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Deep learning-based
transcriptome model predicts
survival of T-cell acute
lymphoblastic leukemia

Lenghe Zhang1,2†, Lijuan Zhou1†, Yulian Wang2, Chao Li2,
Pengjun Liao2, Liye Zhong2, Suxia Geng2, Peilong Lai1,2*,
Xin Du1,2* and Jianyu Weng1,2*

1The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,
2Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of
Medical Sciences, Guangzhou, China
Identifying subgroups of T-cell acute lymphoblastic leukemia (T-ALL) with poor

survival will significantly influence patient treatment options and improve

patient survival expectations. Current efforts to predict T-ALL survival

expectations in multiple patient cohorts are lacking. A deep learning (DL)-

based model was developed to determine the prognostic staging of T-ALL

patients. We used transcriptome sequencing data from TARGET to build a DL-

based survival model using 265 T-ALL patients. We found that patients could be

divided into two subgroups (K0 and K1) with significant difference (P< 0.0001) in

survival rate. The more malignant subgroup was significantly associated with

some tumor-related signaling pathways, such as PI3K-Akt, cGMP-PKG and

TGF-beta signaling pathway. DL-based model showed good performance in a

cohort of patients from our clinical center (P = 0.0248). T-ALL patients survival

was successfully predicted using a DL-based model, and we hope to apply it to

clinical practice in the future.

KEYWORDS

T-cell acute lymphoblastic leukemia (T-ALL), survival, transcriptome sequencing,
deep learning, k-means
1 Introduction

It is well known that T-cell acute lymphoblastic leukemia (T-ALL) is a blood disease

with high clinical incidence. The pathogenesis of T-ALL is complex. Genetic factors, viral

infection and some toxic compounds can promote the occurrence of T-ALL (1). About a

quarter of adult leukemia, and 15% of childhood leukemia are T-ALL (2). With the

promotion of combined chemotherapy, the therapeutic effect of T-ALL has been

significantly improved. However, there is a large difference in survival among different
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patient cohorts. Still 50% of adults patients die from T-ALL,

compared to 20% in pediatric (3, 4). T-ALL has complex etiology

and high heterogeneity among different patients, which makes

prognosis prediction of T-ALL very difficult (5). The prognosis of

patients will greatly affect the choice of treatment, so there is an

urgent need to develop tools to predict patient survival (6).

The molecular subgroups of T-ALL have been extensively

studied by researchers (7). In recent years, different T-ALL

subgroups have been found to have unique gene expression

signatures that reflect thymocyte development (8). Early T

−lineage progenitor (ETP) leukemia often has adverse

outcomes. However, T lymphocytic leukemia with CD1a+,

CD4+, or CD8+ immunophenotype presents a relatively

favorable prognosis (9). However, most studies do not take

survival information into account when identifying subgroups

(10). Instead, people tend to introduce survival information to

observe the clinical significance of these subgroups (11). The result

is that many subgroups do not show significant differences in

survival time (12). In fact, the survival time of T-ALL subgroups

need to be take into account at the beginning of exploration.

In order to address these issues, we use a deep learning (DL)

framework on the T-ALL datasets. The deep learning framework

we use is called autoencoder. Autoencoder has the function of

representing learning algorithm in general sense. It has been

shown that autoencoders can effectively generate prognostic

features (13, 14). The high-dimensional nature of gene

expression data often causes difficulties in analysis, but

autoencoders have demonstrated their ability to cope with high-

dimensional data (15, 16). It is worth noting that autoencoder

spontaneously focuses on genes with similar pathways, so the use

of autoencoders will facilitate the interpretation of biological

functions (17). In this study, reliable molecular subgroups of T-

ALL were obtained through comprehensive and accurate big data

calculation, which could withstand the test of external cohorts.

