

Theranostic clinical trials have shown notable success [e.g.

(12–14)]. However, the existing one-size-fits-all paradigm for

treatment activity is suboptimal (15), and arguably unethical.

Each RPT cycle typically consists of injecting fixed radioactivities

of the radiopharmaceutical to all patients undergoing therapy

(e.g. 200mCi for Lu-177-PSMA and Lu-177-DOTATATE). In

other words, molecular imaging is presently used only to identify

which patients can benefit from RPTs, and not to optimize their

therapies. In fact, the range of uncertainties in absorbed doses

delivered to organs-at-risk (max:min) can easily span 1 order of

magnitude (16, 17). By injecting our patients with the same

radioactivities independent of patient differences (such as pre-

treatments, tumor burden, weight, height, etc.), we are all but

guaranteeing for them to receive different absorbed doses!

The effect of RPTs on tumors and normal tissues is through

absorbed dose (dose-effect paradigms). Variation in absorbed

doses is highly uncontrolled at the moment but can be predicted

and managed. That is the irony of fixed administered activity.
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Fixed administered activity and unknown variations in absorbed

dose have led to conservative paradigms in which many patients

are potentially being undertreated and possible dose-toxicity

relationships remain unrevealed. We can do better for our

patients. We should do better for our patients. And TDTs

have a significant role to play to overcome the limitation of

non-personalized RPTs.

We need to measure absorbed doses delivered to our

patients. More importantly, we need to predict absorbed doses

delivered to our patients, and we are commonly doing neither!

In retrospective dosimetry, we can achieve the former; e.g. Lu-

177 radiolabeled molecules which are used for RPTs also emit

gamma rays that enable utilization of quantitative SPECT/CT

imaging to estimate absorbed doses delivered to tumors and

organs-at-risk. But can we also do predictive dosimetry? Can we

use a pre-therapy PET/CT scan and/or intra-therapy SPECT/CT

scan(s) to predict absorbed doses delivered in future cycles of

RPTs? The answer, most likely, is positive, and TDTs may play a

key role to solve this puzzle.
Paradigms and architectures

Figure 1 depicts an overall view of TDTs. The TDT uses all

available patient-specific information, including imaging data,

documentation, tumor genomics, and combines this with

knowledge derived from a population of patients .

Physiologically based pharmacokinetic (PBPK) models can be

developed based on theranostics, enabling simulation of different

treatment scenarios (e.g. injected radioactivities) to help select

optimal treatment scenarios for individual patients. AI can be used

to assist in processing of the data, improving data quality and to

solve inverse problems to personalize models to individual

patients, in order to predict therapy responses. The TDT as

such can be continuously updated with new data from the patient.

The TDT is much more than a specific solution. It is a

discovery/solution-providing paradigm. It enables asking of

numerous important questions and providing answers to them

[e.g. (18, 19)]. It enables us to investigate a variety of

intervention parameters that can be optimized; e.g. optimal

injected radioactivities (for a given specific activity), sites of

injection, injection intervals and profiles, and combination

interventions/therapies (e.g. use of cardiovascular stress,

blocking of receptors, radiosensitizers, immunomodulation,

etc.). TDTs can help us ask important questions towards

precision oncology for the individual patient and to look for

reliable answers to those questions.

TDTs can make significant use of PBPKmodels. An example

is shown in Figure 2. PBPK models have been used in the past to

gain understanding of important factors and optimal solutions

at the population level (20–23), but also have the prospect of

being personalized (18, 24) including use of AI methods to this

end (i.e. inverse problems) (25). PBPK models commonly
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involve ordinary differential equations (ODEs), relating

different compartments to one another. They can be stored

and shared, for instance, in the XML format, and more

specifically, SBML (system biology mark-up language) (26)

format (e.g. see repository of models: https://www.ebi.ac.

uk/biomodels).

PBPK models of the future may also involve other types of

mathematical models such as spatiotemporal models (27). This

includes partial differential equations (PDEs) having derivatives

also with respect to space to better model spatial redistributions

of radiopharmaceuticals within tumors and organs, as well as

discrete and stochastic models (28), which are also very common

in systems biology research. For optimal RPT planning, we likely

have to go even further than conventional dosimetry. The

limiting factor of administered activity is normal organ

damage (18). Biologic events happen at the cell- and tissue-

levels, thus micro-scale dosimetry is an important consideration

and can be included in the TDT using macro- to micro-scale

(multi-scale) modeling.

