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m7G-related gene NUDT4 as
a novel biomarker promoting
cancer cell proliferation in
lung adenocarcinoma

Yafei Liu1†, Bin Jiang1†, Chunjie Lin2†, Wanyinhui Zhu2,
Dingrui Chen2, Yinuo Sheng2, Zhiling Lou1, Zhiheng Ji1,
Chuanqiang Wu1 and Ming Wu1*

1Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of
Medicine, Hang Zhou, China, 2Life Sciences Institute, Zhejiang University, Hang Zhou, China
Background: Lung cancer is the leading cause of mortality in cancer patients. N7-

methylguanosine (m7G) modification as a translational regulation pattern has been

reported to participate in multiple types of cancer progression, but little is known in

lung cancer. This study attempts to explore the role of m7G-related proteins in

genetic and epigenetic variations in lung adenocarcinoma, and its relationship with

clinical prognosis, immune infiltration, and immunotherapy.

Methods: Sequencing data were obtained from the Genomic Data Commons

(GDC) Data Portal and Gene Expression Omnibus (GEO) databases. Consensus

clustering was utilized to distinguish m7G clusters, and responses to

immunotherapy were also evaluated. Moreover, univariate and multivariate Cox

and Least absolute shrinkage and selection operator LASSO Cox regression

analyses were used to screen independent prognostic factors and generated risk

scores for constructing a survival prediction model. Multiple cell types such as

epithelial cells and immune cells were identified to verify the bulk RNA results.

Short hairpin RNA (shRNA) Tet-on plasmids, Clustered Regularly Interspaced Short

Palindromic Repeats CRISPR/Cas9 for knockout plasmids, and nucleoside

diphosphate linked to moiety X-type motif 4 (NUDT4) overexpression plasmids

were constructed to inhibit or promote tumor cell NUDT4 expression, then RT-

qPCR, Cell Counting Kit-8 CCK8 proliferation assay, and Transwell assay were used

to observe tumor cell biological functions.

Results: Fifteen m7G-related genes were highly expressed in tumor samples, and

12 genes were associated with poor prognosis. m7G cluster-B had lower immune

infiltration level, worse survival, and samples that predicted poor responses to

immunotherapy. The multivariate Cox model showed that NUDT4 and WDR4 (WD

repeat domain 4) were independent risk factors. Single-cell m7G gene set variation

analysis (GSVA) scores also had a negative correlation tendency with immune

infiltration level and T-cell Programmed Death-1 PD-1 expression, but the statistics

were not significant. Knocking down and knocking out the NUDT4 expression

significantly inhibited cell proliferation capability in A549 and H1299 cells. In

contrast, overexpressing NUDT4 promoted tumor cell proliferation. However,

there was no difference in migration capability in the knockdown, knockout, or

overexpression groups.
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Conclusions: Our study revealed that m7G modification-related proteins are

closely related to the tumor microenvironment, immune cell infiltration,

responses to immunotherapy, and patients’ prognosis in lung adenocarcinoma

and could be useful biomarkers for the identification of patients who could benefit

from immunotherapy. The m7G modification protein NUDT4 may be a novel

biomarker in promoting the progression of lung cancer.
KEYWORDS

N7-methylguanosine modification, lung adenocarcinoma, prognosis, NUDT4, immune
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Background

In recent epidemiology statistics, lung cancer incidence showed a

protracted downward trend, declining from 2009 to 2018 by almost 3%

annually in men and 1% in women (1). The 5-year survival of lung

cancer patients in the United States has improved from 17.2% 10 years

ago to 21.7% in 2019 (2). It looks like there is some progress in lung

cancer treatment, but an estimation about cancer deaths presented that

lung cancer would cause a total of 66,820 men and 61,360 women to

die in the year 2022, approximately 350 deaths per day (1). This

overwhelming number reminds clinicians that there will always not

(programmed death ligand 1) enough to study lung cancer. As

radiographic technology has evolved and civilians’ health

consciousness increased, more and earlier stages of lung cancer are

being screened out (3), and diagnostic accuracy and recovery rate have

improved in the past years, especially for patients diagnosed with stage

IA, suitable for lung segmentectomy and lobectomy (4), which,

undoubtedly, even increased the rate of lung cancer cure. Moreover,

with applications of molecularly targeted drugs such as tyrosine kinase

inhibitors and immune checkpoint PD-1/PD-L1 (programmed death

ligand 1) inhibitors (5), patients in advanced stages had also improved

survival outcomes, but as drug resistance inevitably occurs (6),

patients’ conditions would suddenly deteriorate. Therefore,

exploration of the mechanisms of tumor cell progression to find new

drug targets is needed and worth to continue trying. On the other

hand, constructing an efficient follow-up protocol for different

recurrence risk levels is also needed for patients (7).

Small cell lung cancer and non-small cell lung cancer are the two

main pathological classifications of lung cancer, and the latter accounts

for approximately 85% of all lung cancer cases (8). Lung adenocarcinoma

(LUAD) is one of the subtypes of non-small cell lung cancer, and which

accounts for approximately 40% of all cases of lung cancer (9), diagnosed

commonly in women, never smokers, and in East Asia (10). LUAD was

demonstrated to transform from type II alveolar cell cancerization, which

was corroborated by our previous study using single-cell sequencing
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analysis (11). The high probability of resistance to treatment and

recurrence remains a major challenge for patients and clinicians. In

this study, we would focus on N7-methylguanosine (m7G) modification-

related characteristics in LUAD patients.