We trained the model with 265 T-ALL samples from the

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) database. We found two subgroups with

significant difference in survival time. These two subgroups have

been identified as having independent predictive values for patient

outcomes. Most importantly, the two subgroups derived from our

DL framework have been successfully validated in self-built real-

world patient cohorts. By analyzing these two subgroups, we found

new genes and pathways that significantly affect the prognosis of T-

ALL. As a result, this paper presents a significant DL-based model

for predicting the prognosis of patients with T-ALL.
2 Methods

2.1 Data collection

In this study, 265 transcriptome sequencing samples from

patients with T-ALL were collected from the TARGET database
Frontiers in Oncology 02
(https://ocg.cancer.gov/programs/target). After the removal of

21 samples with unknown survival status and 3 samples with

unclear survival time, 241 T-ALL samples were finally included

in the study. In order to minimize batch effects between data

from different sources and to allow the model to be applied to a

larger scale, the fragments per kilobase of transcript per million

fragments mapped (FPKM) expression values were used in this

study. To make the final model more explanatory, all gene IDs

were converted to official gene symbols based on Gencode v22

(www.gencodegenes.org).

At the same time, we selected 20 T-ALL patients from the

Hematology Department of Guangdong Provincial People’s

Hospital for follow-up, and performed transcriptome

sequencing of their bone marrow mononuclear cells at the

time of initial diagnosis. There were 15 male patients and 5

female patients. The 20 patients had an average age of 33.8 at

diagnosis, ranging from 18 to 90 years. The study was approved

by the Ethics Committee of Guangdong Provincial People’s

Hospital. The approval Number is 2019463H(R1). The data

was available at the GEO under accession numbers GSE214998.
2.2 Total RNA extraction

The lymphocytes separation medium (TBDscience, China)

was used for the isolation of mononuclear cells from bone

marrow aspirate. The Trizol reagents were added (Invitrogen,

USA) to the sample and let stand for 10 minutes. Then

chloroform was added, mixed well and let stand for 3 minutes.

After centrifugation at 12,000 × g for 15 minutes at 4°C, the

supernatant was taken and mixed with isopropyl alcohol of equal

volume and let stand for 10 minutes. The supernatant was

removed after centrifugation at 12,000 × g for 10 minutes at 4°

C, and the precipitate was washed with ethanol. After

centrifugation at 7,500 × g for 5 minutes at 4°C, the

supernatant was removed and allowed to stand and dry for 15

minutes. Mix with DNase for 30 minutes and wash once with

ethanol. Finally, RNase-free DDW was used to dissolve the

RNA. Monitoring RNA contamination and degradation was

carried out using AGAR gels. The NanoPhotometer

spectrophotometer (IMPLEN, USA) was used to determine the

purity of RNA, while the Bioanalyzer 2100 system (Agilent

Technologies, USA) was used to determine the integrity of RNA.
2.3 mRNA library construction

mRNA was purified using magnetic beads and Oligo

(dT)-attached magnetic beads. Libraries were generated using

the NEBNext UltraTM RNA Library Prep Kit for Illumina

(NEB, USA). In NEBNext First Strand Synthesis Reaction

Buffer, divalent cations were used for fragmentation at high

temperatures. In order to synthesize first strand cDNA,
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M-MuLV reverse transcription enzyme was used in conjunction

with random hexamer primers. Using RNase H and DNA

Polymerase I to synthesis the second strand cDNA. For

hybridization, the NEBNext adaptor with hairpin loop

structure were ligated. 250~300 bp cDNA fragments were

selected by AMPure XP system (Beckman Coulter, USA).

Before polymerase chain reaction (PCR), we used USER

enzyme (NEB, USA) to digest cDNA at 37°C for 15 min

followed by 95°C for 5 min. The PCR is performed using

Phusion High-Fidelity DNA polymerase, Universal PCR

primers, and Index (X) Primer. The assay results were

evaluated using Agilent Bioanalyzer 2100 system (Agilent

Technologies, USA). The PCR products were purified using

Beckman Coulter’s AMPure XP system.
2.4 Transcriptome sequencing and
quality control

