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Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid

tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived

cachexia (PDAC-CC) is a systemic disease involving the complex interplay

between the tumor and multiple organs. The endocrine organ–like tumor

(EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious

homeostatic shifts that occur in PDAC-CC. Several studies have reported a

markedly heterogeneous collection of cachectic mediators, signaling

mechanisms, and metabolic pathways, including exocrine pancreatic

insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive

and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC

necessitate a careful review of recent literature summarizing cachectic mediators,

corresponding metabolic functions, and the collateral impacts on wasting organs.

The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic

changes (microRNAs) are involved in cachexia development. Both tumors and host

tissues can secrete multiple cachectic factors (beyond only inflammatory

mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-

specific, resulting in insufficient energy production to support tumor/cachexia

development. Due to these complexities, changes in a single factor can trigger bi-

directional feedback circuits that exacerbate PDAC and result in the development

of irreversible cachexia. We provide an integrated review based on 267 papers and

20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the

EOLT hypothesis that may provide a fundamental understanding of cachexia

development and response to current treatments.
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1 Introduction

For Pancreatic ductal adenocarcinoma (PDAC) is currently

the fourth most common cause of cancer-related deaths

worldwide and is projected to become the second most

common cause of cancer-related deaths by 2030 (1). Due to its

aggressiveness and poor prognosis, mortality remains

alarmingly high among patients diagnosed with PDAC.

Approximately 80%–85% of PDAC patients are diagnosed at

advanced stages with unresectable or metastatic tumors,

resulting in a 5-year survival rate below 10% (2). During early-

stage PDAC, surgical resection is currently the only curative

option, although chemotherapy and radiation therapy are also

used as primary treatment options, with or without surgery.

However, single-agent chemotherapies are rarely effective in

PDAC (3). In general, chemotherapy regimens are not

universally effective in PDAC and are associated with

significant adverse effects, including the development of

PDAC-derived cachexia (PDAC-CC), and cachexia occurs in

32%~71% of patients within 12 to 48 weeks of chemotherapy

initiation (4).

Patients with PDAC experience a high prevalence (up to 80%)

of cachexia, often with early onset (45% of PDAC patients present

with cachexia at the time of diagnosis (5)), which may account for

up to 30% of mortality (6). Cachexia is defined as the progressive

loss of muscle mass and function (6, 7) and is a catabolic multi-

organ syndrome characterized by non-volitional weight loss

(muscle or adipocyte loss), adipopenia, fatigue, weakness, loss of

appetite, and early satiety (8, 9).Whenmuscle mass loss, it enhances

chemo-toxicities and insensitivities, contributing to poor overall

survival (10).

In general, tumors demand a high energy supply and can

promote the wasting of peripheral tissues via hyper-catabolism.

Tumors compete with other organs/tissues for energy and

nutrients, resulting in elevated resting energy expenditure and

inducing a negative energy balance. Energy utilization in tumors

also results in increased proteolysis and lipolysis combined with

decreased lipogenesis and protein synthesis (8, 9, 11, 12). These

metabolic reprogramming effects, combined with poor appetite,

lead to rapid weight loss among PDAC patients and can

contribute to deterioration in the overall quality of life (QoL)

and overall survival (OS) (7, 13–15). The complex, multifactorial

nature of the metabolic disruptions in cachexia makes effective

treatment challenging. The current lack of consensus regarding

how to define cachexia and a scarcity of strong evidence

produced by robust, rigorous, and mechanistic studies have

limited the development of effective treatments (16). In

addition, most cachexia studies focus on symptoms associated

with individual organs (such as tumor, muscle, or adipocyte

tissues) without considering consider systemic interactions. In

this review, we provide an up-to-date overview of current

cachexia research in PDAC to provide insight regarding the

cachexia mediators that act in different organs and explore
Frontiers in Oncology 02
whether the endocrine organ–like tumor (EOLT) hypothesis of

PDAC can explain the development of systemic complications.
2 Cachexia criteria and stages

Cancer-derived cachexia (CC) is a multifactorial syndrome

involving various metabolic changes in several tissues and

organs (8, 9, 12, 17–19). Although patients with pancreatic

cancer show a wide range of nutritional alterations, the

primary symptom is progressive weight loss due to the loss of

skeletal muscle mass, with or without the accompanying

depletion of adipose tissue (6, 19–23). Other PDAC-CC-

related clinical manifestations include inflammation (24–26),

anorexia (27, 28) and metabolic reprogramming (9, 29, 30) etc.,

Numerous studies also focus on exploring new PDAC-CC

cachectic mediators, corresponding metabolic functions, and the

collateral impacts on wasting organs. A systematic review also

suggested a network of cytokines (interleukin [IL]-6, tumor

necrosis factor-alpha [TNFa], and IL-8) that may be

associated with cachexia development (31). Sah et al. (19)

suggested that PDAC-CC can be categorized by three distinct

metabolic phases: Phase 1 represents the earliest metabolic

change, characterized by new-onset hyperglycemia; Phase 2 is

associated with a greater than 5% reduction in body weight with

pre-cachectic symptoms (appetite loss and impaired glucose

metabolism), suggesting the initiation of cachexia; and Phase 3

is associated with dramatic reductions in all monitored

metabolites, lipids, subcutaneous fat, and muscle, except

fasting glucose.

Traditionally, a Body Mass Index (BMI) < 18.5 kg/m2 was

accepted as a marker of being cachectic. However, sarcopenic

obesity can be observed in CC, suggesting that weight loss

might not be a defining factor (32). According to the most

common consensus, published by Fearon et al. (33), the current

standard diagnostic criterion for cachexia is represented by

percentage of weight loss, BMI values and metabolic changes

(29, 33, 34). Simply, CC were classified into three stages: pre-

cachexia, cachexia, and refractory cachexia (Table 1). This

classification currently did not fully applicable in clinics but

is rather to be considered as a proposal under evaluation.

Additional parameters (Table 2) have been developed to

improve diagnosis, such as food intake measures, albumin

leve l s , anorex ia as ses sment , markers o f sys temic

inflammation (CRP >10 mg/L), muscle mass measurements,

the Skeletal Muscle Index (SMI), bioelectrical impedance

analysis (BIA), the Fat-Free Mass Index and cachexia index

(CXI). Although these diagnostic measurements did not

include in the latest consensus, they suggested that several

effective parameters could more accurately identify cachexia. A

recent systematic review by Paval et al. described the between-

study inconsistencies in grouping criteria as a major hindrance

to the conduct of meta-analyses for cachexia (31). Refined CC-
frontiersin.org
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criteria is critical for evaluating the response to cachexia/

antitumor therapy. Because early-onset PDAC-CC can

present concomitant with the detection of the primary tumor

burden, but cachexia can continue even after the tumors have

been surgically removed or effectively treated (15). Patients

received either preoperative surgery or chemotherapy/

chemoradiation; unintended weight loss coupled with muscle

wasting can often be observed, contributing to poor outcomes

in PDAC (10, 13, 15, 29). There is no effective strategy to

mitigate refractory PDAC-CC. Therefore, the early and precise

identification of PDAC-CC is needed to estimate prognosis and

prevent progression to the refractory cachexia. More practical,

longitudinal definitions of cachexia remain necessary that

consider all aspects of the cachexia phenotype.
3 EOLT hypothesis in PDAC-CC

The EOLT hypothesis was proposed to explain how

tumor tissues drive disease progression, including CC (31).

The EOLT hypothesis states that the tumor acts as an

endocrine organ, resulting in dynamic bi-directional
Frontiers in Oncology 03
communications between the tumor microenvironment

(TME) and various organs, leading to the regulation of

macroenvironmental changes.

PDAC-CC results in systemic wasting and involves

multiple organ dysfunction (Figure 1), accompanied by

symptoms including poor appetite, fatigue, depression,

muscle wasting, fat wasting, malabsorption, and constipation

(Table 3). Tumors secrete cachexia-inducing factors and

stimulate host–tumor interactions involve cancer-organ

metabolic reprogramming and interorgan signal crosstalk in

tumor progression and cachexia development (21, 32). For

example, tumor-derived cytokines induce systemic

inflammation, stimulating the release of neuropeptides that

lead to poor appetite, and the resulting anorexia exacerbates

tissue wasting (6, 14, 26). With cachectic environment, adipose

and muscle tissues can act like paracrine/endocrine organs in

response to cachectic factors, providing reciprocal regulation of

energy expenditure and cachexia process (8, 9, 17, 33).

Cachexia is a wasting disease that represents metabolic

disruptions, mainly catabolisms, driven by systemic

inflammation and is characterized by skeletal-muscle

p ro teo ly s i s , ad ipose t i s sue l ipo ly s i s and hepa t i c
TABLE 1 Cachexia criteria/definition.

Score system Criteria Ref

BMI BMI <18.5 kg/m2 (35)

Body Weight -Weight loss ≥10%; (36)

-Presence of at least 1 symptom:
anorexia, fatigue, or early satiation

EPCRC • Pre-cachexia:
Weight loss ≤5%, anorexia, metabolic changes

(37, 38)

• Cachexia:
Weight loss >5% over past 6 months
, or BMI < 20kg/m2 and weight loss >2%
, or sarcopenia and weight loss >2%
(Skeletal muscle index: males <7.26 kg/m2; females <5.45 kg/m2)

• Refractory Cachexia:
Variable degree of cachexia cause poor survival and not responsive to anticancer treatment.

