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In addition to attaining complete or near complete cytoreduction, the instillation of

select heated chemotherapeutic agents into the abdominal cavity has offered a

chance for cure or longer survival inpatients with peritoneal surface malignancies.

While the heating of chemotherapeutic agents enhances cytotoxicity, the resulting

systemic hyperthermia has been associated with an increased risk of severe

hyperthermia and its associated complications. Factors that have been

associated with an increased risk of severe hyperthermia include intraoperative

blood transfusions and longer perfusion duration. However, the development of

severe hyperthermia still remains largely unpredictable. Thus, at several

institutions, cooling protocols are employed during cytoreductive surgery with

hyperthermic intraperitoneal chemotherapy (CRS-HIPEC). Cooling protocols for

CRS-HIPEC are not standardized and may be associated with episodes of severe

hyperthermia or alternatively hypothermia. In theory, excessive cooling could

result in a decreased effectiveness of the intraperitoneal chemotherapeutic

agents. This presumption has been supported by a recent study of 214 adults

undergoing CRS-HIPEC, where failure to attain a temperature of 38° C at the end

of chemo-perfusion was associated with worse survival. Although not statistically

significant, failure to maintain a temperature of 38° C for at least 30 minutes was

associated with worse survival. Although studies are limited in this regard, the

importance of maintaining a steady state of temperature during the hyperthermic

phase of intraperitoneal chemotherapy administration cannot be disregarded. The

following article describes the processes and physiological mechanisms

responsible for hyperthermia during CRS-HIPEC. The challenges associated with

temperature management during CRS-HIPEC and methods to avoid severe

hypothermia and hyperthermia are also described.
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Introduction

Peritoneal dissemination of disease is a common manifestation of

gastrointestinal and gynecological malignancies including those of

ovarian, colon, gastric, small intestine and appendiceal origin (1).

Among the peritoneal surface malignancies, disease of colorectal

origin is most common with an estimated prevalence of about 5% (2).

According to a recent study published in the Journal of the

American Medical Association, approximately 60,000 patients are

diagnosed with peritoneal disease in the United States every year (3).

However, over the last couple of decades, there has been an increase in

the incidence of the disease, which can be explained by the

improvement and accessibility to diagnostic imaging (computed

tomography and ultrasound) and the introduction of screening

colonoscopy for high-risk patients (4).

The presence of peritoneal disease is associated with more rapid

disease progression, poor prognosis, and a significant decrease in

survival. As expected, survival rates differ according to the location

and histology of the primary tumor. For instance, according to the

multicentric prospective study EVOCAPE I (Evolution of Peritoneal

Carcinomatosis), the median survival in patients with peritoneal

disease is 2.1 months for those with pancreatic cancer, 5.2 months

for advanced colorectal cancer and 3.1 months in patients with

advanced gastric cancer (5).

Despite significant advances in treatment, systemic chemotherapy

alone has shown to have minimal effect on the progression of certain

types of peritoneal disease (6). Furthermore, systemic chemotherapy

is often associated with severe dose-limiting toxicity in many patients

and as a result cytoreductive surgery combined with hyperthermic

intraperitoneal chemotherapy (CRS-HIPEC) has become a more

popular treatment. CRS-HIPEC offers an opportunity for the

eradication of macroscopic disease and treatment of microscopic

disease, with a benefit of a decreased risk of systemic toxicity and

prolongation of survival.

CRS-HIPEC is an extensive surgical procedure that has become

part of the standard of care for patients with a select group of

peritoneal surface malignancies (7). The procedure typically

involves multiple organ resections, peritonectomies, and the

instillation of heated chemotherapy (up to 42o C) into the

abdominal cavity for up to 120 minutes. The goal of intra-

abdominal hyperthermia during CRS-HIPEC is to enhance the

cytotoxicity and penetration of chemotherapeutic agents into

malignant disease (8, 9). The mechanism for this synergistic effect

may be related to 1) hyperthermia-induced increased permeability of

chemotherapeutic agents into tumor cells, 2) increased drug-induced

DNA damage, 3) inhibition of the repair of drug-induced DNA

damage, 4) and the expression of heat shock proteins by tumor

cells which ultimately potentiates the effect of Natural Killer cells

(antitumor response) (10, 11).
HIPEC technique

HIPEC is typically delivered to the patient in the operating room

after cytoreduction surgery has been completed and hemostasis is

confirmed. The procedure involves placement of cannulas that
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introduce (inflow) and remove (outflow) fluid from the abdominal