The TruSeq PE Cluster Kit (Illumia) was used to perform

the clustering of the index-coded samples. Sequencing was

performed on an Illumina Novaseq platform, with 150-bp

paired-end reads. From raw fastq data, we removed reads

containing ploy-N or low quality reads, as well as

reads containing adapters. Clean Data was used for

subsequent experiments.
2.5 Deep learning framework

Autoencoder (AE) is a kind of Artificial Neural Networks

(ANNs) used in semi-supervised learning and unsupervised

learning, its function is to learn the representation of input

information (18). The structure of autoencoder is divided into

encoder and decoder. There are two main characteristics of

autoencoder: one is that the number of neurons in the input

layer is equal to that in the output layer (reconstructed layer); the

other is that there is a bottleneck layer in the network. Given the

input space X∈c and the feature space h∈F, the autoencoder

resolves the mapping f of the two, and g minimizes the

reconstruction error of the input feature:

f : c ! F

g : F ! c

f ,  g = argmin
f ,g

jjX − g f Xð Þ½ �jj2

After the solution is completed, h , the feature output by the

encoder, can be regarded as a representation of the X . We build

an autoencoder with 5 layers in Python (v3.8.12) based on

TensorFlow 2.7.0 (https://github.com/tensorflow), including

input layer, output layer and 3 hidden layers. The three
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hidden layers contain 500, 100 and 500 neurons respectively.

The hidden layer in the middle becomes the bottleneck of the

entire network, forcing the network to compress the input data

and generate new features. The 50% dropout was used to make

the entire network more robust. The whole network training

process we carried out 10 epochs.
2.6 K-means clustering

From the autoencoder bottleneck layer, we got 100 new

features of all the raw data. In order to identify features with log-

rank P values less than 0.05, we performed a univariate Cox-PH

model with these new features. Then we use these condensed

features for k-means clustering algorithm from the sklearn

Python package (19, 20). The Silhouette score (21) was used to

determine the optimal value of K.
2.7 Data partitioning and
robustness assessment

We artificially partitioned the TARGET database into

training and test sets. The training set needs to have sufficient

sample size, and the test set also needs to have as many samples

as possible. In order to give consideration to both aspects, we

finally chose 60/40% split. We wanted to use the cross-validation

method to partition the dataset. The K-fold cross-validation

algorithm from the sklearn Python package can quickly split 50/

50%, 80/20%, or 90/10%. But to split 60/40%, we had to

manually random partition the TARGET database into 5 folds,

and then randomly select 3 of them as training set and the

remaining 2 as test set. We did this 10 times and got 10 training/

test sets. If the training/testing process is repeated using this data

partitioning, the robustness of the model can be fully evaluated.

Finally, all samples from TARGET database were used to train

autoencoder and classifier to predict the labels of 20 T-ALL

patients from the Hematology Department of Guangdong

Provincial People’s Hospital.
2.8 Supervised classification

An eXtreme Gradient Boosting (XGB) algorithm (22)

was trained from the sklearn Python package using the

labels obtained by the K-means algorithm. Data standardization

pipelining was based on the training set, using StandardScaler of

the sklearn Python package (23). The standard value of sample X

was calculated with the following function:

Z =
X − Uð Þ
S
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where S is the variance of the training samples, and U is the

mean of the training samples. When training the XGB models,

we used K-fold cross-validation (k=5) and grid search from the

sklearn Python package to find the optimal hyperparameters.

The sample grouping probability output from the XGB model

was used as the survival risk score.
2.9 Alternative approaches to the deep
learning framework

In order to explore whether the Deep Learning framework

could be replaced in this study, we tried two alternative

approaches to carry out the experiment. The first alternative

was to use principal components analysis (PCA) to reduce the

dimension of the input data to replace the features generated by

100 neurons in the autoencoder bottleneck layer. We choose to

retain at least 95% of the explained variance ratio. The second

alternative was to use single-variant Cox-PH models to reduce

the number of features in the input data. After the completion of

the two alternative approaches, K-means clustering was required

to observe whether patients with significant differences in

survival time could be grouped.
2.10 Functional analysis

We performed some functional analysis to reveal the

potential factors that could significantly affect the survival time

of T-ALL patients.
2.10.1 Clinical covariate analysis
We collected and compared the clinical covariates of patients

in K0 and K1. Including the age of patients at diagnosis,

peripheral blood white blood cell (WBC) count, peripheral

blood lactate dehydrogenase (LDH), bone marrow blasts

percentage and WT1 expression in bone marrow cells

measured by PCR. As well as whether the patient underwent

hematopoietic stem cell transplantation (HSCT).