Glasgow Prognostic Score CRP >10 mg/L (39)

Cancer Cachexia Study
Group (CCSG)

Multifactorial syndrome:
Weight loss, reduce food intake, systematic inflammation
CRP >10 mg/L, weight loss >10%, energy intake <1500 kcal/day

(37)

Cachexia Score (CASCO) Body weight and lean body mass loss; anorexia; inflammatory, immunological and metabolic disturbances; physical
performance and QoL.

(40)

Cachexia definition A complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of
fat mass, including weight loss (>5%), decreased muscle strength, reduced muscle mass, anorexia, symptoms of fatigue, or
biochemical abnormalities (anemia, inflammation CRP >5mg/L, or low albumin).

(41)

Cachexia staging score
(CSS)

Defined by 5 components:
Weight loss in 6 months, appetite loss,
SARC-F questionnaire assessing muscle function and sarcopenia,
ECOG performance status, abnormal biochemistry

(42)

Cachexia index
(CXI)

Defined by reduced muscle mass (SMI: skeletal muscle index), poor nutritional status (Alb: serum albumin g/dL), and systemic
inflammation (NLR: neutrophil-to-lymphocyte ratio).

CXI =
SMI� Alb

NLR

(43, 44)
fron
BMI, body mass index; CRP, C-reactive protein; EPCRC, European Palliative Care Research collaborative; CASCO, Cachexia Score.
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gluconeogenesis (Figure 1) (20, 22, 24, 34). These inter-organ

interactions affect metabolisms in the formation of feedback

loops. Thus, PDAC-CC can be characterized by two

interacting dimensions:
Fron
1. Systemic metabolic changes, often associated with KRAS

mutations (genetic instability).

2. Pro-cachectic mediators and microRNAs (miRNAs)

exacerbated in metabolic disruptions.
The high prevalence of cachexia in PDAC is associated with

distinct metabolic effects mediated by tumor created

environments, including KRAS mutations, pro-cachexia

mediators, and alteration in pancreas and liver. The present

review summarizes the current understanding of PDAC-CC

according to the EOLT hypothesis.
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3.1 Metabolic alterations and high energy
demands in tumors

PDACs are characterized by high energy demands within a

nutrient-deprived microenvironment. Aggressive PDAC is

characterized by increased glycolysis and glutamine metabolism,

closely associated with downstream anabolic pathways in the

tumor’s hypoxic desmoplastic environment (8, 9, 27, 29, 63). The

deprivation of glucose and glutamine and lactic acidosis promote

glycolytic and glutaminolysis activity (61, 82, 83). Metabolic

alterations are hallmarks of PDAC and PDAC-CC, particularly

the dysregulation of glucose and glutamine metabolism (8, 9, 14, 19,

29, 62). However, PDACs under different oxygen and nutrition

conditions show distinct and heterogeneous metabolite profiles

associated with aerobic glycolysis (the Warburg effect), OXPHOS

(oxidative phosphorylation; also known as the reverse Warburg
TABLE 2 Cachexia assessment.

Assessment Method Ref

Food intake PG-SGA-SF: Patient-Generated Subjective Global Assessment Short-Form
Ingesta score
MNA-SF: Mini Nutritional Assessment Short-Form
NIS: Nutritional impact symptoms
EORTC QLQ-CAX24 Questionnaire

(35, 45–48)

Anorexia FAACT: Functional assessment of anorexia/cachexia treatment (49)

Inflammation modified Glasgow prognostic score (50)

Body Weight -Weight loss ≥10%
-Presence of at least 1 symptom:
anorexia, fatigue, or early satiation
Weight Loss Grading System (WLGS 0, 1, 2, 3, or 4)

(36, 51)

Muscle mass Muscle mass: mid-upper arm muscle area
(men <32 cm2; women <18 cm2)

(52, 53)

Skeletal Muscle Index Computed tomography
(men <36.54–45.40 cm2/m2; women <30.21–36.05 cm2/m2)

(54)

Body composition
(body fat and muscle mass)

Dual-energy X-ray absorptiometry
(men <5.86–7.40 kg/m2; women <4.42–5.67 kg/m2)
Bioelectrical impedance analysis
(men <6.75–7.40 kg/m2; women <5.07–5.80 kg/m2)
Fat-Free Mass Index

(53, 55, 56)

Fatigue Single Item Fatigue (SIF) (57)

Malnutrition
assessment

PINI: Prognostic Inflammation Nutrition Index
CRP (mg/L) × a1-acid glycoprotein]/[albumin (g/L) × transthyretin (g/L)]
NRI: Nutritional Risk Index
NRI = 1.519× albumin (g/L) + 0.417× (current weight/usual weight ×100).
Criteria:
>100: no malnourishment
97.5-100: mild malnourishment
83.5-97.4: modern malnourishment
< 83.5: severe malnourishment.
low albumin (<35 g/L); CRP (>5 or >10 mg/L)
transthyretin (prealbumin): low transthyretin (variously <110 or <180mg/L)

(58, 59)

Energy expenditure Harris Benedict formula:
Men:

BMR = 66.5 + (13.76 × weight in kg) + (5.003 × height in cm) – (6.755 × age)
Women:

BMR = 655.1 + (9.563 × weight in kg) + (1.850 × height in cm) – (4.676 × age)

(60)
fron
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effect), lipid dependence, autophagy, and glutaminolysis (Figure 2).

Metabolic alterations are positively correlated with high-grade

pancreatic intraepithelial neoplasia (PanIN-3). However, early-

onset cachexia also develops independent of PDAC, occasionally

presenting in the pre-diagnostic PDAC stage (4). Cachexia is a

metabolic disorder involving several nutrient scavenging pathways,

including autophagy, micropinocytosis, glycolysis, lipid oxidation,

and micropinocytosis (Figure 2: upper panel).

PDAC survives and thrives in relatively hypoxic and

nutrient-poor niches, driven by [1] reprogramming

intracellular nutrient metabolism, including glucose, amino

acids, and lipids; [2] scavenging and recycling nutrients; and

[3] promoting metabolic crosstalk (Figures 2: lower panel and

Figure 3) (8, 9, 62). PDAC-CC exacerbates metabolic
Frontiers in Oncology 05
reprogramming, promoting the deterioration of muscle and

adipose tissue (Figure 3), further supporting the energy and

nutrient needs of the tumor tissue.

3.1.1 Glucose
Glycolytic flux can result in changes in the pentose

phosphate pathway (PPP), the hexosamine biosynthesis

pathway (HBP), serine biosynthesis, and the tricarboxylic acid

(TCA) cycle, promoting CC development (64). Rate-limiting

glycolytic enzymes, such as hexokinase 1/2 (HK1/2),

phosphofructokinase 1, and lactate dehydrogenase A (LDHA),

are upregulated to facilitate the Warburg effect, resulting in

glycolytic flux and the production of lactate from glucose in

PDAC-CC (63, 64). The upregulation and translocation of
FIGURE 1

The endocrine organ–like tumor (EOLT) hypothesis for multifactorial cachexia syndrome. EOLT states that solid tumors create multiple
endocrine/paracrine organs which differs from the ‘‘seed and soil’’ hypothesis. Tumor-organ crosstalk and interorgan signal crosstalk did not rely
on reshaped tumors only. Mostly influenced by different cachectic regulators, such as tumor-derived factors, pro-inflammatory immune
mediators (ie. IL-6, IL-1a, IL-1b, TNFa, IFN-g, ZAG, PIF, activin A, LIF, TWEAK, PGE2), and hormones (including glucocorticoids and PTHrP). These
cachectic mediators act as paracrine/autocrine manners, trigger positive feedback to other organs and form a bidirectional circuit (black arrow
means mediators derived from tumor; red arrow means mediators derived from peripheral tissues/organs; purple arrow means influence
between peripheral tissues/organs). When the communication between tumor and organs exists, metabolic reprogramming (mark in blue:
glycolysis↑, proteolysis↑, lipolysis↑ and gluconeogenesis↑) produces bidirectional positive feedback to other organs in cachexia. For example,
inflammatory cytokines increase lipolysis in white adipose tissue (WAT), releasing free fatty acids (FAs) that further fuel tumor growth and
promote muscle wasting (18–21, 61, 62). Adipocyte also can secrete adipokines (e.g., leptin, adiponectin, and lipocalin-2), IL-6, and TNFa which
release via extracellular vesicles (EVs) into the circulation to influence the TME or mediate the appetite (61, 63, 64). Similarly, muscle wasting
regulates by hormones, adipocyte-derived mediators and tumor-derived factors (65). Cachexia is a wasting disease that represents metabolic
disruptions driven by systemic inflammation and is characterized by the depletion of adipose tissue and skeletal muscle Interleukin, IL; tumor
necrosis factor-alpha, TNFa; interferon-gamma, IFN-g; zinc alpha 2-glycoprotein, ZAG; proteolysis-inducing factor, PIF; leukemia inhibitory
factor, LIF; TNF-related weak inducer of apoptosis, TWEAK; prostaglandin E2, PGE2; tumor-derived parathyroid hormone–related protein,
PTHrP; amino acid, AA; acute phase protein, APP; triglycerides, TAG; brown adipose tissue, BAT; white adipose tissue, WAT; uncoupling protein
1, UCP1; extracellular matrix, ECM; branched-chain amino acids, BCAAs; chemokine (C-X-C motif) ligand, CXCL; matrix metalloproteinases,
MMPs; a-smooth muscle, a-SMA; tumor microenvironment, TME.
frontiersin.org
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glucose transporters (GLUT1, encoded by SLC21A) in tumor

tissues facilitate glucose uptake for aerobic glycolysis. Increased

glycolytic flux in response to host–tumor interactions in

cachexia results in the production of high lactate levels,

leading to lactic acidosis. To address lactic acidosis, PDACs

robustly express monocarboxylate transporters (MCT1 and

MCT4, encoded by SLC16A1 and SLC16A3, respectively) to

coordinate glucose utilization and lactate mobilization (65, 84).