Building a digital twin should use the following criteria as a

blueprint for any particular oncology applications: 1) What

objectives does the digital twin have? 2) How much complexity

is required? 3) Is there a suitable mechanism-based mathematical

model? 4) Are the necessary data accessible or available? 5) Is it

possible to characterize the uncertainties? The uncertainties can be

in the observational data, model selection and parameter

prediction steps (2). Uncertainties can emerge in (i) data

acquisition, caused by experimental measurement errors, (ii)

model selection, from assumptions and numerical techniques

used to solve the mathematical models, and (iii) model

parameters, due to intra- and inter-patient heterogeneities as

well as the inherent stochasticity of tumor growth. To improve

the accuracy of the modeled results, all these uncertainties must be

taken into account both during model calibration and when

interpreting predictions of digital twins (29).
Discussion: Towards computational
nuclear oncology

The goal of personalized RPTs is to tailor the treatment for each

patient in order to maximize tumor control while minimizing

critical damage to the organs at risk. In order to predict tumor

response, we have to integrate dosimetry data with biological

characteristics of the malignancy, including radiosensitivity,

tumor heterogeneity and tumor microenvironment profile

(particularly immune system activity). Similarly, normal organ

toxicity is the interaction of deposited energy causing DNA

damage (dosimetry) and biology of the organ (functional reserve,

radiosensitivity, and repair capacity). The paradigm which

integrates these puzzles is Computational Nuclear Oncology

(CNO) and the platform which makes it possible is TDT.
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FIGURE 1

The TDT combines population-based knowledge with patient-specific information such as medical imaging, tumor genomics, etc. It can utilize
physiologically based pharmacokinetic (PBPK) modeling towards individual therapy planning. AI may assist in different steps including data
extraction and inverse methods for personalization of TDTs. The TDT can be updated with new collected data.
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Future of the field of theranostics is very bright if we stop

taking a back-seat on the massive opportunities for personalization

of therapies.Wemust bring together the fields of nuclear medicine,

medical physics, dosimetry, radiobiology, multi-scale modeling,

complex systems modeling, systems biology, computational

medicine and AI to deliver optimal healthcare. The future

includes use of advanced PET and SPECT imaging, e.g. long

axial FOV PET scanners, combined with other imaging (e.g. CT

or MR perfusion) and clinical data to enable generation of reliable

TDTs, and predictive and personalized dosimetry, for optimal

delivery of healthcare to our patients.

TDTs coupled with appropriate computational tools can be

used for predictive absorbed radiation dose modeling; e.g. a

model can be personalized based on pre- and/or intra-therapy

molecular imaging. Different injection strategies and therapeutic

intervals will be explored to improve delivered radiation dose to

tumors while sparing healthy tissue. Corrective strategies such as

adaptive dose planning, or adjuvant therapy with locoregional

therapy (e.g. ablative therapy or external beam radiation

therapy), or systemic chemotherapeutic strategies (e.g.

immunotherapy or CAR-T therapy) can also be explored.

An example for direct application of TDTs would be in

treatment of liver tumors using Y-90 microspheres for

radioembolization. The intraarterial administration of the

microspheres is simulated using Tc-99m macroaggregated

albumin prior to the actual therapy to ensure a safe and
Frontiers in Oncology 05
efficient therapeutic application. SPECT/CT imaging of Tc-

99m distribution within the patient’s liver and lung can be

used to precisely plan the therapy and further to model and

predict treatment response. This 3D distribution image from

treatment simulation can update the TDT of the patient and the

treatment decision between surgery, external radiation or

systemic therapies can be carefully modeled and guide the

final therapy plan.

Apart from personalized radioembolizations, we envision

application of TDTs in RPTs; e.g. Lu-177-PSMA therapy of

advanced prostate cancer. Pre-therapeutic F-18-PSMA or Ga-

68-PSMA PET/CT images will be adopted in TDTs with PBPK

modelling to generate individualized therapy plans for patients

including the therapeutic activity, number of therapy cycles,

time between cycles and more parameters.

Image-guided digital twins for clinical oncology face a

number of challenges: (i) Current mathematical models may

have limited modeling of biological processes at different-scales

thus there is a need for improved multi-scale modeling. (ii) Only

a small portion of the pertinent cancer biology is examined by

common imaging modalities. (iii) Computational techniques

such as finite element methods (FEM) and finite difference

methods (FDM) have limitations related to geometric

discretization. The use of hybrid AI-mechanistic approaches

built as neural network encoding may be able to entangle

these restrictions. (iv) Model validation, model selection, and
A B

D

C

FIGURE 2

(A) An example PBPK model, utilizing ordinary differential equations (ODEs), which can also be called Physiologically-Based RadioPharmacoKinetic
(PBRPK) Model. This model include organs (B) with and (D) without receptors, and includes (C) the kidney which has more sophisticated modeling.
Radiopharmaceutical exchange (hot and cold components) between the different compartments is also represented.
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uncertainty quantification are other limitations which need to be

tackled, and present important frontiers.

It is important to remember, as mentioned in the introduction,

that uncertainties in absorbed doses by organs-at-risk (max:min)

span an order of magnitude in current non-personalized RPT

practice (16, 17). TDTs will not have zero uncertainties, but are

expected to significantly reduce these uncertainties, and to act as

powerful tools for clinical treatment decisions. All in all, this will

provide patients with truly personalized treatment decisions

towards optimizing therapeutic outcomes.

The future is bright if we day-dream, do what is right, and

open ourselves to the massive opportunities that enable better

care for our patients.
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