2.10.2 Differential expression
To identify differentially expressed genes between survival

subgroups, differential expression analysis was performed on

mRNA expression. We used the limma (v3.32.7) R package (24).

The selection criteria for differentially expressed genes was

adj.P< 0.05 and absolute fold change values ≥ 2.

2.10.3 Enriched pathway analysis
By using clusterProfiler (v3.14.3) R package, we analyzed

pathways enriched by up-regulated and down-regulated genes

according to the Kyoto Encyclopedia of Genes and Genomes
Frontiers in Oncology 04
(KEGG). The inclusion criteria for pathways were P< 0.05,

minimum count > 3, maximum count< 5000 and adj.P< 0.1.

2.10.4 Tumor microenvironment analysis
The StromalScore, ImmuneScore and ESTIMATEScore were

calculated using ESTIMATE (25). CIBERSORTx (https://

cibersortx.stanford.edu/) was used to analyze infiltrating

immune cells in 22 tumors.
3 Results

3.1 Two differential survival subgroups
are identified

From TARGET database, we obtained the transcriptome

sequencing data of 241 T-ALL patients, and each patient had

mRNA expression levels of 24991 genes. All features were first

input into the autoencoder (18). An autoencoder structure

diagram can be seen in Figure 1A. As new features, we used

the weight of 100 neurons in the bottleneck layer.

Univariate Cox-PH model was performed on 100 new

features, and 42 features that were correlated with survival

(log-rank p-value<0.05) were selected. K-means clustering

determined 42 features subjectively, and the value of K was

tried from 2 to 10. The Silhouette score was calculated after each

clustering, and the score closest to 1 was selected. Finally, the

best K value was 2. That is, the optimal cluster number was 2.

The two groups obtained by clustering were called K0 and K1.

There was also a significant difference in survival between the

two clusters based on the KM survival curves (log-rank P

value<0.0001, Figure 1B).

Therefore, K0 and K1 were used as labels of XGB classifier

for supervised learning in subsequent training. The samples

from the TARGET database were randomly split 10 times into

60% and 40%. We used the KM survival curve and the time-

dependent ROC curve to evaluate the accuracy of XGB model

predictions (Figure 2). The mean log-rank P value of KM

survival curve was 0.01864. The mean area under a receiver-

operating characteristic curve (AUC) for 3-year overall survival

of time-dependent ROC curve was 0.789, and the mean AUC for

5-year overall survival was 0.766. These results suggested that

XGB classifier could robustly distinguish individuals from

different survival subgroups.
3.2 Independent cohorts are robustly
validated for survival subgroups

In order to verify the robustness of the classifier and its

application prospect in actual clinical work, we used the

transcriptome sequencing data of 20 T-ALL patients from
frontiersin.org
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Guangdong Provincial People’s Hospital as an independent

cohort input model. These 20 patients were divided into K0

group and K1 group, and the KM survival curve showed a

significant difference in survival between the two groups (log-

rank P value = 0.0248, Figure 3A). The time-dependent ROC

curve also showed a significant correlation between patient risk

score and survival time (AUC for 1-year overall survival = 0.89,

AUC for 3-year overall survival = 0.77, Figure 3B).
3.3 The deep learning-based methodology
exceeds alternative approaches

To explore the need for a Deep Learning framework, we used

two possible alternatives. The first alternative was to use PCA to

reduce the dimension of the input data instead of the features
Frontiers in Oncology 05
generated the autoencoder bottleneck layer. While preserving at

least 95% of the explained variance ratio, we reduced the input

data to 182 dimensions. Then univariate Cox-PH model was

performed to screen out the parts of the 182 principal

components that were obviously correlated with survival time

(log-rank p-value<0.05). That left 9 principal components.