Other glucose metabolism pathways are also altered in PDAC,

such as the upregulation of the rate-limiting enzyme of the HBP,

glutamine: fructose-6-phosphate amidotransferase-1 (GFPT1)

(64). Many other mediators regulate glucose metabolism in

pancreatic cancer cells. Under hypoxic conditions, hypoxia-

inducible factor-1 (HIF-1) can promote glycolysis and

upregulate the expression of HBP-related enzymes, such as

GFPT2, an isoform of the HBP rate-limiting enzyme

GFPT1 (63).

In a model of PDAC-CC, athymic mice injected with high-

glycolytic MiaPaCa2 cells showed evidence of cachexia, such as

weight loss, fat depletion, and muscle proteolysis (66), suggesting

that glycolysis may be involved in PDAC-CC development.

Glycolysis was associated with inefficient inter-organ substrate

shuttles, as assessed by the lactate-to-pyruvate utilization ratio,

LDH activity, and MCT1 expression, which was correlated with

cachexia-related weight loss (63). The upregulation of GLUT1

and MCT1/4 promotes glucose utilization and improves the

lactate-to-pyruvate utilization ratio in tumor tissue (63, 65).

Paradoxically, OXPHOS, also known as the reverse Warburg

effect, occurs in muscle, resulting in an increased lactate-to-
Frontiers in Oncology 06
pyruvate production ratio, providing a potential lactate supply

for tumor use and supporting tumor progression and

consequent atrophy (85). Additionally, the tumor secretes

interferon-gamma (IFN-g), which mediates the development of

insulin resistance via reduced glucose and fatty acid [FA] uptake,

leading to enhanced lipolysis in WAT (86). Inefficient inter-

organ substrate shuttles are regarded as hallmarks of

EOLT (Figure 3).

Aerobic glycolysis occurs more commonly in tumor tissues

than OXPHOS, which requires a sufficient oxygen supply,

although OXPHOS is more efficient for ATP generation (30,

87). Nutrient depletion forces tumors to adapt by inducing

nutrient scavenging mechanisms to support cancer

progression, which can lead to CC (8, 9, 88). OXPHOS occurs

in the mitochondria and is sensitive to stress conditions, as the

respiratory complexes in stressed mitochondria produce high

levels of reactive oxygen species (ROS) (62). Autophagy is a

stress response induced by ROS to remove damaged

mitochondria that overproduce ROS, promoting mitochondrial

metabolism (89) (Figure 2: lower panel). In cachectic patients,

increased OXPHOS and dysfunctional autophagy are associated

with increased muscle wasting (Figure 3) (90). Autophagy is an

important proteolysis pathway activated during PDAC-CC and

muscle wasting (91, 92).

Tumors supported by an adequate blood supply can perform

aerobic metabolism and tend to exhibit the reverse Warburg

effect. In tumors, aerobic metabolisms may utilize intermediates,

such as lactate, to fuel the TCA cycle (Figure 2: lower panel),

decreasing their dependence on glucose. The low uptake of
TABLE 3 The multi-organ response in PDAC-derived cachexia.

Organ Tissue alterations Main implications

Brain • Alterations in appetite
• Alterations in taste and smell

• Anorexia
• Negative energy balance

Gut • Changes in microbiota
• Altered ghrelin production
• Gut barrier dysfunction

• Malabsorption

Liver • Production of acute phase proteins
• Decreased albumin production
• Increase gluconeogenesis (increase Cori cycle)

• Acute phase response
•Negative energy balance

Skeletal
muscle

• Increased proteolysis
• Increased glycolysis
• Decreased protein synthesis

• Wasting
• Atrophy, sarcopenia
• Fatigue
• Decreased physical performance

White adipose
tissue
(WAT)

• Activation of thermogenesis
• Increased lipolysis
• Increased leptin secretion
• Release of fatty acids
• ‘Browning’

• WAT depletion
• Decreased food intake and body weight

Brown
adipose tissue (BAT)

• Activation of thermogenesis • Energy expenditure

Pancreatic
insufficiency

• Endocrine dysfunction
• Pancreatic exocrine insufficiency (PEI)

• Low insulin production
• Malabsorption
PDAC, pancreatic ductal adenocarcinoma.
Citation reference (6, 8, 9, 14, 25–27, 66–81).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1057930
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2022.1057930
glucose and the enhanced uptake of intermediate metabolites by

tumors under aerobic conditions could protect these tumors

from competing with hypoxic tumor regions (such as

desmoplastic tumors) for glucose. In addition to OXPHOS,

tumors able to perform aerobic metabolism can also utilize

glutaminolysis as an alternative energy production pathway
Frontiers in Oncology 07
requiring activated mitochondrial metabolism (93). Glutamine

is the most abundant and versatile nonessential amino acid

(NEAA), found in both the blood and the cell cytoplasm, and

can be used by both the glutamine-dependent pyruvate cycle and

the TCA cycle (30, 94). In contrast, hypovascularization

and desmoplasia often occur in PDAC; studies also found that
FIGURE 2

Metabolism alterations in PDAC-CC. The upper panel shows that pancreatic ductal adenocarcinoma (PDAC)-derived cachexia (PDAC-CC) arises
from the multi-stage progression of precursor lesions, known as pancreatic intraepithelial neoplasia (PanIN). PanINs are characterized by a
continuum of increasingly stroma features (from low-grade dysplasia developing to high-grade desmoplasia). A desmoplastic response induced
a fibro-inflammatory microenvironment, stimulating an aberrant metabolic response that is associated with cachexia. During early-stage PDAC,
histology can be used to identify several distinct types of precursor lesions. The most common types are microscopic PanIN, low-grade (PanIN-
1 and PanIN-2), and high-grade (PanIN-3). The progression to PanIN and to PDAC is associated with cachexia development. Multiple metabolic
alterations follow the progression of cachexia, resulting in the reprogramming of glucose, amino acid, and lipid pathways. Metabolic alterations
include nutrient scavenging pathway), such as glycolysis glutaminolysis, autophagy, proteolysis, lipid oxidation, and micropinocytosis (Most of
them were upregulated during the development of cachexia). However, early-onset cachexia can arise independent of the PDAC stage,
occurring in the pre-diagnostic PDAC stage. More than one-third of cancer patients were malnourished before chemotherapy, implying that the
cachexia occurred early and followed a poor response to chemotherapy. Interestingly, some of cachexia occurs after the chemotherapy. The
lower panel: The metabolic alterations, including increase glycolysis, glutaminolysis, lactate transport and autophagy … etc, in PDAC cell
associated with PDAC-CC, primarily due to promote the expression in key enzymes (HK1/2, GFPT1, and LDHA) and transporters (GLUT1, MCT1/
4, SLC7A5, and SLC1A5). The metabolic shift from the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) to aerobic
glycolysis is tightly regulated. HK1/2, hexokinase; GFPT1, glutamine fructose 6-phosphate amidotransferase 1; LDHA, lactate dehydrogenase A;
GLUT1, Glucose transporter 1; MCT1/4, monocarboxylate transporter 1/4; SLC7A5 (LAT1), neutral amino acid antiporter; SLC1A5, glutamine
transporter.
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HIF-1a (hypoxia-inducible factor-1a) stabilization promotes

glycolytic enzymes to shift the metabolism by repressing

OXPHOS (95, 96). Supposing that if the function of glycolysis

is weakened, OXPHOS and glutamine-based processes will serve

as alternative energy generation mechanisms in glucose-limited

tumors (87) (Figure 2: lower panel).

3.1.2 Amino acids
Altered amino acid (AA) metabolism is a frequent feature in

CC. Branched-chain amino acids (BCAA: leucine, isoleucine,

and valine) act as important carbon sources and are useful for

FA biosynthesis. High BCAA levels in plasma are associated with

early PDAC and are often derived from increased protein

breakdown in muscle and other body tissues (Figure 3) (97,
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98). The utilization of BCAAs by PDAC can result in plasma

BCAA depletion during late-stage PDAC. Similar observations

have been reported for glutamate, in which the plasma levels of

glutamate and the glutamine/glutamate (Q/E) ratio are

significantly reduced in cachectic patients and animal models

compared with their healthy counterparts (83, 99). Glutamine

metabolism is a primary source of nitrogen and carbon,

contributing to macromolecular synthesis and redox balance

(83). Glutaminase 1 (GLS1) converts glutamine to glutamate,

after which glutamate dehydrogenase (GDH) catalyzes the

conversion from glutamate to a-ketoglutarate (a-KG).