Since 1957, RNA modification has been discovered, and emerging

multiple modification patterns have been identified, such as 1-

methyladenosine (m1A), 5-methylcytidine (m5C), N6-methyladenosine

(m6A), m7G, and 2-O-methylation, which affect RNA splicing,

nucleation, and stability and have been involved in many eukaryote

and prokaryote cell biological processes (12). In human diseases, RNA

modifications were reported to have been involved in tumorigenesis,

immunogenicity, and tumor immunity (13). As for lung cancer, RNA

modifications have been widely reported to play an important role in

tumor occurrence and development (14). Moreover, in the past decades,

hundreds of enzymes that function as modifications have been found,

which were capable of altering nucleosides in transfer RNAs (tRNAs),

ribosomal RNAs (rRNAs), messenger RNAs (mRNAs), and microRNAs

(15). These enzymes are of great potential to serve as diagnostic and

prognostic biomarkers and therapeutic targets for the treatment of

lung cancer.

m7Gmodification at nucleotide position 46 in the variable loop of

tRNAs, as one of the most prevalent RNA modifications, has been

reported to function as promoting the translation of cell cycle

regulatory and oncogenic mRNAs and eventually driving cellular

transformation and cancer progression (12). m7G-related proteins

have been reported to be highly expressed in multiple cancer types

and promote tumor development, such as lung cancer (16),

hepatoce l lu la r carc inoma (17) , pros ta te cancer (18) ,

cholangiocarcinoma (19), and bladder cancer (20). However, the

relationship between m7G modification proteins and the clinical

characteristics of LUAD patients has not been properly evaluated.

Therefore, in this study, we first used The Cancer Genome Atlas

TCGA and Gene Expression Omnibus (GEO) sequencing data to

analyze genetic variations in LUAD patients and then combined their

clinical information to perform a Cox regression analysis to evaluate

their impact on patients’ prognosis. In addition, we performed m7G

consensus clustering and generated two clusters in which cluster B

was highly expressed m7G-related genes, negatively correlated with

immune infiltration, predicted poor responses to immunotherapy,

and associated with poor survival outcomes. Thus, m7G-related

proteins are of great potential as biomarkers and potential

therapeutic targets in patients with LUAD.
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The NUDT/(nudix hydrolase)NUDIX (nucleoside diphosphate

linked to moiety X) type hydrolase superfamily included an

evolutionary conserved large group of enzymes, which hydrolyzed a

wide range of substrates, playing an important role in biological

processes including cell proliferation, signal transduction, and

homeostasis (21). The NUDIX-type motif 4 (NUDT4), being one of

such enzymes, encoded protein diphosphoinositol polyphosphate

phosphohydrolase 2 (DIPP2)whose function is to catalyze the

reaction 7-methylguanosine 5′-triphospho-5′-polynucleotide + H2O

= 7-methylguanosine 5′-phosphate + polynucleotide, thereby

regulating the turnover of diphosphoinositol polyphosphates and as

such, may also regulate vesicle trafficking and DNA repair (22, 23). It

has been reported that NUDT4 is a prognostic biomarker in gastric

cancer (24), but its role in lung cancer is also largely unknown.
Methods

Data acquisition and preprocessing

Copy number variation, simple nucleotide variation, transcriptome

profiling, andclinicaldatawereobtained fromtheNationalCancer Institute

Genomic Data Commons Data Portal, in which samples without survival

time or survival status were excluded. Then, the transcriptome profiling

gene IDswere converted fromEnsembl ID to official gene symbols, and the

normalization algorithm was transformed from fragments per kilobase of

transcript per million fragments mapped FPKM to transcripts per million

TPM for subsequent analysis. GEO dataset GSE68465 (25), GSE75037,

GSE32863,GSE7670, GSE43458, includingmRNA expression and clinical

data, was also obtained. The RNA expression data Affymetrix probe IDs

were also converted to official gene symbols. The transcriptome data from

TCGA and GEO were merged with batch effect adjusted using empirical

Bayes methods (26) for comprehensive analysis. Single-cell data were

obtained from GEO dataset GSE131907 (27) and processed by R

packages Seurat (28) and SingleR (29).
Collection of m7G
modification-related genes

According to the gene set enrichment analysis (GSEA) Molecular

Signatures Database m7G-related gene sets (30) including gene sets

GOMF m7G 5-PPPN diphosphatase activity, GOMF RNA 7-

methylguanosine cap binding, GOMF RNA cap binding, and previously

published articles (31–33), a total of 28 related genes were obtained for

subsequent analysis, namely,AGO2 (argonaute 2),CYFIP1,DCP2,DCPS,

EIF3D, EIF4A1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5,

IFIT5, LARP1, LSM1,METTL1, NCBP1 (nuclear cap-binding protein 1),

NCBP2, NCBP2L, NCBP3, NSUN2, NUDT10, NUDT11, NUDT16,

NUDT3, NUDT4, SNUPN, andWDR4 (WD repeat domain 4).
Mutation status and copy number
variation analysis