However, there was no significant difference in survival time

between K0 group and K1 group (log-rank P value = 0.9973,

Figure 4A). The second alternative was to use the single-variant

Cox-PH model to reduce the number of features in the input

data. We obtained 359 features that were significantly associated

with survival time (log-rank p-value<0.05). Similarly, there was

no significant difference in survival time between K0 group and

K1 group (log-rank P value = 0.9240, Figure 4B). These results

indicated that neither of the alternatives could achieve the effect

of the Deep Learning framework.
B

A

FIGURE 1

(A) The structure diagram of autoencoder. (B) Significant survival difference of datasets from TARGET database.
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3.4 Clinical correlates of survival subgroups

We compared the associations of clinical covariates that

were previously thought to have a possible effect on patient

survival with subgroups in this study (Table 1). We did not

observe clearly statistically significant indicators. K0 and

K1 subgroups may be an independent predictor of T-

ALL prognosis.
3.5 Functional analysis of the survival
subgroups in TARGET database samples

In the K0 and K1 groups, differentially expressed genes were

identified. The selection criteria for differentially expressed genes

was adj.P< 0.05 and absolute fold change value ≥ 1. A total of

1085 up-regulated genes and 2957 down-regulated genes were

screened from K1 group compared with K0 group. The

comparative expression profile of these genes were shown in

Figure 5. There were many leukemia-related genes in the up-

regulated genes of K1 group, such as UBB (P=1.56e-50) (26),

MIF (P=2.76e-50) (27), DRAP1 (P=1.72e-49) (28), RPS25

(P=1.9e-49) (29), EIF3K (P=4.77e-49) (30), SSNA1 (P=1.27e-

48) (31), GPX4 (P=3.01e-48) (32), PHB2 (P=7.13e-48) (33),

NME2 (P=2.44e-47) (34) or CFL1 (P=4.07e-47) (35).

We used functional analysis to explain the difference in the

survival subgroups K0 and K1. Functional analysis of up-
Frontiers in Oncology 06
regulated genes in K1 subgroup were shown in Figures 6A, B.

We observed that some cancer-related pathways were enriched

in the K1 subgroup. PI3K-Akt pathway has increased activity in

a large number of malignant tumors and promotes the growth of

leukemia stem cells (36). It has been shown that the cGMP-PKG

signaling pathway promotes leukemia cell proliferation (37).

TGF-beta signaling pathway is a double-acting regulator that has

been reported to benefit the immune escape of leukemia cells

(38). GnRH signaling pathway is inhibited by Leukemia

inhibitory factor (LIF) (39). AGE-RAGE signaling pathway

strongly induces the proliferation of leukemia cells and cell

lines (40). MAPK signaling pathway promotes drug resistance

of leukemia cells (41). Functional analysis of the up-regulated

genes in K0 subgroup were shown in Figures 6C, D.
3.6 Association between K-means survival
subgroups and tumor microenvironment

There were no statistically significant difference between the

StromalScore, ImmuneScore and ESTIMATEScore between the

K0 and K1 subgroups (Figure 7A). There were no significant

difference in immune function and antigen presentation,

angiogenesis, and myeloid inflammation signaling pathways

related to tumor microenvironment between K0 and K1

groups (Figure 7B). In the K1 group, B cells memory, NK cells

activated, and eosinophils were significantly enriched by the
B

A

FIGURE 2

(A) Results of the 10 times KM curves for XGB model. (B) Results of the 10 times time-dependent ROC curve for XGB model.
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B

A

FIGURE 3

(A) Significant survival difference for 20 T-ALL patients from Guangdong Provincial People’s Hospital. (B) The time-dependent ROC curve
showed a significant correlation between patient risk score and survival time.
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CIBERSORT algorithm analysis (P< 0.05, Figure 6C). The K0

group was significantly enriched in T cells CD4 naive and T cells

gamma delta (P< 0.05, Figure 7C).
4 Discussion

The heterogeneity of T-ALL has restricted people’s

understanding of its etiology. We have seen many studies on
Frontiers in Oncology 08
novel typing of T-ALL. However, there are few types that can

clearly predict the long-term survival status of patients. More

importantly, most reported T-ALL subgroups have no validating

using either external validation cohorts or external validation

cohorts downloaded from a common database. Our study used

data from patients we met in the real world to validate the

model, which undoubtedly makes it more convincing.