However, GDH is repressed in PDAC, and cytoplasmic

aspartate transaminase (GOT1) is upregulated (83) (Figure 2:

lower panel). Cachexia is associated with more aggressive forms
FIGURE 3

Tumor–muscle–adipocyte crosstalk. Pancreatic ductal adenocarcinoma (PDAC)-derived cachexia occurs due to a feedback circuit among
tumor, adipocyte, and muscle tissues. In PDAC, tumor‐derived factors, including interleukin (IL)‐1, IL-6, IL-8, proteolysis-inducing factor (PIF),
lipid mobilization factor (LMF), and tumor necrosis factor‐a (TNFa), enhance proteolysis, lipolysis, and the catabolic state of muscle and
adipocytes, leading to adipose and muscle wasting. Tumor cell–triggered metabolic reprogramming in muscle and adipocytes releases
metabolic products, such as branched-chain amino acids (BCAA) and free fatty acids (FFAs), to fuel tumor growth. Lipolysis and proteolysis are
the two main processes causing adipose and muscle wasting in cachexia.
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of PDAC, which may reflect the increased access of tumor cells

to nutrients derived from protein breakdown and systemic

changes in glucose metabolism (97, 100). Higher circulating

BCAA levels may arise from the impaired catabolism of AAs that

are commonly found in muscle (Figure 3). Muscle wasting is

characterized by decreased muscle mass, increased proteolysis,

and reduced protein synthesis, changes which are mediated by

the proteasome, nuclear factor kappa B (NF-kB), and the

mammalian target of rapamycin (mTOR) pathways. The

phosphoinositol 3-kinase (PI3K)/AKT/mTOR pathway is a

nutrient-sensing mechanism stimulated by decreased glucose

availability in the muscle. A higher mTOR activity induced by
Frontiers in Oncology 09
KRASmutation in PDAC which is positively correlated to higher

circulating BCAA levels (12). mTOR activation is responsible for

the uptake of BCAA in tumor tissue. Circulating BCAA also can

affect subcutaneous adipocyte AA dysmetabolism. Both NF-kB
and AKT/mTOR signaling are involved in proteolysis. NF-kB
regulates the ATP-dependent ubiquitin–proteasome proteolytic

pathway, including muscle-specific E3 ubiquitin ligases (such as

muscle atrophy F box protein [MAFbx/atrogin-1] and muscle

RING finger–containing protein 1 [MuRF1]), which promote

proteolysis and contribute to muscle atrophy (22). Cachexia is

the end result of convergent metabolic adaptations induced by

tumors to satisfy their metabolic requirements.
A

B

FIGURE 4

Metabolic remolding is influenced by genetic instability in PDAC. (A) Genetic mutations: PDAC is affected by high frequencies of aberrations and
mutations in KRAS, P16/CDKN2A, TP53, and SMAD4. KRAS is involved in the RAF/mitogen-associated protein kinase pathway and the
phosphoinositol 3-kinase (PI3K) pathway. P16/CDKN2 mediates the PI3K/AKT/mTOR pathway. TP53 influences the transforming growth factor-
beta (TGF-b)/Smad4 pathway. (B) Mutated forms of KRAS, TP53, P16/CDKN2, and SMAD4 promote glucose (Glc) uptake and enhance glycolytic
flux, including the production of lactate (Lac). KRAS and TP53 can both reprogram glutamine (Gln) metabolism to balance cellular redox
homeostasis. Pancreatic cancer induces metabolic shifts, including increased glycolysis, lipogenesis, glutaminolysis, and autophagy, which are
related to cachexia.
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3.1.3 Lipids
In addition to glucose and amino acid metabolism,

metabolic alterations in cachexia can include lipid metabolism.

Approximately 93% of triacylglycerol FAs used by tumors are

synthesized de novo by the mitochondria and cytosolic acetyl

coenzyme A (CoA). Enzymes that participate in de novo FA and

cholesterol synthesis are upregulated in PDAC, such as FA

synthase (FASN) and 3-hydroxy-3-methylglutaryl coenzyme A

reductase (HMGCR). Under pancreatic inflammatory

conditions, wasting adipocytes release FAs into the plasma,

increasing plasma concentrations of saturated (SFAs),

monounsaturated (MUFAs), and polyunsaturated FAs

(PUFAs) (101). SFAs and MUFAs promote PDAC progression

(102). However, a study performing transcriptomics and

metabolomics suggested that lipase and a panel of FAs were

significantly decreased in PDAC, and the presence of two SFAs

(palmitate and stearate) inhibited tumor cell proliferation (103).

Therefore, the roles played by FAs in PDAC appear complicated
Frontiers in Oncology 10
and remain unclear. PDAC patients present with distinct

phenotypes associated with cachexia development, such as

adipose tissue loss prior to skeletal muscle wasting or the loss

of adipose tissue alone (104). A recent report indicated that soft

tissue changes are initiated in PDAC before skeletal muscle loss

(19), and the significant loss of visceral adipose tissue has been

observed in PDAC-CC (18). In a retrospective cohort study,

PDAC-CC was associated with the accumulation of oleic acid in

plasma, resulting from malnutritional compensatory

mechanisms triggered by the lack of oleic acid uptake into

tissue (105). In a pre-cachexia model, increased FA oxidation

occurs before muscle mass reduction, suggesting that FA may

serve as a dominant energy source in PDAC-CC (18, 106).

Adipose tissue lipolysis contributes to circulating FAs and

subsequent FA uptake and lipid accumulation in the muscle

and tumor tissue, leading to eventual metabolic derangement

and muscle wasting after a period of metabolic adaptation.

Several lipolytic enzymes are elevated, such as adipose
TABLE 4 Genetically engineered mouse models (GEMMs) of pancreatic cancer-derived cachexia phenotypes.

Orthotropic xenograft Chemically
induced

Genetically engi-
neered

Model PANC-1 L3.6pl S2-013
(SUIT-2)

COLO-357 MIA
PaCa-2

Pan02 PDX Gemcitabine-
induced SW1990

KPC KPP

Method Injection:
1×106 cells

Injection:
1×106

cells

Injection:
5×105 cells

1 mm3

sutured
5×106

cells
(IP)
1×107 cells

2 mm3

patient-
derived

50 mg/kg, (IP)
gemcitabine

KRASG12D

P53R172H

PDX‐Cre+/+

KRAS+/G12D

Ptf1a+/ER_Cre

Ptenf/f

Mouse strain NSG mice
NOD-SCID

NSG
mice

Athymic
nude mice

Athymic
nude mice

Athymic
nude
mice

C57BL/6 NSG mice
NOD-
SCID

BALB/c nu/nu
mice

C57BL/6 C57BL/6J
Tamoxifen

Age 8-wk-old female 8-wk-old
female

6–8-wk-old 6–8-wk-old 6-wk-old 6–8-wk-old
male

8-wk-old
female

4–6-wk-old 7–12-wk-
old

4–5-wk-old

Duration 10 weeks 4–6
weeks

4 weeks 60 d 4 weeks 45 d 8–16
weeks

4 weeks 13–200 d 158 d

Weight loss – – + + + + + + + +

Muscle wasting + + +* + + +* +* – +*/– +*

Muscle gene
profiles

FoxO1
Atrogin-1
MuRF1
SOCS3

FoxO1,
Atrogin-
1
MuRF1

MuRF1
Atrogin
ZAG
HSL

(+) INHBA (+)
SMAD2/
3

MuRF1
Atrogin-1
ZAG
myostatin

MuRF1
Atrogin-1
FoxO-1

N.A. MuRF1
FoxO-1
pSTAT3
Atrogin-1

MuRF1
Atrogin-1
Atg5
Bnip3

Note Chemokine ↑
IP10, MCP1, MIP2,
RANTES and MIP1Β
(spleen)

Metabolic
alteration:
ROS↑
Glutamine
uptake↑

N.A. Activin A
↑
via
(+)PI3K/
AKT
(-)AKT/
TORC

Metabolic
alteration:
proteolysis↑,
lipolysis↑,
via TGF-b/
NF-kΒ

(+) JAK/
STAT
(+) FoxO
(+)PI3K/
AKT

(+) Anoxia
Chemotherapy-
induced mild
cachexia

(+) Anoxia,
Autophagy↑
Orm1↑,
Apcs↑
(+) Jak2/
Stat3

Clinical
muscle
wasting
phenotype

Inflammation
evaluation

TNFa↑, IL1b↑, IL6↑, and
KC↑
(murine IL8 homolog)

Not tested TNFa↑ Not test MCP-1, IL-
6,
TGF-b1

IL‐1b, IL-
1a
IL22, TNF,
oncostatin
M

Not tested IL‐1b, IL-6
Selp, Arg-1

N.A.

Metastasis – – N.A. + + Not test + N.A. −/+ +

Ref (22, 123, 124) (123) (125, 126) (127) (128) (129) (130–132) (133) (21, 130,
134–136)

(130)
fro
IP, intraperitoneal; N.A., not available; wk, week; d, day. *fat loss.
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TABLE 5 Pro-cachectic mediators in PDAC-derived cachexia.

Cachectic
mediator

Source Action Model of the study Function Ref

Pro-inflammatory

IL-1 a Tumor Autocrine AsPC-1, PANC-1, Capan-1, CFPAC-
1, MDAPanc-3, and MDAPanc-28

● IL-1a activates AP-1 and nuclear factor-ΚB (NF-kB) pathways
driving carcinogenesis.

(142)

Tumor
Macrophage
Spleen

Autocrine
Paracrine

C57BL/6J-congenic KPC model,
Orthotopic L3.6pl xenografts (NSG),
Orthotopic PANC-1 xenografts

● IL-1a, a catabolic mediator, activates the STAT3 signaling
pathway and contributes to myofiber atrophy.

(123, 134)

Tumor Paracrine KPC and IL-1R1 knockout C57BL/6J ● Acting in a paracrine manner, activates NF-kB signaling and
expression of LIF in iCAFs.

(143)

Tumor Paracrine PANC-1 and MIA-PaCa2
Orthotopic patient-derived xenograft
BALB/c bearing MiaPaCa-2
KCP model,
PDAC specimens, n=100

● IL-1a induces inflammatory factors (IL-6 and CXCL8) that
lead to JAK/STAT activation.