The VarScan2 workflow-generated mutation data were used for

further analysis. Sequencing data were loaded into RStudio software
Frontiers in Oncology 03
and analyzed by R package Maftools (34), which was capable of

analyzing and visualizing the mutation percentage of the desired

genes, variant classifications and types, variant allele frequencies,

single-nucleotide variant (SNV) classes, and survival analysis

between mutant and wild types of samples. Copy number variation

data were visualized by the function barplot of the package Graphics

in RStudio software (Version 1.4.1717).
RNA expression comparison and
survival analysis

Transcriptome data from TCGA tumor and normal samples were

log2 ratio transformed for normalization before Wilcoxon test

comparison using R package Limma (35), and the results were

visualized by the function ggboxplot of the R package Ggpubr. In

addition, data for survival analysis were merged from TCGA and

GEO mRNA expression data, the method of which was mentioned

above. After combination with clinical information, data were

analyzed by the R package Survival and Survminer and visualized

by Kaplan–Meier survival curves. Correlations between m7G genes

were analyzed by the R package Psych using the Pearson method, and

results were visualized by the R package Igraph.
Evaluation of unsupervised consensus
clustering, gene set variation analysis, and
immunotherapy responses

To explore m7G molecular subclasses and analyze the

characteristic differences in LUAD patients, mRNA expression data

that only contained m7G-related genes were generated for consensus

clustering. The R package ConsensusClusterPlus (36) was the tool

used to subsample and determine the number of possible clusters in

the dataset and provide heatmaps and distribution plots to help

determine specified cluster counts. Moreover, the differentially

expressed genes between clusters were analyzed, and gene set

variation analysis (GSVA) (37) was performed to explore different

pathways involved between clusters. Immunophenoscore (IPS) was

defined as a digitized prediction of responsiveness to cytotoxic T-

lymphocyte associated protein 4 CTLA-4 and PD-1 checkpoint

inhibitors, which was obtained from The Cancer Immunome Atlas

(TCIA). IPS comparison between m7G groups was analyzed and

visualized by the Ggpubr package.
Univariate Cox, LASSO Cox, and multivariate
Cox regression analyses

Patient samples with m7G-related gene RNA expression and

clinical characteristics including age, gender, and T and N stages

were included in the analysis. Then, these factors were evaluated by

univariate Cox analysis, and factors with a P < 0.05 were included in

the LASSO Cox analysis. The R package Glmnet (38) was used for

LASSO regression analysis, which helps to cross-validate each model

to optimize the most fitted model. Eventually, the factors in the

optimized model were included in the multivariate Cox regression
frontiersin.org
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analysis, and the regression model was visualized by nomogram using

the package Rms, evaluated using receiver operating characteristic

(ROC) curve by the TimeROC (39) package. The risk score was

predicted by package Stats, and risk levels “High” and “Low” were

divided by the median risk score.
Single-cell RNA data processing and
evaluation of immune infiltration levels

Patient sample types as primary tumor sequencing data from

GSE131907 were downloaded, preprocessed, and integrated for further

analysis according to the Seurat protocol. Data were imported and

transformed into a Seurat project, in which cells with gene features >200

and <7,000 were obtained for further analysis, then the 11 samples were

integrated into one Seurat project. Next, we used SingleR to identify cell

types, which used Human Primary Cell Atlas (40), Blueprint (41), and

ENCODE (42) as references. Cell types with small proportions were

filtered out, and cell proportions including T cells, B cells, monocytes,

and Natural killer NK cells were considered as tumor infiltration levels.

Then, the GSVA scoring form7G-related genes was performed on single-

cell RNA data and visualized by boxplot.
NUDT4 protein level expression from The
Human Protein Atlas

To confirm whether the gene NUDT4 translates the associated

protein in lung tissue cells, we used The Human Protein Atlas

database (https://www.proteinatlas.org/) (43) to observe the protein

expression both in LUAD and normal tissue chips. The proteins in

human tissues based on immunohistochemistry using tissue

microarrays, and antibodies including HPA017593, HPA057684.
Cell culture

LUAD cell lines A549 and H1299, and 293T cells for generating

lentivirus, were cultured in dulbecco's modified eagle medium

DMEM with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin and placed in an incubator with 5% carbon dioxide at

37°C. Short hairpin RNA (shRNA) plasmids and envelope plasmids

were cotransfected into 293T cells with polyethylenimine (PEI)

transfection reagent, and after 48 h, the supernatant containing the

lentivirus was collected to infect A549 and H1299 cells. Then,

doxycycline was used to induce shRNA expression.
Plasmid construction

The sequence forknockingdowntheNUDT4expressionwaspredicted

from the Sigma website (https://www.sigmaaldrich.cn/CN/zh/product/

sigma/shrna), including shNUDT4-1: CTCCAGTGTCATAA

ACCTGTA, shNUDT4-2: TTTGAGAACCAAGACCGAAAG, and

shNUDT4-3: TCCCTTCCCTTCCGGATAATA, which were all cloned
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into tet-pLKO-puro. Tet-pLKO-puro empty plasmid was considered a

negative control. On the other hand, three single-guide RNAs (sgRNAs)

were designed to knock out NUDT4, including sgRNA1:

TATCTGGAAAAGCTAAAGCT , s gRNA2 : CACTGAA

ATATTAGAAGATT, and sgRNA3: CAGACTTCTGGGCATATTTG,

which were all cloned into plasmid pX459. The primers used to clone the

NUDT4 DNA are as follows: NUDT4sg12 (forward 5 ′-
TTGCTTATATTCCTGTGTCCAGTTTCCATC-3′, reverse 5′-
ATATAGGGGGTTGTGGGGTGTGGCACAGTT-3′); NUDT4sg3