According to our knowledge, we are the first to use deep

learning framework to construct a T-ALL prognostic
B

A

FIGURE 4

(A) No significant survival difference for the first alternative. (B) No significant survival difference for the second alternative.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1057153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1057153
TABLE 1 Associations of survival subgroups with clinical covariates.

Variable Overall, N = 20 K0, N = 12 K1, N = 8 P-value*

Gender 0.3

Female 5 (25%) 2 (17%) 3 (38%)

Male 15 (75%) 10 (83%) 5 (62%)

Age 28 (24, 32) 28 (24, 32) 28 (22, 39) >0.9

WBC (×10^9/L) 30 (5, 57) 36 (9, 57) 15 (4, 61) 0.4

LDH (U/L) 352 (220, 558) 352 (220, 725) 411 (236, 520) >0.9

WT1 (10^4) 106 (45, 979) 265 (60, 979) 104 (38, 1,011) >0.9

HSCT >0.9

Yes 11 (55%) 7 (58%) 4 (50%)

No 9 (45%) 5 (42%) 4 (50%)

Bone marrow blasts percentage 90 (74, 91) 87 (74, 90) 90 (78, 91) 0.7
Frontiers in Oncology
 09
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*Fisher’s exact test.
FIGURE 5

Difference in gene expression between K1 and K0 subgroups represented by a volcano plot.
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prediction model. Our study will promote the application of

deep learning framework in the development of prognostic

prediction models. In practical application scenarios, the

model can not only be used for prediction, but more

importantly, clinicians can adjust the treatment plan of

patients according to the prediction results.

We used a deep learning framework and identified two new

subgroups of T-ALL based on transcriptome sequencing data.

We verify the robustness of the model in many aspects. With the

CV approach in particular, we can obtain continuous and

repeatable good results. Presumably, deep learning frameworks

have extracted information from high-dimensional data that is

significantly related to survival time. But PCA and the like are

clearly not. Somewhat unfortunately, the information extracted

by deep learning frameworks cannot be intuitively understood

by humans.

We observed that the K1 subgroup had a worse survival

expectation, and in the functional enrichment analysis of the K1

subgroup, we did obtain pathways that have been reported to

increase the severity of leukemia malignancy. K1 group

members exhibited significantly higher levels of B cells
Frontiers in Oncology 10
memory, NK cells activated, and eosinophils according to the

CIBERSORT algorithm analysis. It was also found that the K0

group is significantly enriched in CD4 naive and gamma delta T

cells. This model has improved our understanding of the

etiology of malignant T-ALL.

There are a few points that need to be discussed separately

about our self-built external validation cohort. The first point is

that the diagnosis time span of these patients is relatively long.

The quality of recent patient samples is certainly better

preserved, but the preservation of patient samples from many

years ago (the earliest collection in 2015) could be very

inconsistent. The second point is that there are differences in

the way patients’ samples are stored. Most of the samples were

dissolved in DDW in the form of RNA and refrigerated at minus

80 degrees Celsius. Some samples were directly refrigerated after

total RNA was dissolved in Trizol. The third point is that

patients’ clinical information is kept inconsistently. The loss of

information may be due to frequent changes in the hospital’s

record system in recent years, or it may be due to omissions in

patient information collection years ago. Despite these problems,

we obtained positive results in our external validation cohort,
B

C D

A

FIGURE 6

(A) Functional analysis for up-regulated genes in the K1 subgroup. (B) Chord diagram of enriched terms for up-regulated genes in the K1
subgroup. (C) Functional analysis for up-regulated genes in the K0 subgroup. (D) Chord diagram of enriched terms for up-regulated genes in
the K0 subgroup.
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which demonstrated the robustness of this model. As clinicians

and researchers, we look forward to conducting prospective

studies in the future, not only to improve the model, but also

to improve treatment for our patients.
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FIGURE 7