cavity, which is then recirculated through a perfusion circuit driven

by a roller pump. To ensure adequate flow between the inflow and the

outflow cannulas, the peritoneal cavity it filled with fluid (filling

phase) and the perfusion machine adjusted to keep a steady flow

between the reservoir and the patient (12). Occasionally, the

perfusionist may need to add fluid to the circuit in order to achieve

this goal. The heat exchanger keeps the perfusate temperature at 43 to

45°C. The goal of this is to maintain the intraperitoneal temperature

between 41 and 43°C. Once the in/out flow and temperatures are

relatively stable, the chemotherapeutic agent is added to the pump

primer (12, 13). This solution, also known as the perfusate, is

circulated between the patient and the machine for up to 120

minutes. During this time, temperature probes within the

abdominal cavity provide information regarding the degree of

hyperthermia. There are two methods to administer HIPEC

(Figure 1): the open coliseum technique and the closed abdomen

technique (13–17). During the open technique, the abdominal wall

skin edges are elevated with a retractor and the abdominal contents

are directly agitated manually. In contrast, in the more popular closed

technique, the skin is completely sutured closed along the laparotomy

incision and the abdominal wall is manually agitated during the

perfusion time to promote uniform heat distribution throughout the

peritoneal cavity.

Although each technique possesses unique advantages (Table 1),

such as the capacity to manually stir the fluid in the open technique or

the ability to rapidly achieve and maintain hyperthermia in the closed

technique, neither has demonstrated superior outcomes compared to

the other (12, 14, 18). In recent years, following the increasing use of

minimally invasive surgery, some patients have received laparoscopic

HIPEC, avoiding the need of a midline laparotomy to place the

cannulas by using the initial laparoscopy ports (7, 24–26).

The chemotherapeutic agents administered during HIPEC

include cisplatin, oxaliplatin, mitomycin C, paclitaxel, and

doxorubicin. These chemotherapeutic agents are employed during

HIPEC procedures since they are stable at high temperatures and

have a synergic effect with heat (8). Noticeably, the cytotoxic effect of

intraperitoneal chemotherapy depends on the concentration of the

drug and the duration of chemotherapy instillation. The former,

depends on the pharmacokinetic properties of the drug (e.g., half-

life), the type offluid administered along with chemotherapy (isotonic

saline or dextrose containing solution), and the volume infused (7).

The most common core target temperature during HIPEC is

42°C. However measurements at different sites in the abdomen can be

highly variable (20). For instance, inflow temperatures in recent trials

have ranged from 41 to 45°C, while aiming for target intra-abdominal

fluid temperatures between 40 and 43°C (27–29).

HIPEC machines available are either custom-made commercial

devices (e.g., ThermoChemTM, Hyperthermia PumpTM,

PerformerHTTM), or ‘homemade’ devices (cardiopulmonary bypass

machine used in conjunction with a water bath) (7, 30). Some

commercial machines heat the solution through a water bath, while

others use electromagnetic induction. As mentioned before, all

devices have a reservoir that helps adjust the fluid volume to the

peritoneal cavity, compensates for variable outflow volume, prevents

the circulation of air, and quickly removes the solution from the

abdomen in case of emergency (12). Anecdotally, the volume of this
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reservoir is typically maintained at around 500 mL. Although one

inflow and one outflow line are always connected to the HIPEC

machine, there is a variable number of cannulas or catheters that

reach the patient. According to Gronau et al., these numbers are

seldom reported (31). Given that the volume of the solution held

between the reservoir and circuit is variable or sometimes even

unknown, the actual amount of chemotherapy in contact with the

patient at a given time depends entirely on the individual HIPEC

set up.

A novel approach to intraperitoneal chemotherapy instillation

using pressurized aerosolized chemotherapy (PIPAC) has been

described and tested in humans (32, 33). PIPAC aims to address

the shortcomings of HIPEC by improving the distribution and

penetration of chemotherapy and by reducing local and systemic

toxicities (33). Additionally, PIPAC allows the precise determination

of instant and total drug given (32). Further technological advances

have also combined PIPAC with therapeutic hyperthermia (hPIPAC)

(34). Proponents of this technique describe that the drug regimens

used in PIPAC are more stable than those used for HIPEC (35).