(forward 5′-TCCAATAATTTGAGAGTTTTACCACCAGTAG-3′,
reverse 5′-CATTTCAGTATCAGCTCCACTGTATTTTCAAAC-3′). For
overexpression, the NUDT4 mRNA (GenBank: NM_019094.4) was

expressed transiently in lung cancer cell lines using the pBOBI

plasmid vector.
Quantitative real-time PCR

Total cell RNA was extracted by TRIzol (Takara, Japan) reagent

following the manufacturer’s instructions, 1 mg of which was used to

synthesize the cDNA using the PrimeScript RT Master Mix (Takara,

Japan). qRT-PCR assays were then performed utilizing SYBR Premix Ex

Taq II (Takara, Japan). Glyceraldehyde-3-phosphate dehydrogenase

GAPDH was chosen as an endogenous control to normalize the

NUDT4 expression levels in different groups. The relative mRNA

expression levels of NUDT4 were calculated using the 2-DDCt method.

The primers used are as follows: GAPDH (forward 5′-
G TCTCCTCTGACTTCAACAGCG - 3 ′ , r e v e r s e 5 ′ -
ACCACCCTGTTGCTGTAGCCAA-3′); NUDT4 (forward 5′-
T ACCCAGACCAGTGGATTGTCC - 3 ′ , r e v e r s e 5 ′ -
TGTTCTGTGCTTTCGGTCTTGGT-3′).
Cell Counting Kit-8 assay

shRNA cell lines were seeded in 96-well plates at a density of

1,500 cells per well for A549 and 3,000 cells per well for H1299 and

cultured for 3 days; knockout cell lines and overexpression cell lines

were seeded at a density of 3,000 cells per well. Sample size in each

experiment was designed as three duplicates. CCK8 reagent was

used to evaluate cell proliferation in the indicated time points.

Briefly, 10 µl of CCK8 reagent was added into each well in 96-well

plates and then incubated for 4 h in an incubator at 37°C. Then, the

plates were read at an optical density of 450 (OD450) nm by a

microplate reader.
Cell migration assay

Cell migration assays were performed using Transwell chambers

(8-mm pore size) (NEST, USA). In this study, 4 × 104 cells were

suspended in serum-free medium and added to the upper face of the

cell culture chambers. Sample size in each experiment was designed as

three duplicates. The chambers were placed into a 24-well plate

containing DMEM with 15% FBS. After incubation for 16 h, the
frontiersin.org
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chambers were fixed for 30 min using 4% polyoxymethylene (PFA),

stained by crystal violet for 30 min, washed three times using

Phosphate buffered solution PBS, and finally photographed with a

microscope when the chamber became dry.
Statistical analysis

All statistics were analyzed using R packages in RStudio software

(R Version 4.1.2, RStudio Version 1.4.1717). The Wilcoxon test was

used in mRNA expression comparison. The Pearson and Spearman

method was used in correlation analysis. The Kaplan–Meier estimates

were used in survival analysis. Univariate Cox, LASSO Cox, and
Frontiers in Oncology 05
multivariate Cox regression analyses were used to screen out

independent risk factors. P < 0.05 was considered significant.
Results

Genetic alterations detected in m7G
modification-related genes

Genetic alteration data were only available in TCGA samples,

which included 477 tumor tissue samples and 54 normal tissue

samples. The chromosome locations of m7G modification-related

genes were visualized on a chromosome ideogram (Figure 1A). Copy
B

C D E

F G H

A

FIGURE 1

Genetic alterations in N7-methylguanosine (m7G) modification-related genes. (A) m7G modification-related genes’ chromosome locations. (B) m7G-
related gene copy number amplification. (C) Top-rating mutated m7G-related genes. (D) Single-nucleotide polymorphisms in all variant types. (E) Variant
allele frequencies of m7G-related genes. (F) Single-nucleotide variants of m7G-related genes. (G) Variant classification of m7G-related genes. (H) Survival
analysis between mutant and wild-type patients. CNV: Copy number variation; SNP: Single-nucleotide polymorphism; DEL: Gene deletion; WT: Wild
type; SNV: Single nucleotide variant; HR: Hazard ratio.
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number amplification was observed mainly on genes AGO2, NSUN2,

and METTL1 whose frequencies were all more than 10%. Most of the

gene deletion frequencies were less than 5%, except the ones for genes

CYFIP1, EIF4G3, and DCPS, which were a little higher than 5%

(Figure 1B). On the other hand, genes with highest mutation rate were

listed in Figure 1C, including EIF4G3 (19%), LARP1 (16%), and

NSUN2 (10%). Single-nucleotide polymorphisms were the main

variant types (Figure 1D). Moreover, almost all of the variant allele

frequencies are less than 40% (Figure 1E). Most of the SNVs were

from cytosine deoxynucleotide mutated to guanine or thymine

deoxynucleotide (Figure 1F) and mainly missense mutations

(Figure 1G). In addition, there was no difference in survival analysis

between mutant and wild-type patients (P = 0.96) (Figure 1H).
Most m7G-related genes were associated
with poor prognosis

More than half of the m7G-related genes were significantly

upregulated in tumor samples, such as METTL1, WDR4, EIF4E,

LARP1, and LSM1 (Figure 2A). A total of 919 samples were left for

analysis after samples without survival data were excluded, and after

the integration of TCGA and GEO expression data, there were 18

genes left for survival analysis (Figure 2B). The correlation between

each gene was also analyzed, which resulted in most of the genes being

positively correlated with each other, but Decapping mRNA 2 DCP2

was negatively related to genes METTL1 and DCPS (Figure 2C).