(A) Statistical comparison of StromalScore, ImmuneScore and ESTIMATEScore between K0 and K1 subgroups. (B) Gene expression in tumor
microenvironmental pathways associated with immune and antigen presentation, angiogenesis, and myeloid inflammation. (C) 22 infiltrated
immune cells between the K0 and K1 subgroups were analyzed.
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Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture
from expression data. Nat Commun (2013) 4(1):1–11. doi: 10.1038/ncomms3612

26. Wu P, Tian Y, Chen G, Wang B, Gui L, Xi L, et al. Ubiquitin b: an essential
mediator of trichostatin a-induced tumor-selective killing in human cancer cells.
Cell Death Differentiation (2010) 17(1):109–18. doi: 10.1038/cdd.2009.142

27. Yao J, Luo Y, Zeng C, He H, Zhang X. UHRF1 regulates the transcriptional
repressor HBP1 through MIF in T acute lymphoblastic leukemia. Oncol Rep (2021)
46(1):1–9. doi: 10.3892/or.2021.8082

https://doi.org/10.1309/AJCPMF03LVSBLHPJ
https://doi.org/10.1016/j.blre.2019.100591
https://doi.org/10.1182/blood-2016-07-692608
https://doi.org/10.1182/blood-2016-07-692608
https://doi.org/10.1002/gcc.22416
https://doi.org/10.18632/oncotarget.11233
https://doi.org/10.18632/oncotarget.11233
https://doi.org/10.1182/blood-2014-10-551895
https://doi.org/10.1182/blood-2014-10-551895
https://doi.org/10.1200/EDBK_156628
https://doi.org/10.1016/S1535-6108(02)00018-1
https://doi.org/10.1016/S1535-6108(02)00018-1
https://doi.org/10.1038/sj.leu.2401382
https://doi.org/10.1038/nature10725
https://doi.org/10.1111/j.1365-2141.2011.08955.x
https://doi.org/10.1038/nrc.2016.63
https://doi.org/10.1038/nrc.2016.63
https://doi.org/10.1142/9789814644730_0014
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1186/s12859-015-0852-1
https://doi.org/10.22037/JPS.V7I2.11696
https://doi.org/10.1128/mSystems.00025-15
https://doi.org/10.1561/9781601982957
https://doi.org/10.1016/j.margen.2019.100723
https://doi.org/10.1016/j.margen.2019.100723
https://doi.org/10.1016/j.margen.2019.100723
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/cdd.2009.142
https://doi.org/10.3892/or.2021.8082
https://doi.org/10.3389/fonc.2022.1057153


Zhang et al. 10.3389/fonc.2022.1057153
28. Bitto E, Bingman CA, Robinson H, Allard ST, Wesenberg GE, Phillips GN.
The structure at 2.5 Å resolution of human basophilic leukemia-expressed protein
BLES03. Acta Crystallographica Section F: Struct Biol Crystallization Commun
(2005) 61(9):812–7. doi: 10.1107/S1744309105023845

29. Terol M, Gazon H, Lemasson I, Duc-Dodon M, Barbeau B, Césaire R, et al.
HBZ-mediated shift of JunD from growth suppressor to tumor promoter in
leukemic cells by inhibition of ribosomal protein S25 expression. Leukemia
(2017) 31(10):2235–43. doi: 10.1038/leu.2017.74

30. Salsman J, Pinder J, Tse B, Corkery D, Dellaire G. The translation initiation
factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies.
Exp Cell Res (2013) 319(17):2554–65. doi: 10.1016/j.yexcr.2013.09.001

31. Van Vlierberghe P, Meijerink J, Lee C, Ferrando A, Look A, Van Wering E,
et al. A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic
leukemia. Leukemia (2006) 20(7):1245–53. doi: 10.1038/sj.leu.2404247

32. Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, et al.
APR-246 induces early cell death by ferroptosis in acute myeloid leukemia.
Haematologica (2022) 107(2):403. doi: 10.3324/haematol.2020.259531

33. von Wenserski L, Schultheiß C, Bolz S, Schliffke S, Simnica D, Willscher E,
et al. SLAMF receptors negatively regulate b cell receptor signaling in chronic
lymphocytic leukemia via recruitment of prohibitin-2. Leukemia (2021) 35
(4):1073–86. doi: 10.1038/s41375-020-01025-z