Currently, PIPAC is mostly perceived as a palliative or neoadjuvant
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therapy (in preparation for CRS/HIPEC). (PMID: 35602919. As

PIPAC is not routinely administered with hyperthermia, further

discussion is out of the scope of this manuscript.
Biophysical considerations of intra-
abdominal hyperthermia

In order to understand the temperature changes during CRS-

HIPEC, it is necessary to comprehend principles of physics and

human thermoregulation. From the perspective of physics, one can

describe the human body (bounded by the skin) as an open

thermodynamic system. During HIPEC, this system is surrounded

by the operating room, the operating table, the perfusion machine,

and the cooling systems. Altogether, these comprise the

thermodynamic universe in which we observe the flow of energy. In

this context, a HIPEC is “simply” the flow of thermal energy through

the body over a predetermined time.

Because only one inflow and one outflow line are connected

to the HIPEC machine, the energy transmitted to the patient
FIGURE 1

Methods for HIPEC administration. Both methods involve the use of a reservoir, roller pump system, heater, and connecting circuits. Temperature is
monitored through the HIPEC procedure. Left: the open technique keeps the cavity open and retracts the wall to increase its filling capacity.Typically
uses a Tenckhoff catheter for inflow and 2 catheters on each side for outflow as described by Sugarbaker et al. Right: the cavity is closed temporarily or
definitely for HIPEC. Variable number of cannulas are used. In recent years it has been used after laparoscopic cytoreductive approach.
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can be calculated by using; 1) the difference between the inflow and

outflow temperatures, 2) the HIPEC flow, and 3) the specific heat

capacity of the hyperthermic fluid. For distilled water and normal

saline, the specific heat capacities have been estimated to be 4179 and

4139 J Kg-1°C-1, respectively (36). This energy results in a

temperature change consistent with the heating properties of the

tissues (37).

In general, heat transfer is the result of the balance between heat

gain and heat loss. Heat gain is defined by the basal metabolic rate of

the patient and the hyperthermic fluid, whereas heat loss is the result

of the body’s interaction with the colder surroundings, such as the

cooling systems, clothing, and the operating room. Over the last few

decades, extensive research in thermal engineering has improved our

knowledge of the human thermal responses to different

environmental conditions, which has resulted in multiple predictive

thermophysical and mathematical models (38–40). As explained by

Stolwijk, a human thermophysical model consists of a passive

(controlled) and an active (controlling) system. The passive system is

composed of the tissues (and their respective heating properties) and

the circulatory system (41). Within the body, heat is transferred by

conduction between adjacent tissue layers and by convection via the

blood flow as a central blood compartment. It is well known that

anthropometric and demographic variables (age, sex, body-mass

index) directly affect the heat characteristics of the human body

(42), which explains why these variables have been found to

independently predict hyperthermia during HIPEC (43, 44). The

active system, in contrast, describes the thermoregulatory system. For

example, common auto-regulatory responses to hyperthermia are

vasodilatation and sweating, thereby increasing the heat

redistribution to superficial areas of the body and the evaporative

heat losses (Figure 2) (45). Ultimately, the computational models

integrate these systems to predict temperature responses after heat or

cold exposures in humans.
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Only a few authors have approached HIPEC with mathematical

or physical models of intra-abdominal hyperthermia. Examples

include the mathematical human model proposed by Ladhari et al.

and the animal treatment planning software model of Loke et al. (46,

47) Remarkably, these studies highlight the importance of patient and

perfusion characteristics in the resultant intra-abdominal and core

temperatures during HIPEC. Unfortunately, none of these models

constitute a complete thermo-physical model, nor have they

considered the effects of anesthesia in the thermoregulatory system

(45, 48, 49).