Fourteen genes were associated with patients’ poor prognosis, namely,

WDR4, CYFIP1, DCP2, DIF3D, EIF4E, METTL1, LARP1, EIF4G3,

EIF4E2, NCBP1, NCBP2, NUDT4, NUDT11, and SNUPN, but a high
Frontiers in Oncology 06
expression of NUDT3 was related to good survival in

patients (Figure 2D).
Two subclasses were clustered out by
unsupervised consensus analysis

The heatmap shown in Figure 3A distinctly divided patients into

two clusters based on m7G-related gene expression data. These gene

comparisons between clusters showed that most of the genes were

highly expressed in cluster B compared to cluster A, such as CYFIP1,

DCP2, EIF3D, EIF4E, and WDR4 (Figure 3B). Kaplan–Meier plot

showed that cluster B was associated with worse survival than cluster

A (Figure 3C). On the other hand, a single-sample GSEA for immune

cell infiltration analysis was performed, and the results were available

in Supplementary Table S1. Then, the results of the comparison of

immune infiltration between clusters were visualized in the boxplot,

which showed that infiltration levels of most types of immune cells

were downregulated in cluster B (Figure 3D). GSVA results on KEGG

pathways were visualized in Figure 3E by a heatmap, which showed

pathways enriched in cluster B including cell cycle, homologous

recombination, spliceosome, nucleotide excision repair, and

mismatch repair, while cluster A was enriched in graft-versus-host

disease, transduction, intestinal immune network for IgA production,

asthma, allograft rejection, autoimmune thyroid disease pathways,

and so on. Moreover, the IPS for prediction responsiveness to CTLA-

4 and PD-1 checkpoint inhibitors was also compared between m7G

clusters, which showed that the responses to all therapies were always

lower in cluster A group (Figure 3F) whether using CTLA-4

checkpoint inhibitors or PD-1 checkpoint inhibitors or both.
B C

D

A

FIGURE 2

N7-methylguanosine (m7G)-related gene expression and survival analysis. (A) Boxplot of m7G-related gene mRNA expression between tumor and
normal samples. (B) Venn plots for common existing genes in the three groups. (C) Correlation network between m7G-related genes. (D) Survival plot of
m7G-related genes. (*P <0.05, **P < 0.01, ***P < 0.001, ns: Not statistically significant).
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An m7G-related prediction model was
constructed by Cox regression

A total of 882 patient samples with clinical characteristics were

included in the analysis. First, the univariate Cox regression analysis

results were shown in Figure 4A, and 11 factors were potential

risk factors to patients, namely, age (P = 4.63E-05, HR = 1.02),

gender (P = 0.012, HR = 1.28), T stage (P = 1.10E-12, HR = 1.60), N

stage (P = 7.94E-24, HR = 1.84), EIF3D (P = 0.038, HR = 1.26), EIF4E

(P = 7.21E-05, HR = 1.54), NCBP1 (P < 0.001, HR = 1.42), NCBP2

(P = 0.009, HR = 1.30), NUDT11 (P = 0.019, HR = 1.13), NUDT4 (P =

8.99E-05, HR = 1.22), and WDR4 (P = 0.003, HR = 1.30). Then, these

risk factors were included in the LASSO Cox analysis for optimizing

the most fitted model. The coefficient plot showed each factor

coefficient using different color curves (Figure 4B), in which genes

EIF3D (the fifth curve in the plot) and NCBP2 (the eighth curve in the

plot) represented lower coefficients, and the cross-validation curve
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showed that the models that contained the remaining nine factors

were efficient enough to minimize partial likelihood deviance

(Figure 4C); thereupon, the genes EIF3D and NCBP2 were

excluded in the following analysis. At last, the remaining nine

factors were included in the multivariate Cox regression analysis,

and the results were visualized by a forest plot in Figure 4D. It turns

out that factors including age, T stage, N stage, NUDT4, and WDR4

are independent risk factors in LUAD patients. The ROC curve

showed that the model possesses a good performance in predicting

patients’ survival, with an area under the curve (AUC) of 0.737, 0.736,

and 0.731 for 1-year, 3-year, and 5-year survival, respectively

(Figure 4E). The nomogram for the survival prediction model was

plotted that can be used to manually obtain predicted risk values

according to the risk factors from the regression model (Figure 4F).