(144, 145)

IL-1b Tumor, CAFs
Serum

Autocrine
Paracrine

Orthotopic PANC-1 xenografts,
Capan-1 and PANC-1,
Capan-1 xenograft,
MIA-PaCa2/CAF xenograft, KCP
model
PDAC patients: 27 PDAC-CC,
total=89

● Increased IL-1b levels are a poor prognosis marker.
● Activates IRAK4 and NF-kB, supports cancer progression and
chemoresistance.

(146, 147)

IL-6 Tumor
Spleen
Serum

Paracrine Orthotopic L3.6pl xenografts (NSG),
Orthotopic PANC-1 xenografts,
PANC-1 and T3M4
PDAC specimens (19 PDAC-CC,
total=100)
PDAC patients (85 PDAC-CC, total
126)
PDAC patients (25 PDAC-CC, total
55)

● Increases IL-6 in tumor and spleen, associated with muscle
wasting and systemic inflammation.
● IL-6 acts as a poor prognosis marker and a prominent
cachexia-associated factor.

(68, 123,
148–151)

Tumor Paracrine KPC and KPC IL6KO ● IL-6 causes adipocyte lipolysis and muscle steatosis,
dysmetabolism, and wasting.

(21)

Serum Paracrine PDAC serum, n=136 (a
retrospectively studied)

● Higher IL-6 levels in tumor and serum mediate muscle wasting
and cancer progression.

(152)

Macrophages
Fibroblasts
Mast cells
T cells

Paracrine Review article ● Acute‐phase response (inflammation).
● Suppresses food intake.

(153)

IL-8 Tumor Paracrine PDAC sample n=8 (organoid
culture)

● IL‐8 is associated with worse survival and muscle wasting. (154)

Serum
Tumor

Paracrine PDAC plasma (55 PDAC, total= 127)
L3.6pl and COLO-357
PDX model
C57BL/6J intraperitoneal injection
IL-8

● Elevated serum IL-8 level significantly correlates with cachexia
and sarcopenia.
● IL-8 is released from human PC cells in initiating atrophy of
muscle cells via CXCR2-ERK1/2.

(81, 155)

TNFa
(Cachetin)
(Cachexin)

Tumor Paracrine CHO/TNF-20 cells implanted on
nude mice.

● TNFa induces muscle wasting.
● TNFa inhibits both adipocyte and skeletal myocyte
differentiation.

(70)

Serum Paracrine PDAC patients (n=63) ● Increased TNFa levels in plasma correlated with poor
nutritional status in advanced PDAC.

(156)

Tumor,
Spleen

Autocrine
Paracrine

L3.6pl subcutaneous xenograft
Orthotopic PANC-1 xenografts

● Elevated TNFa is associated with PDAC cachexia. (123)

Macrophage
Lymphocyte

Paracrine Review article ● Mediates muscle wasting, liver lipogenesis, insulin resistance,
anorexia, and inflammation

(153)

(Continued)
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TABLE 5 Continued

Cachectic
mediator

Source Action Model of the study Function Ref

TGF-b Serum Paracrine KPC mice bearing Panc02
KPC mice bearing FC1242 tumor
(Intra-cardiac injection)

● TGF-b is a potent inducer of muscle atrophy, weight loss, and
fat loss (increasing catabolism: proteolysis and lipolysis).

(129)

Tumor Paracrine AsPC-1, MIA-PaCa2, BxPC-3,
PANC-1, and CFPAC-1
Orthotopic xenograft mouse bearing
AsPC

● TGF-b downregulation suppresses tumor growth and muscle
wasting.

(157)

INF-g Serum Paracrine PDAC serum samples, n=90 ● Increased serum INF-g is associated with cachexia. (158, 159)

Lymphocytes
Natural killer

Paracrine Review article ● Catabolic effects (153)

MyD88 Serum Paracrine KPC mice ● MyD88 trigger inflammation that influences cachexia
development.

(140)

Other factors

ZIP4 Tumor Autocrine
Paracrine

Orthotopic nude mice bearing AsPC-
1 Orthotopic nude mice bearing
BxPC-3

● ZIP4 promotes PDAC progression and muscle wasting by
activating CREB- RAB27B.

(148)

Tumor Paracrine Orthotopic xenograft mouse bearing
AsPC
(stable cell line: AsPC-shZIP4-
Pre373)

● ZIP4 causes muscle wasting via PHLPP2-AKT-TGFb Signaling
Axis.

(157)

ZIP14 Muscle Paracrine C57BL/6 mice bearing Panc02
C57BL/6 mice bearing FC1242 tumor

● High levels of ZIP14 in muscles correlated with muscle wasting
in PDAC.

(160)

Activin/
Activin A

Serum Paracrine PDAC specimens, N=34
KPC model

● Activin A mediated triglyceride degradation and accelerated
visceral adipose wasting.

(18)

Stroma
Tumor

Paracrine PDAC tissue microarrays n=63
Tumor samples vs. adjacent-normal
KPC mouse model

● High activin A expression in stroma correlated to a worse
prognosis.

(161)

Tumor Paracrine KPC model ● PDAC tumors choreograph a systemic activin A response that
correlated with muscle wasting.

(162)

Tumor
Serum

Paracrine PDAC specimens, N=124
GEMM KPC mouse model

● Activin with hormone regulation shows a preferential driver of
muscle wasting in males.

(163)

ZAG Adipocyte Paracrine Review article ● Muscle wasting, insulin resistance, inflammation
● Anorexia

(153)

UCP-1 BAT, WAT Paracrine PDAC samples, N=8 ● Uncouples oxidation of mitochondrial fatty acids.
● Thermogenesis and WAT browning.

(18, 164, 165)

LMF Tumor Paracrine MAC16-murine model ● Lipid mobilizing factor (LMF) secreted from the tumor acts
directly on adipose tissue with the release of FFA and glycerol.

(166)

Caveolin-1 Tumor Paracrine Athymic mice bearing MIA-PaCa2 ● Cav-1 in PDAC stimulated IGF1R/IR, and glycolysis triggered
cachectic states.

(167)

MCP-1 Serum Paracrine PANC-1 cells
PDAC patients (n=70)

● MCP-1 led to inflammation and induced lipolysis by activating
hormone-sensitive lipase (HSL).
● Suggesting MCP-1 acts as a biomarker of cancer cachexia.

(75, 168)

DAMPs Serum
tumor

Paracrine ● Extracellular HSP70 and HSP90 function as DAMPs and
provoke an innate immune response through activation of TLR7/9
and TLRs.
● Muscle wasting.

(162, 169)

PAMPS gut
microbiota

Paracrine ● Inflammation and muscle wasting. (170, 171)

Hormone

Glucocorticoids Serum Paracrine KCP murine model ● Hight GC content mediated skeletal muscle catabolism and
hepatic metabolism during cancer cachexia.

(172)

(Continued)
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FIGURE 5

Pro-cachectic mediators of catabolism in PDAC-CC. Cachexia signals induce tissue catabolism by modulating gene expression profiles related
to protein synthesis and degradation in muscle, lipid depletion, and tumor progression, primarily via the nuclear factor kappa B (NF-kB) and
Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathways. In tumors, multiple receptors, including the Toll-like/IL1
receptors (TIRs), tumor necrosis factor (TNF), transforming growth factor-beta (TGF-b), and interleukin receptors (IL-6R being the best-studied),
utilize overlapping and distinct signal transduction mechanisms to affect cellular outcomes, including increased cytokine production,
proliferation, survival, migration, autophagy, and resistance to chemotherapy and immune surveillance. In addition to cytokines in tumors,
circulating cytokines affect muscle and adipocytes, resulting in various metabolic alterations. For example, myostatin/activin A binds to type II
receptors (ActRIIB), leading to Smad2/3 phosphorylation and the recruitment of Smad4, which results in muscle wasting. Simultaneously,
myostatin/activin A signaling inhibits AKT activity and suppresses FoxOs phosphorylation, activating the ubiquitin–proteasome and autophagy–
lysosome systems. IL6 binds to receptors to activate JAK/STAT3 signaling, increasing protein degradation. TNFa and IL1 signaling activates the
IkB kinase (IKK)–NF-kB axis to initiate proteasome-mediated protein degradation. Higher levels of tumoral and stromal IL-1b expression result in
a feedback circuit that attributes to cancer progression and cachexia development.
TABLE 5 Continued

Cachectic
mediator

Source Action Model of the study Function Ref

PTH Tumor Paracrine Review article ● Hypercalcemia
● Pro-cachectic factor, Pro-inflammatory stimulant

(153)

PTHrP Tumor Paracrine

Serum Paracrine 624 patients ● Regulating UCP1 expression reverse muscle and adipose tissue
loss

(173)

Leptin Adipocyte Paracrine Review article ● Leptin reduces appetite and increases energy expenditure. (88)
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TNF-a, tumor necrosis factor-alpha; TGF-b, transforming growth factor-beta; IFN‐g, interferon‐g; IL, interleukin; PTH, parathyroid; PTHrP, parathyroid hormone‐related protein; UCP‐1,
uncoupling protein‐1; WAT, white adipose tissue; ZAG, zinc‐a2 glycoprotein; DAMPs, danger-associated molecular patterns; PAMPS, pathogen-associated molecular patterns; LMF, lipase
maturation factor; MCP-1, monocyte chemoattractant protein-1; ZIP, zinc-regulated, Iron-regulated transporter-like protein; IL, interleukin.
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triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL),

further suggesting the occurrence of enhanced lipolysis.