The efficacy of CRS-HIPEC is directly related to the capacity to

reach and maintain a target peritoneal temperature for as long as

possible. However, with the continuous infusion of the heated

perfusate, systemic hyperthermia is very likely to develop. While

intra-abdominal hyperthermia may offer survival benefits, high core

temperatures can lead to physiological derangements. Mild core

(esophageal) hyperthermia is defined by core temperatures greater

than 38°C, while moderate to severe hyperthermia begins at

temperatures greater than 39°C. Patients undergoing CRS-HIPEC

are at risk of moderate-to severe hyperthermia which is associated

with several adverse effects (Figure 3) (50). These side effects are

secondary to the close contact of the heated perfusate with the

peritoneal cavity or are related to the systemic hyperthermia. In

regard to direct effect of the heated perfusate, side effects include

edema of the intestinal wall, ileus, bowel perforation, fistula and

reduced cytotoxicity of some chemotherapeutics agents like

mitomycin C (51). With regard to systemic hyperthermia, side

effects include; cardiac arrhythmias, intravascular depletion,

cardiovascular collapse, immunosuppression, poor neurologic

outcomes, renal failure, coagulopathies, seizures and an increased

risk of severe 30-day postoperative complications (44, 52–55). For

instance, Hendrix et. al., found that patients undergoing CRS-HIPEC

who reached severe hyperthermia (esophageal temperature of
TABLE 1 Comparison of open and closed HIPEC techniques.

Features Closed technique Open technique

Technology
variations

May be used with minimally invasive cytoreduction. Traditional open coliseum, “closed technique” with open access
(7).

Temperature
control

Easier to achieve target temperature (18). More difficult to reach target temperature (18).

Chemotherapy
distribution

Dependent on abdominal distention, pressure, and external shaking.
Pooling of chemotherapy is conceivable (18).

Manual stirring of fluid and organs is possible (7).

Temperature
distribution

Follows the inflow-to-outflow gradient (at studied parameters) (19). Manual stirring of fluid and organs is possible. Heat loss
dissipates over the exposed abdomen (additional posterior-to-
anterior gradient).

Volume Limited to usual filling capacity of the cavity. Smaller variations in total volume
used between studies (20).

Increased due to tenting of the abdominal wall. Larger variations
in total volume used between studies (20).

Pressure Can be increased.
May improve tissue penetration (21, 22).

No additional pressure can be exerted.

Occupational
hazard

Closed circuit limits agent exposure. Risk of a splash accident could still occur. Room staff at higher risk of splash and aerosolization. Surgeon
may decrease skin exposure with double gloving (23).

Visualization of
cavity

Only performed at the end of perfusion. A laparoscopic HIPEC alternative for real-
time assessment has been described (26917929)

Allows detection of immediate complications and continued
cytoreduction (7).

Physiologic
Changes

Related to core-body hyperthermia. Related to core-body hyperthermia and intrabdominal pressure.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1062158
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ramirez et al. 10.3389/fonc.2022.1062158
≥39.5°C) at any time were more likely to develop postoperative

complications (HR= 3.77, 95% CI 1.56-9,14), and this complication

was most likely to be severe according to Clavien-Dindo classification

(HR= 3.46, 95% CI 1.10-10.95) (44).

The central nervous system is particularly vulnerable to

hyperthermia. Hyperthermia decreases cerebral perfusion when

core temperature increases by more than 1.2°C (56). Patients who

become acutely hyperthermic might experience cognitive

dysfunction, seizures and change in consciousness (from lethargy to

coma and death). Interestingly, hyperthermia can cause changes in

memory even if the hyperthermic event is short (1 hour) and mild

(body core temperature 38.8°C) (57, 58). Additionally, hyperthermia

can also affect attention and processing information (59). A

temperature above 40°C can be associated with a permanent

neurological damage. This effects seems to be secondary to cellular

changes and/or cell death. Other mechanism of central nervous

system disarrangement includes direct neurotoxicity from

hyperthermia combine with inflammation (60).

The circulatory response to hyperthermia is secondary to

increased metabolism and increased oxygen demand (61). The

hyperthermia induced hyper-metabolic state is characterized by an

increase in heart rate, cardiac output, central venous pressure, systolic

function, and a decreased in systemic vascular resistance (due to

redistribution of blood flow to the cutaneous vasculature) and a
Frontiers in Oncology 05
decrease in circulating intravascular volume (62). Hyperthermia also

effects the electrical activity of the heart by increasing the discharge of

the sympathetic nervous system. This inotropic effect can lead to

sinus tachycardia, junctional rhythm and sustained supraventricular

and ventricular tachyarrhythmia (63). Additionally, the incremental

activity of the sympathetic nervous system causes vasoconstriction of

the splanchnic and renal circulation which combine with

hypovolemia during HIPEC increases the risk of acute kidney

injury. Interestingly, preclinical data suggest that hyperthermic

perfusion itself does not aggravate HIPEC-induced acute renal

failure and indeed is mostly the cytotoxic side effects of

chemotherapy that causes the acute kidney injury in patients

undergoing CRS-HIPEC (64).