The risk score was calculated by multivariate Cox analysis, available in

Supplementary Table S2. The high-risk group logically correlated

with a poor prognosis (Figure 4G). On the other hand, we also
B
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FIGURE 3

Unsupervised consensus clustering analysis. (A) Heatmap showed that the samples were distinctly divided into two clusters. (B) Boxplot of N7-
methylguanosine (m7G)-related gene mRNA expression between the two clusters. (C) Survival plot for the two clusters. (D) Infiltration level of immune
cells in different clusters. (E) Heatmap for KEGG pathway enrichment in the two clusters. (F) Immunophenoscore for predicting the responsiveness to
CTLA-4 checkpoint inhibitors and PD-1 checkpoint inhibitors. CTLA-4: Cytotoxic T-lymphocyte associated protein 4; PD-1: Programmed cell death 1.
(*P <0.05, **P < 0.01, ***P < 0.001, ns: Not statistically significant).
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compared risk scores between the two clusters, in which cluster B

possessed higher risk scores compared to those in cluster

A (Figure 4H).
A negative correlation tendency between
m7G and immune infiltration was also
observed in single-cell analysis

A total of 43,025 cells, with seven main cell types identified in

the analysis, namely, T cells (n = 17,420), monocytes (n = 10,690),

B cells (n = 5,145), NK cells (n = 2,764), endothelial cells (n = 635),

fibroblasts (n = 961), and epithelial cells (n = 5,410), contained

tumor cells (Figure 5A), and the top 10 marker genes in the

different cell types were shown in the heatmap (Figure 5B).

There are various tumor infiltration levels in the 11 samples

(Figure 5C), namely, GS3827125 (stage I), GSM3827126 (stage

I), GSM3827127 (stage II), GSM3827128 (stage I), GSM3827129

(stage I), GSM3827130 (stage I), GSM3827131 (stage I),

GSM3827132 (stage III), GSM3827133 (stage I), GSM3827134
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(stage III), and GSM3827135(stage I), and all cell types in each

sample were visualized using t-Distributed Stochastic Neighbor

Embedding t-SNE scatterplot (Figure 5D). GSVA for m7G-related

genes was available in Supplementary Table S3, and in Figure 6A,

mean GSVA scores in different samples had a negative correlation

tendency with immune infiltration levels but were not statistically

significant (R = -0.396, P = 0.227). Otherwise, high GSVA scores

were almost all gathered in epithelial cell groups in all samples

(Figure 6B). Independent risk factors that we analyzed in Cox

regression were also analyzed in single-cell data, and NUDT4,

NCBP1, and WDR4 were mostly expressed in tumor cells

(Figure 6C); other m7G-related genes expression data were

available in Supplementary Table S4. On the other hand, to

verify TCIA IPS results, we analyzed PD-1 expression in T cells

(Figure 6D), which also had a negative correlation tendency with

m7G GSVA scores but was not statistically significant (R = -0.401,

P = 0.221) (Figure 6E), and PD-L1 expression in epithelial cells

(Figure 6F) had a positive correlation tendency with m7G GSVA

scores and still not statistically significant (R = 0.456, P =

0.16) (Figure 6G).
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FIGURE 4

Cox regression analysis for N7-methylguanosine (m7G)-related genes and clinical characteristics. (A) Univariate Cox regression analysis results of m7G-
related genes. (B) Coefficient plot for each factor coefficient. (C) The partial likelihood deviance plot showed partial likelihood deviance of each model.
(D) Forest plot showed multivariate Cox regression analysis results of the nine factors. (E) ROC curve showed the survival prediction model performance.
(F) The nomogram for survival prediction model. (G) Survival analysis between high-risk and low-risk groups. (H) Boxplot showed Cox risk scores
between the two m7G clusters. ROC: Receiver operating characteristic curve; AUC: Area under curve. (*P <0.05, **P < 0.01, ***P < 0.001)
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FIGURE 5

Single-cell analysis and cell type identification for 11 lung adenocarcinoma patient samples. (A) Seven main cell types of all 11 samples were integrated in
one Seurat project and visualized in t-SNE plot. (B) The top 10 marker genes of different cell types were visualized in the heatmap. (C) Cell type
proportions in different patient samples. (D) Seven main types of cells in different patient samples were visualized in the t-SNE plot. t-SNE: t-Distributed
Stochastic Neighbor Embedding.
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FIGURE 6

The relationship between N7-methylguanosine (m7G) GSVA scores and tumor immune infiltration cells. (A) The relationship between m7G mean GSVA
scores and tumor immune infiltration levels. (B) m7G mean GSVA scores in different cell types and different samples. (C) The expression level of Cox
independent risk factors in different cell types. (D) PD-1 expression of T cells in different samples. (E) The relationship between m7G mean GSVA scores
and T cell mean PD-1 expression. (F) PD-L1 expression of epithelial cells in different samples. (G) The relationship between m7G mean GSVA scores and
epithelial cell PD-L1 mean expression. GSVA: Gene set variation analysis; PD-1: Programmed cell death 1; PD-L1: Programmed cell death 1 ligand 1.
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NUDT4 expression analysis in bulk RNA
level, protein level, and single-cell RNA level

As mentioned above, NUDT4 was an independent risk factor in

lung cancer patients (Figure 4D), and there is no research exploring its

function in lung cancer. To further confirm its potential role in lung

cancer, we analyzed its expression level using TCGA bulk RNA data and

GEO datasets. However, there is no difference between tumor and

normal tissues either in LUAD or in squamous cancer subtypes

(Figures 7A, B). But when we compared immunochemistry results, the

NUDT4 was found to be expressed more in tumor chips than normal

tissue chips (Figures 7C, D). Therefore, to more specifically understand

its expression between cancer and normal cells, we integrated tumor and

normal single-cell RNA data (Figures 8A, B) and intend to select

epithelial cells for analysis (Figure 8C). Among the seven cell types

with NUDT4 expression, there is a significant difference in epithelial cells

between tumor and normal samples (Figure 8D) but varies in different

patients (Figure 8E). In paired patients’ samples, NUDT4 was highly

expressed in tumor epithelial cells of six patients (Figure 8F).
NUDT4 was involved in tumor cell
proliferation but not in migration