Increased ATGL and HSL activity correlate with tumor growth

and WAT loss in cachexia (107) (Figure 3). Tumor progression

is also associated with the shift from WAT to BAT, known as

adipose tissue browning. BAT is a metabolic hallmark mediated

by uncoupling protein 1 (UCP-1). In KPC and KrasLSLG12D/

+Trp53f/f mice, adipose tissue browning is associated with

increased UCP-1 expression and occurs prior to the onset of

fat wasting, consistent with clinical observations (108). A few

studies have suggested that fat loss is an early and precipitating

event prior to muscle loss in PDAC-CC, even in the absence of

muscle wasting (18, 19, 21, 33, 104, 105, 107). Clinical studies

suggested that fat loss may serve as a driving force for cachexia

mortality, emphasizing the important roles of adipocytes in

PDAC-CC and supporting the need to monitor adipose in

patients with CC (20, 21).

Tumors hijack organ and tissue function, causing muscle

and adipocyte wasting. Enhanced glycolysis in tumors and the
Frontiers in Oncology 14
upregulation of lipolysis and proteolysis in wasting tissue

counterbalance the reductions in muscle and fat under

cachectic conditions (Figure 3). Wasting muscle and

adipocytes are among the convergent metabolic adaptations

induced by tumors to satisfy their metabolic requirements.

Patients with PDAC and PDAC-CC exhibit distinct and

heterogeneous metabolic changes. Tumor, muscle, and

adipocyte tissues all act as endocrine organs involved in the

regulation of metabolic homeostasis, consistent with the EOLT

hypothesis. In addition to metabolic alterations, bi-directional

feedback occurs between tumor tissues and other organs, driven

by the oncogenes and mediators (8, 12, 21, 32, 62).
3.2 Genetic instability–driven cachexic
phenotypes and experimental models

In PDAC, tumors become genetically unstable (Figure 4),

and mutations in four oncogenes are common in PDAC: KRAS
TABLE 6 MicroRNA (miR) expression levels and functions in pancreatic ductal adenocarcinoma (PDAC) and PDAC cachexia.

miRNA Pathway Target genes Type of study Location Biological significance Ref

miRNA-21 ↑ PI3K–AKT
KRAS
EGFR
Cell cycle
Apoptosis
TGF-b

G12D, p27, p57, FOXO1, Bcl-2,
FasL, PI3K, AKT, PTEN,
RECK, SPRY2, P85, VHL,
PDCD4, c-Jun

In vitro: PC1, Panc-2, and
MIA-PaCa2, PANC-1,
HS766T, HPAF-II, BxPC-3,
Mpanc-96, PL45, Panc03.27,
Panc10.05
In vivo: PDAC vs. healthy
pancreatic duct tissue

In MV
In tumor
In blood

Promotes cell growth, invasion,
migration and chemoresistance.
Upregulation of miR-21 may inhibit
myogenesis via regulation of IL6R,
PTEN, and FOXO3 signaling.
miRNA-21 promote muscle proteolysis
via TLR7-JUN pathway.

(182–197)

miR-155↑ JAK–
STAT
TP53
MAPK-
p38

TP53INP1, SOCS1,
SOCS3, FOXO3a,
TP53-induced nuclear protein 1
gene, RHOA, SMAD1/5,
ZNF652

In vitro: BxPC-3, PANC-1,
Capan-2, HS766T, HPAF-II,
BxPC-3, Mpanc-96, PL45,
Panc03.27, Panc10.05
In vivo: nude mice bearing
MIA-PaCa2
PDAC vs. healthy pancreatic
duct tissue

In MV
In tumor
In blood

Promotes tumor progression, invasion,
and migration and
mediates apoptosis.
Higher miR-155 contributes to cachexia
through the inhibition of negative
feedback loops of SOCS1.
miR-155 mediates TNF-Α showing a
pro-inflammatory effect.

(182, 190,
198–204)

miR-221/222 ↑
(Tumor)

PI3K–AKT
TP53
P16/P27
Cell cycle

MMP-2, MMP-9, TIMP-2,
PTEN, P27kip1, P57kip2,
PUMA, Cdk4, p16, E2F,
CDKN1B, MDM2, ICAM-1,
BIM, SOD2, STAT5A

In vitro: BxPC-3, SW-1990,
PANC-1, MIA-PaCa2,
HS766T
In vivo: PDAC vs. healthy
pancreatic duct tissue
Advanced pancreatic cancer
with lymph node metastasis

In tumor Promotes tumor progression,
proliferation, and invasion. Inhibits
apoptosis and induces chemoresistance.
In C2C12 cell models, downregulated
miR221/222 is observed which is
associated with cachectic and sarcopenic
condition vis MyoD-myomiRs
regulatory pathway.

(188, 202,
205–208)
(209)

Let-7 ↓ JAK–
STAT
KRAS

STAT3, SOCS3,
N-cadherin, ZEB1

(PDAC) Biopsy specimens In tumor
In serum

Tumor growth and migration.
Lower serum levels of let-7d correlated
with poor overall survival in PDAC.

(210)
(211)

Let-7d↑ KRAS
mTOR

KRAS
PGR, RPS6KA6, SFRP4

In vivo: Pancreatic tissues
(PDAC) Biopsy specimens
Skeletal muscle biopsies

In tumor
In muscle

Cell proliferation, migration, invasion,
and apoptosis.
Upregulation of let-7d affects muscle cell
proliferation and myogenic
differentiation which leads to skeletal
muscle wasting.

(212–214)
(215)

circANAPC7/
miR-373

PHLPP2–
AKT–
TGF-b

ZIP4 promoter In vivo: Orthotopic xenograft
mouse bearing MIA-ZIP4-
EV/circANAPC7

N.A. Suppresses tumor growth and muscle
wasting in PDAC.

(157)
fr
MV, microvesicles; EMT, epithelial–mesenchymal transition; N.A., not available.
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TABLE 7 Therapy for PDAC cachexia.

Target
route

Drug Target/mechanism Cachexia/
PDAC-CC

Biological significance Status Ref

Cachexia
mediator/
pathway

NSAID agents
thalidomide

Cytokine Cachexia Altered cytokine production. Experimental
Therapy

(220)

Stabilized lean body mass. (221)

Infliximab
etanercept

TNFa inhibition/
Mediating MuRF1 and
Atrogin-1 expression in
muscle

Cachexia
PDAC-CC

No significant improvements in
cachectic patients.

Phase II (221–225)

TNFΑ blockade failed to improve muscle wasting. Phase I/II (225, 226)

Landogrozumab
LY2495655
monoclonal
antibodies
(MoAbs)

Myostatin antibody/
Alk4/5/7/Smad and
PI3K/AKT/mTOR
pathways

PDAC-CC Increased lean body mass.
No benefits on overall survival.
Myostatin antibody (LY2495655) with standard-of-care
chemotherapy failed to confer additional clinical benefits
(overall survival).

Phase II (227, 228)

NCT03207724

Tocilizumab anti-IL-6R mAb/
JAK/STAT3 pathway

PDAC-CC Improved appetite and body weight Experimental (229, 230)

Clazakizumab
ALD518
BMS-945429

PDAC-CC Improved anorexia.
Failed to reverse muscle atrophy.

Phase I/II (231)

Cachexia Improved lean muscle mass, lung symptoms, and fatigue
score.

AG490/
Ruxolitinib

JAK/STAT3/
Reduce proteolysis in
muscle cells

PDAC-CC Alleviated cancer cachexia and skeletal muscle wasting. Phase II/III
NCT00952289
NCT01423604

(232)

Ruxolitinib plus capecitabine was well tolerated, but no
improvement in survival.

(233)

Trabederson
AP 12009

TGF-b2 antagonist Cachexia Tumor suppression. Phase II (139, 234,
235)

Effect on anorexia. Experimental (236)

Bimagrumab
(BYM338)

Anti-ACVR2 antibody PDAC-CC Increased lean body mass.
Improved in thigh muscle volume (TMV), inter-muscular
adipose tissue (IMAT) and subcutaneous adipose tissue
(SCAT)

Phase II
NCT01433263

(139, 237,
238)

Anamorelin
ONO-7643
ANAM

Ghrelin receptor agonist PDAC-CC Improved food intake, appetite, adiposity, and lean body
mass.
Adverse events (hyperglycemia, nausea, and dizziness)
exist.

Phase III
NCT01395914
NCT04844970
NCT03035409
NCT03637816
NCT01387269
NCT01387282

(239–243)

Omeprazole Hsp70/90 Cachexia Prevented loss of muscle function. Experimental (244)

MicrSoy-20 Gut Microbiota PDAC-CC Improved fatigue and appetite loss. NCT04600154 (245)

Espindolol
MT-102

5-HT1aR/b2 agonist Cachexia Improved weight loss and fat-free mass.
Acts as a pro-anabolic, anti-catabolic, and appetite-
stimulator.

Phase II
NCT01238107

(246)

IMO-8503 TLR7/8/9 antagonist Cachexia Suggested a potential therapy for cancer cachexia. Animal model (247)

R848 TLR7/8
antagonist

PDAC
PDAC-CC

R848 induces anti-tumor responses and attenuates
cachexia, improving the survival.

KPC model (248)

Hormonal RU38486 Glucocorticoid
antagonist

Cachexia U38486 was ineffective in muscle wasting. Tumor-
induced
animal model

(249, 250)

Nutritional
interventions

Ketogenic diet Metabolism PDAC-CC Reversed metabolic alterations and reduced glycolytic flux
and glutamine catabolism.