34. Tschiedel S, Bach E, Jilo A, Wang S-Y, Lange T, Al-Ali H-K, et al. Bcr–abl
dependent post-transcriptional activation of NME2 expression is a specific and
common feature of chronic myeloid leukemia. Leukemia lymphoma (2012) 53
(8):1569–76. doi: 10.3109/10428194.2012.656631
Frontiers in Oncology 13
35. Tang MK, Liang YJ, Chan JYH, Wong SW, Chen E, Yao Y, et al.
Promyelocytic leukemia (PML) protein plays important roles in regulating cell
adhesion, morphology, proliferation and migration. PloS One (2013) 8(3):e59477.
doi: 10.1371/journal.pone.0059477

36. Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A,
et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci
(2015) 72(12):2337–47. doi: 10.1007/s00018-015-1867-5

37. Li M, Lan F, Li C, Li N, Chen X, Zhong Y, et al. Expression and regulation
network of HDAC3 in acute myeloid leukemia and the implication for targeted
therapy based on multidataset data mining. Comput Math Methods Med (2022)
2022. doi: 10.1155/2022/4703524

38. Huang C-H, Liao Y-J, Chiou T-J, Huang H-T, Lin Y-H, Twu Y-C. TGF-b
regulated leukemia cell susceptibility against NK targeting through the down-
regulation of the CD48 expression. Immunobiology (2019) 224(5):649–58. doi:
10.1016/j.imbio.2019.07.002

39. Lainez NM, Coss D. Leukemia inhibitory factor represses GnRH gene
expression via cFOS during inflammation in male mice. Neuroendocrinology
(2019) 108(4):291–307. doi: 10.1159/000496754

40. Kim JY, Park HK, Yoon JS, Kim SJ, Kim ES, Ahn KS, et al. Advanced glycation
end product (AGE)-induced proliferation of HEL cells via receptor for AGE-related
signal pathways. Int J Oncol (2008) 33(3):493–501. doi: 10.3892/IJO_00000032

41. Murali I, Kasar S, Naeem A, Tyekucheva S, Khalsa JK, Thrash EM, et al.
Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic
lymphocytic leukemia. Blood (2021) 138(1):44–56. doi: 10.1182/blood.2020006765
frontiersin.org

https://doi.org/10.1107/S1744309105023845
https://doi.org/10.1038/leu.2017.74
https://doi.org/10.1016/j.yexcr.2013.09.001
https://doi.org/10.1038/sj.leu.2404247
https://doi.org/10.3324/haematol.2020.259531
https://doi.org/10.1038/s41375-020-01025-z
https://doi.org/10.3109/10428194.2012.656631
https://doi.org/10.1371/journal.pone.0059477
https://doi.org/10.1007/s00018-015-1867-5
https://doi.org/10.1155/2022/4703524
https://doi.org/10.1016/j.imbio.2019.07.002
https://doi.org/10.1159/000496754
https://doi.org/10.3892/IJO_00000032
https://doi.org/10.1182/blood.2020006765
https://doi.org/10.3389/fonc.2022.1057153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Deep learning-based transcriptome model predicts survival of T-cell acute lymphoblastic leukemia
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Total RNA extraction
	2.3 mRNA library construction
	2.4 Transcriptome sequencing and quality control
	2.5 Deep learning framework
	2.6 K-means clustering
	2.7 Data partitioning and robustness&#146;assessment
	2.8 Supervised classification
	2.9 Alternative approaches to the deep learning framework
	2.10 Functional analysis
	2.10.1 Clinical covariate analysis
	2.10.2 Differential expression
	2.10.3 Enriched pathway analysis
	2.10.4 Tumor microenvironment analysis


	3 Results
	3.1 Two differential survival subgroups are identified
	3.2 Independent cohorts are robustly validated for survival subgroups
	3.3 The deep learning-based methodology exceeds alternative approaches
	3.4 Clinical correlates of survival subgroups
	3.5 Functional analysis of the survival subgroups in TARGET database samples
	3.6 Association between K-means survival subgroups and tumor microenvironment

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