Then, to explore its function in tumor cells, we designed shRNAs,

sgRNAs, and overexpression plasmids to knock down, knock out, or
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overexpress NUDT4 expression. However, during the first time,

NUDT4 expression was knocked down, but cells could not be

amplified and used in the following experiments. So, we cloned

shRNA sequence to Tet-on system plasmids (Figure 9A), and when

stable cell lines were constructed, doxycycline was used to induce cell

shRNA expression, then the knockdown efficiency was verified by

RT-qPCR (Figure 9B). NUDT4 knockdown inhibiting cell

proliferation was observed in both A549 and H1299 cells

(Figure 9C). But there seems to be no difference in migration

capability between groups (Figures 9D, E).

To further verify the results on NUDT4 DNA level, we also

designed sgRNAs to try to knock out NUDT4 exons. The knockout

efficiency was analyzed by TIDE (https://tide.nki.nl/), which showed

that only sgRNA1 worked in H1299 cell line (knockout efficiency =

52.3%, Figure 9F) but did not work well in A549 cell line (knockout

efficiency = 19.3%, Figure 9I). Cell proliferation and migration

capabilities were also determined, which showed similar results

compared with shRNAs (Figures 9G–K). On the other hand, we

also cloned NUDT4 mRNA into A549 and H1299 cell lines to

overexpress NUDT4 and performed RT-qPCR to verify the

overexpression efficiency (Figures 10A, C). Then, the CCK8 assay

(Figures 10B, D) and Transwell assay were conducted to observe the

cell functions, which showed that overexpression of the NUDT4

promoted cell proliferation capabilities in both cell lines, but the

migration capabilities of the tumor cells were still untouched

(Figures 10E, F).
B
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A

FIGURE 7

NUDT4 expression in bulk RNA level and protein level. (A) NUDT4 expression in lung adenocarcinoma and squamous carcinoma in TCGA datasets. (B)
NUDT4 expression in lung adenocarcinoma in GEO datasets. (C) The protein level of NUDT4 in lung adenocarcinoma chips using immunochemistry. (D)
The protein level of NUDT4 in normal lung tissue chips using immunochemistry. LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma;
ns: Not statistically significant.
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Discussion

The number of lung cancer patients diagnosed with the

pathological subtype adenocarcinoma was accumulating in the past

years, especially in China and East Asia (44). As low-dose CT

screening was widely included in human health examination,

patients in early stages were screened out and therefore reduced the

mortality rate (45), but patients with advanced stages of LUAD still

struggled. Although tyrosine kinase inhibitors made great progress in

alleviating tumor progression and clinical symptoms, tumor

recurrence nearly inevitably occurred within 1 or 2 years (46). In

recent years, immunotherapy-based drugs such as immune

checkpoint inhibitors had been reported to make a huge

progression in improving survival in patients with advanced lung

cancer, which worked by boosting immune cell cytotoxicity to kill the

tumor cells (47). However, the response rate to immunotherapy is

approximately 20%, and there were no efficient biomarkers able to

distinguish who among the patients responded to immunotherapy or

not (48, 49). It was reported that RNA modification can regulate

tumor immunity, which has the potential to provide us with new
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biomarkers to screen who among the patients were sensitive to

immunotherapy and even identify new immunotherapy targets (50).

In this study, we focused on exploring the potential role of m7G

modification in LUAD. First, genetic variations were evaluated; genes

AGO2, NSUN2, andMETTL1 were observed to be the most amplified

in the results. It was reported that AGO2, as a component of the

RNA-induced silencing complex, was capable of inhibiting protein

translation by binding to the m7G cap of EIF4E (51), which was

essential in the translational process of tumor progression (52).

According to these pathways, AGO2 may act as a tumor suppressor

in lung cancer patients, which contradicted its high amplification rate

in our results. But another study demonstrated that AGO2 could

physically interact with RAS (HRAS, NRAS, and KRAS) and activated

KRAS (GTPase) signaling to promote lung cancer progression (53),

which was consistent with our results that AGO2 may act as a tumor

promoter in LUAD patients and may be a potential target for

treatment. In addition, RNA methyltransferase NSUN2, capable of

adding m5C to mRNA (54), was reported to modify the effect of T-cell

activation on patient survival in head and neck squamous carcinoma

(55). But the mechanical explorations for NSUN2 in lung cancer were
B
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FIGURE 8

NUDT4 expression in single-cell RNA level. (A) Seven main cell types of tumor and normal samples were integrated in one Seurat project and visualized
in t-SNE plot. (B) The top 10 marker genes of seven cell types. (C) Only epithelial cells were selected for NUDT4 analysis. (D) NUDT4 expression in
different cell types. (E) NUDT4 expression in different samples. (F) NUDT4 expression in paired tumor and normal derived epithelial cells. (**P< 0.01,
****P < 0.0001, ns: Not statistically significant).
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unclear and need further study. METTL1 was a methyltransferase

catalyzing m7G modification of tRNAs, and METTL1-mediated

tRNA modification drives oncogenic transformation (56) and

promotes lung cancer progression (16). On the other hand,

mutation status results showed that the top mutated genes such as

EIF4G3, which was reported to silence EIF4G3, could induce cell

apoptosis and suppress tumor growth in lung cancer cell lines (57).