Experimental (132)

Glutamine
Arginine
b-hydroxy-b-
methylbutyrate

Metabolism Cachexia Shifted away from proteolysis and increased fat-free mass. Experimental (251)

Failed to improve lean body mass. Phase III (252)

BCAA Metabolism Cachexia Stimulated muscle protein synthesis
Inhibited proteolysis

Clinical trial
NCT03253029

(253–255)

BCAA
b-hydroxy-b-
methylbutyrate

Metabolism Cachexia Fat mass content increased with no change in fat-free mass. NCT03285217 (256, 257)

(Continued)
Frontiers in O
ncology
 15
 fr
ontiersin.org

https://doi.org/10.3389/fonc.2022.1057930
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2022.1057930
(>95%), p16/CDNK2A (> 90%), TP53 (~70%), and SMAD4

(55%) (8, 9, 62, 100). The hyperactivation of oncogenes (e.g.,

KRAS) and the downregulation of tumor suppressor genes (e.g.,

TP53 and CDKN2A) promote tumor progression through the

activation of various signal transduction pathways, including

Wnt/Notch, c-Jun N-terminal kinase (JNK), PI3K, KRAS, and

transforming growth factor (TGF)-b. A series of genetic and

molecular events initiated by early oncogenic mutations in

PanINs and later mutations in PDAC have been associated

with metabolic alterations (109, 110). PDAC-CC is initiated by

a metabolic shift in fuel utilization, in which glycolysis,

proteolysis, and lipolysis increase and lipogenesis and protein

synthesis decrease (Figure 4). During the pre-cachectic stage,

patients experience these metabolic alterations as loss of appetite

and impaired glucose metabolism before PDAC diagnosis or

significant weight loss is apparent (Figure 2) (19, 67, 105). Early

inflammatory signals may trigger the initial muscle and

adipocyte wasting signaling cascades (9, 18, 21, 24).

KRAS is the most prevalently mutated oncogene, and KRAS

mutations are considered to be dominant driver mutations in

PDAC. Mutant KRAS regulates components of the mitogen-

activated protein kinase (MAPK) and PI3K pathways to

reprogram intracellular metabolism, including increasing

glycolysis, by altering the levels of GLUT1 (111), HBP, and

PPP (64, 112). Direct downstream effector cascades affected by

KRAS mutations include the RAF–MAPK kinase (MEK)–

extracellular signal–regulated kinase (ERK) and PI3K–AKT–

mTOR pathways. The RAF–MEK–ERK pathway is considered

among the most critical. The KRASG12D mutation is frequently

observed in pancreatic cells and promotes glycolysis via the

upregulation of the MEK–ERK–HIF-1a axis. Elevated HIF-1a
results in a feedforward loop between the insulin growth factor

(IGF)-1 receptor, HIF-1a, and caveolin-1 to facilitate tumor

progression and glycolysis (113).

Besides promoting high levels of glycolysis, KRAS

upregulates glutaminolysis, allowing glutamine to be used as

an additional carbon source for the TCA cycle (114). NEAAs,

such as alanine, are alternative carbon sources that can support

altered energy metabolism in PDAC (115). KRAS mutations

increase glycolysis and the metabolism of amino acids, such as

alanine and glutamine, activating downstream catabolic
Frontiers in Oncology 16
pathways, including proteolysis and lipolysis. Genetic

mutations promote the recycling of wasting tissues to fuel

cancer growth.

KRAS mutations also promote the generation of inflammatory

cytokines, which shape the PDAC TME, including IL-6, IL-8, C–X–

C motif ligand (CXCL)1, CXCL2, and CXCL5 (116, 117). Some

cytokines/chemokines act in both autocrine and paracrine manners

to support tumorigenesis and tumor angiogenesis (116).

KRAS activation leads to the loss of p16, accelerating NADH

oxidation and supporting increased glycolysis through the

production of NAD+ to support tumor growth (118). However,

PDAC cells lack nutrient sensors, and mTOR complex 1

(mTORC1), a nutrient-sensing mechanism, is bypassed in

PDAC. Bardeesy et al. proposed that autophagy is driven by

the elevated expression of the microphthalmia transcription

factor (MiTF) family members MiTF, TFE3, and TFEB in

PDAC (119). The loss of SMAD4 is another frequent event

associated with PDAC progression, identified in approximately

50% of PDAC cases. SMAD4 is a central component in the

transforming growth factor (TGF-b) signaling cascade, and

SMAD4 loss enhances glycolysis by altering the expression of

the glycolysis enzyme phosphoglycerate kinase (PGK) (120).

The loss of TP53 alters metabolism in PDAC by inhibiting

mitochondrial respiration and simultaneously stimulating

glycolysis. A recent study demonstrated that TP53 rewires

glucose and glutamine metabolism in malignant PDAC by

preventing the nuclear translocation of glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) and stabilizing its

function (121). Loss of TP53 can reduce the expression of

fructose-2,6-bisphosphate to promote the glycolysis cycle

(122). Therefore, KRAS , P16, P53, and SMAD4 have

counterintuitive effects that promote tumorigenesis, further

highlighting the complexity of interactions between genes and

metabolisms in cancer progression and cachexia development.

These metabolic changes are consistently observed in

numerous preclinical animal models of PDAC cachexia

(Table 4). Commonly used animal models of PDAC-CC

include [1] intraperitoneal (IP) injections of PDAC cells,

which localize to the pancreas; [2] orthotopic models of

PDAC, in which cancer cells are injected directly into the

pancreas; [3] patient-derived xenograft (PDX) models, in
TABLE 7 Continued

Target
route

Drug Target/mechanism Cachexia/
PDAC-CC

Biological significance Status Ref

n-3
polyunsaturated
fatty acids

PDAC-CC Stabilized weight and appetite in pancreatic cancer patients. NCT03751384 (258–264)

Cachexia Resist muscle wasting and improve the survival. N.A. (265)

PERT Pancreatic
enzymes

EPI PDAC-CC Weight gain, limited weight loss. NCT02127021 (266, 267)
fr
EPI, exocrine pancreatic insufficiency; CC, cancer-derived cachexia; TNFa, tumor necrosis factor-alpha; BCAA, branched-chain amino acids; TLR, Toll-like receptor; 5-HT, 5-
hydroxytryptamine; TGF, transforming growth factor, NSAID, non-steroidal anti-inflammatory drugs; Pancreatic enzyme replacement therapy, PERT.
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A

B

FIGURE 6

Mechanistic role of miRNAs in PDAC cachexia. (A) Downregulated microRNAs (miRNAs) are indicated in green, and upregulated miRNAs are
indicated in red. Based on the literature, miRNAs participate in the regulation of PDAC progression and metastasis, overcoming host immune
responses, and the development of chemoresistance. (B). miRNAs associated with PDAC-CC are primarily involved in KRAS-MAPK, PI3K-AKT,
JAK-STAT, and TGF-b, NF-kB and p38-MAPK signaling pathway … etc. miRNAs can be detected in tumor and serum and mediate crosstalk in
the tumor microenvironment between tumor, muscle, and adipocytes, which are associated with the development of PDAC-CC. Some
microRNAs are tissue specific. For example, miR-21 (TLR7-JUN), miR-155, let-7d and miR373 are specific contributed to muscle wasting in
PDAC-CC (see Table 6 in detail). The most common genes, such as IL-6R, FOXO1, PDK4, and ZIP14, had been associated with muscle wasting
in cachexia. In adipocytes, specific microRNAs may mediate the transcription factors C/EBPb/d, C/EBPa, and PPARg, resulting in adipogenesis.
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which a portion of a resected human pancreatic tumors are

surgically attached to the mouse pancreas; and [4] genetically

engineered mouse models (GEMMs) of PDAC. Up to 85% of

PDAC patients suffer from CC, and approximately 30% of

PDAC patients succumb to cachexia rather than tumor burden

(137, 138). PDX and murine allograft models have been applied

to study cachexia, resulting in the identification of Toll-like

receptors 7/9 (TLR7/9), MyD88, and TGF-b as mediators of

cachexia in PDAC (129, 137, 139, 140). Most PDAC-CC studies

focus primarily on weight loss, muscle wasting, and the analysis

of mRNA markers. A comparison analysis of subcutaneous, IP,

and orthotopic PDAC animal models indicated that the

implantation site is crucial when attempting to study PDAC-

CC (137). Both IP and orthotopic implantation models develop

more severe cachexia symptoms (such as muscle wasting,

anorexia, and a decrease in locomotive activity) than the

subcutaneous implantation model. The orthotopic animal

model is histologically similar to PDAC patients, mimicking

the TME associated with intact tumors, suggesting that the TME

may be involved in cachexia induction. Studies in PDAC animal

models have demonstrated that tumor-associated macrophages

mediate muscle wasting via the activation of signal transducer

and activator of transcription (STAT)3 signaling (134, 141).

Most preclinical studies of CC use C-26 (colon cancer) and

LLC (lung cancer) mouse models. However, these two models

are associated with limitations (1): a limited interval between the

onset of CC symptoms and animal death leaves only a small

therapeutic window, and (2) translatability to humans may be

limited, as the gene expression profiles in these mice did not

correlate with those in human cancer tissue biopsies (130).

However, GEMMs offer slower cachexia progression and early

development than other cancer models, and PDAC-CC animal

models are more translatable to humans than models using

other cancer types. Therefore, animal models of PDAC-CC are

clinically relevant. Preclinical PDAC murine models may be

useful for understanding cachexia progression and evaluating

therapeutic options for mitigating PDAC-CC. Establishing a

model able to fully mimic the human condition remains

necessary. Animal models can contribute to improving our

understanding of the mechanisms driving tissue wasting for

translation into new anti-cachexia therapies.
3.3 Pro-cachectic mediators and
microRNAs

3.3.1 Pro-cachectic mediators
Endocrine organs and cells synthesize biologically active

compounds that are released directly into the circulation and

interact with other cells. Cachexia-associated inflammation is

influenced by numerous bioactive molecules, such as TNFa, IL-1,
IL-6, and IL-8 (Table 5 and Figure 5). Cachexia-affected organs can

act as autocrine or paracrine organs, releasing factors into the
Frontiers in Oncology 18
bloodstream to promote systemic crosstalk. These cytokines have

multifactorial effects, triggering a hypercatabolic feedforward loop

between the tumor, adipose tissue, and muscle mediated by the NF-

kB and Janus kinase (JAK)/STAT pathways (29, 174, 175) (Figure 5).