It is important to point out that the majority of the side effects of

hyperthermia has been described in preclinical and clinical models of

hyperthermia such as sepsis, heat stroke or malignant hyperthermia,

however the specific data regarding the side effect of hyperthermia in

patients undergoing CRS-HIPEC remains unknown.

Several publications have described intra-abdominal and core-

body temperature changes in patients undergoing closed HIPEC. In

one study, Rettenmaier et al. collected data of the intra-abdominal

fluid temperature in five locations: upper left and right quadrants,

lower left and right quadrants, and the suprapubic region. HIPEC was

administered with two inflow and two outflow catheters, using a flow
FIGURE 2

Temperature behavior during HIPEC. The heated perfusate is recirculated through the abdominal cavity. The fluid temperature follows a gradient
between the inflow and the outflow catheters. Inside the cavity, the heat is dissipated between adjacent tissue layers via conduction, while distant tissues
receive heat via convection from the blood flow. Thermoregulatory responses to hyperthermia (e.g., vasodilatation and sweating) allow heat dissipation
outside the human body.
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rate of 1.6-1.8 L/min and aiming for an inflow-to-outflow gradient of

1.5°C. The authors found that the inflow-to-outflow gradient

decreased significantly within the first 15 minutes of HIPEC and

remained stable thereafter. The five regions demonstrated

temperatures that followed such gradient, with minimal variation

between them (19) Due to the proximity to the intra-abdominal fluid,

the bladder temperatures also rose more rapidly in the initial period,

and continued to show heat gain over time (43). Of note, the

relationship between the perfusate and the bladder temperatures is

likely to depend on the individual perfusate catheter configuration

within the abdominal cavity (e.g., inflow placed in the upper or lower

quadrants). These considerations are particularly relevant for closed

HIPECs, given the inability to manipulate the catheter configuration

once perfusion has started. Some authors have noted, a modest

correlation between the change in the intraperitoneal and bladder

temperatures and the change in core-body temperature (65). As such,

bladder temperature changes may help clinicians guide changes in the

cooling protocols to prevent unwanted systemic hyperthermia.

Depending on the definition, the incidence of hyperthermia is quite

variable with one third to one half of the patients experiencing it (43,

44). At the end of HIPEC, the abdominal cavity is drained of

hyperthermic fluid and washed, allowing the patient to return to

normothermic conditions. Hypothermia during this period is not

uncommon and authors have reported the potentially devastating

risks of rebound hypothermia and cardiac arrest after CRS-

HIPEC (66).

The literature still needs to address several issues. First, it seems

that intraperitoneal temperature stability is difficult to achieve despite
Frontiers in Oncology 06
established perfusion protocols (51). Exploring the potential causes of

these problems (e.g., perfusion set up, patient’s position, type of

device) may lead to a more predictable administration of therapeutic

hyperthermia. Second, thermal dosimetry principles are difficult to

apply to microscopic tumor spread throughout the peritoneal cavity

and further research will help to improve the safety and efficacy of this

medical intervention.
Temperature management and cooling
protocols during CRS-HIPEC

The HIPEC technique requires close communication between the

surgical team, the perfusionist and the anesthesiologist. The role of

the perfusionists is to control the temperature, the volume and the

flow of the perfusate. The role of the anesthesiologist is to control

body temperature necessary to maximize the effectiveness of

intraperitoneal chemotherapy while avoiding adverse events

associated with severe systemic hyperthermia. In an effort to avoid

severe core hyperthermia, cooling protocols are widely employed

during CRS-HIPEC. Unfortunately, current cooling protocols are not

standardized and may involve the use of underbody cooling

mattresses, ice packs around the head and axilla, and the use of

forced air warmers operating at ambient room temperatures. A major

disadvantage of these options is the inability to adequately cover

major body surfaces and the lack of a constant closed feedback loop

between the patient’s temperature and the cooling device. Therefore,

there is not a constant re-adjustment of the cooling system and as a
FIGURE 3

Side effects of hyperthermia. Side effects of hyperthermia during CRS-HIPEC.
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result, temperature control is unpredictable during chemoperfusion.