But there is no statistical difference in patients’ survival between

mutant and wild-type groups, which may impute to the insufficient

number of mutant samples.

In the second part of our study, m7G-related gene mRNA

comparisons between tumor and normal samples were performed,

in which METTL1, NSUN2, WDR4, EIF3D, NCBP1, EIF4E, LARP1,

and LSM1 were significantly upregulated in tumor samples. NCBP1 is

essential for capped RNA processing and intracellular localization,

which was reported to promote lung cancer progression and
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epithelial–mesenchymal transition via NCBP1-NCBP3-CUL4B

oncoprotein axis (58). In our results, NCBP1 was associated with

poor survival outcomes in LUAD patients. Similarly, highly expressed

LSM1 was also reported to promote tumor cell growth in epithelial

tissues, contributing to the transformed state (59). LARP1 is an RNA-

binding protein that interacts with poly-A-binding protein and was

reported to function as an oncogene to promote lung cancer cell

growth, migration, and invasion (60). However, there were a few

downregulated genes in tumor samples, such as CYFIP1, IFIT5,

DCP2, and EIF4E3. In prostate and bladder cancer, it was reported

that IFIT5 was able to promote epithelial–mesenchymal transition

and progression, but there is no study reported in lung cancer, so the

role of IFIT5 in lung cancer still needs to be explored (61, 62).

Unsupervised consensus clustering divided samples into two

clusters, and results showed a higher expression of m7G genes and

poor survival in cluster B, which were consistent with the former
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FIGURE 9

NUDT4 function validation in lung adenocarcinoma cell lines. (A) Sequence map of tet-on system shRNA plasmids. (B) NUDT4 knocking down efficiency
in cell lines. (C) CCK8 assay for detecting cell proliferation (n = 3 duplicates). (D) Transwell assay for detecting A549 cell migration (n = 3 duplicates). (E)
Transwell assay for H1299 cell migration capability detection (n = 3 duplicates). (F) Knockout efficiency of the NUDT4 in H1299 cell line. (G) CCK8 assay
for detecting H1299 cell proliferation (n = 3 duplicates). (H) Transwell assay for detecting H1299 cell migration (n = 3 duplicates). (I) Knockout efficiency
of the NUDT4 in A549 cell line. (J) CCK8 assay for detecting A549 cell proliferation (n = 3 duplicates). (K) Transwell assay for detecting A549 cell
migration (n = 3 duplicates). (**P < 0.01, ***P < 0.001, ****P < 0.0001, ns: Not statistically significant).
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single gene survival analysis. In addition, immune infiltration results

showed a low-level infiltration in cluster B. RNAmodification process

impacts the tumor immune microenvironment and regulates tumor

development (63). It was reported that ALKBH5 and m6A

demethylase deletion increased tumor cell sensitivity to

immunotherapy and that m6A demethylases in tumor cells

contribute to the efficacy of immunotherapy (64). In pancreatic

adenocarcinoma, m6A-related genes arm-level gain and deletion

decreased the infiltration of CD8+ T cells (65), which was

consistent with our results that m7G-related genes were associated

with decreased infiltration of multiple types of immune cells.

Pathways enriched in cluster A included an intestinal immune

network for IgA production, asthma, autoimmune thyroid disease,

and allograft rejection. All of these pathways were closely related to

immune responses, which was consistent with a high immune

infiltration level and might indicate that the tumor environment in

cluster A has high immunological competence. Multivariate Cox

regression analysis showed that genes NUDT4 (P = 0.01, HR = 1.2)

and WDR4 (P = 0.026, HR = 1.2) were independent risk factors. In

our results, NUDT4 was related to poor survival, but little is known in

cancer development. WDR4 combined with METTL1 as m7G

methyltransferase complex components, and it had been reported

that depletion of METTL1 and WDR4 resulted in decreased lung

cancer cell progression (16). TCIA is based on the expression of gene

sets including MHC (Major histocompatibility complex) molecules

(such as B2M, HLA-A, HLA-B), immunomodulators (such as PD-1,

CTLA-4, LAG3 (Lymphocyte activating 3), effector cells (such as

activated CD8+ T cells and CD4+ T cells), and suppressor cells

(myeloid-derived suppressor cells and Tregs (Regulatory T cells). And

was a superior predictor of response to CTLA-4 and PD-1 antibodies

(66). In our results, the IPS in the cluster B group was significantly

lower than that in the cluster A group, which could be speculated that

high m7G modification status may correspond to poor responses to

immunotherapy. Combined with single-cell analysis results, we also

observed the same tendency of PD-1, although the statistics were not

significant, which may result from the shortage of sample sizes.

There isno research studying thepotential functionofNUDT4 in lung

cancer until now, and we observed its capability in promoting cancer cell
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proliferation but not cell migration according to our Transwell results.

HowNUDT4 affects tumor proliferation and what pathway is involved in

this phenomenon need further exploration.
Conclusions

In summary, using a comprehensive analysis of three different

types of datasets, our study analyzed m7G-related genes in LUAD and

correlated them with clinical characteristics and immune infiltration.

We also constructed a prognostic model based on m7G genes and the

risk score for predicting the survival outcome of patients. On the

other hand, we found that NUDT4 might be a novel target inhibiting

tumor cell proliferation.
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