NF-kB and JAK/STAT activation enhance lipolysis, downregulate

lipogenesis, and stimulate the catabolism of lean body mass (12).

A salient feature that distinguishes PDAC from other KRAS-

mutant cancers is an extensive fibro-inflammatory stroma,

which accounts for 80%–85% of the tumor bulk. These

stromal cells are recruited and reprogrammed by PDAC cells

during cancer progression and cachexia development. Secreted

factors (Table 5) enable these cells to communicate with PDAC,

creating a dynamic feedback circuit associated with intrinsic

KRAS signaling in PDAC cells (Figure 5).

Various circulating pro-inflammatory cytokines have been

implicated in PDAC-CC, including IL-6, IL-1, IL-8, TGF-b, and
TNFa…etc (detailed in Table 5) (12, 21, 29, 123). These cytokines

likely derive from various sources and result in systemic effects

(123, 176). Oncogenic RAS drives the expression of multiple

inflammatory cytokines, including IL-1 and IL-6 (21, 146).

Inflammatory cytokines released by tumor cells may be

prominent cachexia-associated factors that regulate autocrine

and paracrine function, promoting tumor progression and

cachexia development. For example, IL-6 plays autocrine roles

in supporting tumorigenesis in vivo and induces weight loss and

inflammation in cachexia via a paracrine manner (21, 68, 152).

Other cytokines, such as IL-1, IL-8, TNFa, and INF-g, have also
been associated with weight loss and poor survival in PDAC (148,

177, 178). TNF-a and IL-1 can induce anorexia, producing both

hypercatabolic and anorexigenic effects (Figures 1 and 5).

Circulating IL-1b promotes NF-kB activation in the

hypothalamus, enhancing glucocorticoid production and

resulting in catabolic effects in both muscle and adipose tissue.

TGF-b1 can induce proteolysis through the E3 ligase atrogin-1 in

animal models. TGF-b inhibition improved muscle wasting in the

KPC model (129). Activin A and myostatin belong to the TGF-b
superfamily and are associated with muscle wasting through the

activation of the Smad2/3 pathway, which decreases AKT–

mTOR-mediated protein synthesis and enhances ubiquitin

ligase–mediated proteolysis (18, 128). These cytokines drive

diverse catabolic processes across multiple cells and organs,

forming a catabolic feedforward loop (Figure 1).

In muscle tissue, the JAK–STAT and NF-kB pathways are

the dominant catabolic pathways activated by circulating IL-6

and TNFa in muscle wasting (174). IL-6 induces NF-kB
activation, which can also upregulate ubiquitin-mediated

proteasomal degradation in wasting (179). Proteolysis is a

prerequisite for muscle wasting, and both lipolysis and

adipopenia may occur prior to muscle loss. Lipolysis results in

increased circulating FFAs, triggering the secretion of Atrogin-1

and MuRF1, which induce muscle atrophy.

In adipocytes, lipolysis plays a substantial role in increasing the

catabolism of stored fat. ATGL and HSL act to reduce fat to its
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component FAs, leading to the loss of body mass. Secreted IL-6 can

trigger browning by inducing UCP-1 expression in adipocytes (18,

180). The catabolic effects of IL-6 on WAT in vitro are mediated

through the JAK/STAT3 and NF-kB pathways (21, 181).

3.3.2 Epigenetics modulation (miRNAs)
Genetic instability and epigenetic changes are both involved in

pancreatic oncogenesis and cachexia development (Table 6).

Recently, miRNAs, small non-coding RNAs 19–25 nucleotides in

length, have been identified in an increasing number of biological

processes, including KRAS signaling and the JAK–STAT, PI3K–

AKT, notch, and TGF-b signaling pathways (Figure 6A). These

influences contribute to the control of several cancer-related

processes in PDAC, such as tumor growth, apoptosis, metastasis,

drug resistance, and the immune response. In addition to roles in

oncogenesis and tumorigenesis, aberrant miRNA expression may

affect cytokine production or directly alter metabolic processes,

resulting in a metabolism remodeling that facilitates PDAC

progression and cachexia development (see Figure 6 and Table 6).

Recent studies have detected miRNAs in serum, plasma, tissue,

and tumors (Table 6). Studies indicates that miRNAs are commonly

found in various EVs, such as exosomes, apoptotic bodies,

microvesicles (MV), and lipoproteins, allowing them to target cells

and contribute to intercellular signaling through endocrine,

paracrine, and autocrine pathways (182, 183, 198, 199, 215–217).

Losses in muscle proteins and fat mass are the most important

signatures of cachexia and can result in the generation of

microvesicles containing miRNAs (see Figure 6B: bottom panel).

Most studies have identified miRNAs expressed in tumor cells;

however, some miRNAs are tissue‐specific or tissue‐enriched,

involved in either the active or passive stimulation of metabolic

changes and inflammatory responses (Table 6). In PDAC-CC, miR-

21, miR221/222, miR27a andmiR155 are commonly correlated with

muscle and adipocyte wasting through the transcription E3 ubiquitin

ligases (mediated by FoxO3 or FoxO1 in muscle), JUN–STAT3, or

TGF-b; (Figure 6B: bottom panel). Given the roles of miRNAs in

gene expression and the regulation of inflammatory responses and

metabolic reprogramming, additional study of miRNAs remains

necessary. An ongoing observational trial (NCT05275075) aims to

analyze the miRNA profiles in patients with PDAC-CC. The causal

roles of miRNAs and molecular mechanisms in cachexia remain

under debate and require further discussion and study; however,

therapeutic approaches for modifying multiple targets have been

suggested (218, 219). The study of miRNAs could also contribute to

the development of diagnostic or prognostic biomarkers and new

targets for cachexia prevention or treatment.
4 Conclusion

The high prevalence of PDAC-CC may be associated with

the unique genetic background (KRAS mutations) and

modulators in PDAC, which mainly exacerbate metabolic
Frontiers in Oncology 19
disruptions, leading to cachexia development. Systemic

metabolic alterations mediated by pro-cachectic factors,

systemic inflammation, and epigenetic changes, highlighting

that PDAC is a systemic disease rather than a single-organ

defect. PDAC can induce metabolic disruptions in organs

beyond the pancreas. We applied the EOLT hypothesis (33) to

emphasize the systemic effects of PDAC, leading to tissue

wasting in PDAC-CC. Currently, no FDA-approved agent is

able to treat cachexia, although potential treatments are listed in

Table 7. However, further studies remain necessary to generate

foundational knowledge for the development of additional

therapies or understanding the molecular mechanisms of

PDAC-CC.
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Glossary

PDAC Pancreatic ductal adenocarcinoma

PDAC-CC PDAC-derived cachexia

EOLT endocrine organ–like tumor

QoL quality of life

OS overall survival

CC cachexia

IL interleukin

TNF-Α tumor necrosis factor-alpha

BMI Body Mass Index

CRP C-reactive protein

SMI Skeletal Muscle Index

BIA bioelectrical impedance analysis

CXI cachexia index

TME tumor microenvironment

PI pancreatic insufficiency

OXPHOS oxidative phosphorylation

PanIN pancreatic intraepithelial neoplasia

PPP pentose phosphate pathway

TCA tricarboxylic acid

HBP hexosamine biosynthesis pathway

HK1/2 hexokinase ½

LDHA lactate dehydrogenase A

LDH lactate dehydrogenase

GLUT1 glucose transporters 1

MCT monocarboxylate transporters

GFPT fructose-6-phosphate amidotransferase

HIF-1 hypoxia-inducible factor-1

FA fatty acid

WAT white adipocyte tissue

BAT bBrown adipose tissue

ROS reactive oxygen species

NEAA nonessential amino acid

(Continued)
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Continued

AA amino acid

BCAA branched-chain amino acid

Q/E glutamine/glutamate

GLS1 Glutaminase 1

GDH glutamate dehydrogenase

Α-KG Α-ketoglutarate

GOT1 aspartate transaminase 1

NF-Κb nuclear factor kappa B

mTOR mammalian target of rapamycin

MuRF-1 muscle RING-finger protein-1

MAFbx muscle atrophy F-box

CoA coenzyme A

FASN fatty acid synthase

HMGCR 3-hydroxy-3-methylglutaryl coenzyme A reductase

SFAs Saturated fatty acids

MUFAs monounsaturated fatty acids

PUFAs polyunsaturated fatty acids

ATGL adipose triglyceride lipase

HSL hormone-sensitive lipase

UCP-1 uncoupling protein 1

MAPK mitogen-activated protein kinase

IGF insulin growth factor

CXCL C–X–C motif ligand

TGF-Β transforming growth factor

GEMMs genetically engineered mouse models

STAT3 signal transducer and activator of transcription 3

JAK Janus kinase

INF-g interferon gamma

MV microvesicles

EV extracellular vesicles

FoxO Forkhead box O

PIF proteolysis-inducing factor

ZAG zinc alpha 2-glycoprotein

LIF leukemia inhibitory factor

TWEAK TNF-related weak inducer of apoptosis
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