Another technique widely used to avoid hyperthermia is to perform

controlled hypothermia (by decreasing room temperature, cooling

intravenous fluid and setting forced air warmers to ambient room

temperature). The time for controlled hypothermia is not

standardized. At our institution, it is around 30 minutes to 1 hour

before the initiation of the HIPEC. The time for controlled

hypothermia could be difficult to predict since the time required to

achieve complete cytoreduction could be highly variable.

Occasionally, severe systemic hyperthermia requires the reduction

of intraperitoneal chemoperfusate temperature, potentially reducing

its effectiveness.

There is relatively little data regarding temperature management

during of CRS-HIPEC. For instance, the European Journal of Surgical

Oncology published the Guidelines for Perioperative Care of

Cytoreductive Surgery With or Without Hyperthermic

Intraperitoneal Chemotherapy: Enhanced Recovery After Surgery

(67). In this publication, the group of experts agreed to first;

monitor patient’s temperature during CRS-HIPEC with esophageal

temperature probe, second; keep patient normothermic (36 C°)

during the cytoreduction phase, third; prevent hypothermia with

forced air warmers and warming mattress, fourth; actively cool via

forced air blowers on cool or ambient setting during HIPEC phase

and fifth; allow an increase core body temperature to between 36-41C

° during HIPEC phase. It should be pointed out (and as the authors

mentioned on the guidelines) that while the strength of the data for

active cooling and hypothermia is strong, the data regarding

hyperthermia is limited and weak. The majority of the literature

available describes the physiological implications of hyperthermia but

none of the literature addresses or provides a more detailed guideline

regarding temperature management during the hyperthermic phase

of HIPEC. Several questions remain unanswered, such as what target

temperature should the anesthesiologist achieve during controlled

hypothermia before initiation of HIPEC? For how long does the

patient need to be hypothermic before HIPEC? Does the timing of

controlled hyporthermia change depending of the timing of

chemopefusion? What is the target range of temperature during

HIPEC? What is the maximum temperature allowed during

HIPEC? How can we estimate which patients will have bigger delta

changes in temperature? What about rebound hypothermia

after HIPEC?
Benefits of controlling temperature
during CRS-HIPEC

Survival

While several factors including gender, tumor histopathology,

extra-abdominal disease, and the completeness of cytoreduction have

been shown to influence survival in patients undergoing CRS-HIPEC,

the role of intra-abdominal hyperthermia per se was not established

until recently (68). A retrospective study of 214 patients undergoing

CRS-HIPEC found that development of mild hyperthermia was

associated with age and the type of chemotherapy. Prognostic

factors associated with moderate to severe hyperthermia were the
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duration of the perfusion and blood transfusions. Interestingly,

patients who were unable to achieve a bladder temperature of 38°C

for 30 minutes during the perfusion had worsening recurrence free

survival and overall survival (50) 9 361.
Bowel function

In regards to temperature management of the perfusion, a

retrospective study involving 59 patients found that patients who

had stable temperature control (defined as change of temperature not

exceeding 0.5C°) during the entire HIPEC had less pain, reduced time

to flatus and shortened enteral nutrition and hospital stays.

Unfortunately, oncological outcomes such as survival were not

improved in the stable temperature group (51).
Conclusion

In summary, the role of HIPEC is tomaximize tumor cell death while

minimizing systemic toxicity. Unfortunately there is no consensus

regarding the optimal temperature necessary to reach the maximum

benefit in regards to cancer prognosis while avoiding adverse events

associated with severe local and systemic hyperthermia.

Despite protocols for cooling and warming during CRS-HIPEC,

patients still develop episodes of severe hyperthermia and

hypothermia. Overall, little is known about the impact of body

temperature during CRS-HIPEC on oncological and perioperative

outcomes. The amount of data published related to cooling protocols

and cancer outcomes during HIPEC is still very limited.

Standardization of temperature management and treatment during

HIPEC will enhance the accuracy of scientific discussions. Ideally,

data should be derived from a prospective randomized control study

in which patients are kept on a constant target temperature for at least

30 minutes or more during the intraperitoneal chemotherapy.

Continued research on this topic will allow HIPEC specialists to

move from an empiric administration of hyperthermia to a

thermophysical and evidence-based approach, which will promote

the development of healthcare technologies and tools to improve the

care of patients with peritoneal surface malignancies. Whether a

tighter control of body core temperature during CRS-HPEC would

promise improved outcomes remains unknown.
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