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Enhanced cardiac substructure
sparing through knowledge-
based treatment planning
for non-small cell lung
cancer radiotherapy

Shadab Momin*, Jonathan Wolf, Justin Roper, Yang Lei,
Tian Liu, Jeffrey D. Bradley, Kristin Higgins, Xiaofeng Yang
and Jiahan Zhang

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA,
United States
Radiotherapy (RT) doses to cardiac substructures from the definitive treatment of

locallyadvancednon-small cell lungcancers (NSCLC)havebeenlinkedtopost-RT

cardiac toxicities. With modern treatment delivery techniques, it is possible to

focus radiation doses to the planning target volume while reducing cardiac

substructure doses. However, it is often challenging to design such treatment

plans due to complex tradeoffs involving numerous cardiac substructures. Here,

we built a cardiac-substructure-based knowledge-based planning (CS-KBP)

model and retrospectively evaluated its performance against a cardiac-based

KBP (C-KBP) model andmanually optimized patient treatment plans. CS-KBP/C-

KBP models were built with 27 previously-treated plans that preferentially spare

the heart. While the C-KBP training plans were created with whole heart

structures, the CS-KBP model training plans each have 15 cardiac substructures

(coronary arteries, valves, great vessels, and chambers of the heart). CS-KBP

training plans reflect cardiac-substructure sparing preferences. We evaluated

both models on 28 additional patients. Three sets of treatment plans were

compared: (1) manually optimized, (2) C-KBP model-generated, and (3) CS-KBP

model-generated. Plans were normalized to receive the prescribed dose to at

least 95% of the PTV. A two-tailed paired-sample t-test was performed for

clinically relevant dose-volume metrics to evaluate the performance of the CS-

KBPmodelagainst theC-KBPmodelandclinicalplans, respectively.Overall results

show significantly improved cardiac substructure sparing by CS-KBP in

comparison to C-KBP and the clinical plans. For instance, the average left

anterior descending artery volume receiving 15 Gy (V15 Gy) was significantly

lower (p < 0.01) for CS-KBP (0.69 ± 1.57 cc) compared to the clinical plans (1.23 ±

1.76 cc) and C-KBP plans (1.05 ± 1.68 cc). In conclusion, the CS-KBP model

significantly improved cardiac-substructure sparing without exceeding the

tolerances of other OARs or compromising PTV coverage.

KEYWORDS

knowledge based treatment planning, cardiac substructures, non-small cell lung
cancer radiotherapy, machine learning, cardiac toxicities
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Introduction

Radiation therapy (RT) for patients receiving definitive

treatment for locally advanced non-small cell lung cancers

(NSCLC) has been linked to post-RT cardiac toxicities (1). A

number of promising phase II trials reported increased tumor

control through radiation dose escalation via stereotactic

fractionations (2–4). The Radiation Therapy Oncology Group

(RTOG) 0617 phase III dose escalation trial compared 74 Gy

with the standard 60 Gy dose with concurrent chemotherapy (5).

In this study, the higher prescription dose resulted in worse

overall survival. Furthermore, cardiac volumes receiving 5 Gy

and 30 Gy were found to be linked with higher death rates. In a

multivariate analysis, an increased radiation dose to the heart

was independently linked with worse overall survival (6). More

recent studies have reported the link between radiation doses to

cardiac substructures and major adverse cardiac events,

including mortality (1, 7). Atkins et al. reported coronary

artery disease progression and the risk of ischemic events due

to radiation exposure to arterial vessels, especially the left

anterior descending artery (LADA) (7). Skytta et al. reported

an increase of serum troponin T>30% as an endpoint to greater

than 10% of LADA receiving 15 Gy (8). McWilliam et al.

identified the base of the heart as a dose-sensitive region

linked with poorer survival in lung cancer patients. In this

study, patients receiving a mean dose of more than 8.5 Gy to

this region were found to have significantly poorer survival (9).

In another study, the maximum dose to the LADA of greater

than 53 Gy was linked to increased risks of cardiac morbidity

(10). The maximum dose to the right atrium, right coronary

artery, and ascending aorta were found to be the most important

factors associated with survival (11). Gore et al. reported that the

pericardium mean dose and atria/ventricles volume covered by

45 Gy have detrimental effects on overall survival (12).

Clinical treatment planning is a trial-and-error process: the

planner creates a treatment plan by iteratively updating

optimization constraints in order to meet the target coverage

while minimizing the dose to surrounding OARs. Despite best

efforts from the planners, many clinical plans can be further

improved in terms of OAR sparing. Such sub-optimal dose

sparing can lead to increased doses to cardiac substructures

and surrounding critical organs. In the past decade, knowledge-

based planning (KBP) methods have been proposed to leverage

knowledge embedded in prior high-quality plans to generate

treatment plans for new patients (13, 14). Briefly, RapidPlan™

KBP estimates achievable DVHs for various structures included

into the model, which are then translated into optimization

objectives. The algorithm is divided into two parts, the model

configuration and DVH estimation components. In model

configuration, data extraction phase prepares the dataset for

model training by extracting different geometric features of each

structure. The model training phase produces a DVH estimation
Frontiers in Oncology 02
model for each structure. This is followed by generating

estimated DVHs and optimization objectives through DVH

estimation components. Previously, Harms et al. utilized

RapidPlan™ KBP to improve cardiac sparing by incorporating

the whole heart structure into the model training phase (15).

While including the heart structure in the model would result in

useful DVH predictions for the whole heart, it does not provide

spatial information regarding dose distribution within the heart.

We hypothesized that including cardiac substructures in the

training phase of KBP would provide further dose reduction to

critical cardiac substructures due to the additional spatial and

geometrical features encoded into to each cardiac structure

models. Therefore, the focus of this study was to build an

improved KBP containing the features of each substructure

(CS-KBP), in addition to other relevant OARs, to further

enhance cardiac substructure sparing without compromising

the target coverage. To assess the performance of a trained

CS-KBP model, we used a validation dataset consisting of 28

additional patients that were not used in training the CS-

KBP model.
Materials and methods

Patient dataset

Two separate datasets, training and validation, consisting of

patients previously treated with 60 Gy in 30 fractions for

NSCLC, were retrospectively collected for this study. The

training cohort consisted of 27 patients who were treated with

60 Gy in 30 fractions for non-small cell lung cancer; 26 of 27

patients were included in a previous study from our institution

(16), whereas the validation cohort consisted of 28 additional

patients that were not included in the training phase. Patient

characteristics of training and validation datasets have been

listed in Table S1. For each patient, 15 cardiac substructures

were contoured on free-breathing CT scans by resident

physicians based on guidelines provided by Feng et al. (17)

and reviewed by an attending physician. These substructures

include the coronary arteries [LADA, left circumflex (LCFLX),

left main coronary artery (LMCA), right coronary artery

(RCA)], the great vessels [ascending aorta (AA), pulmonary

artery (PA), superior vena cava (SVC)], the valves [atrial (AV),

mitral (MV), pulmonary (PV), and tricuspid (TV)], and the

chambers of the heart [left atrium (LA), right atrium (RA), right

ventricle (RV), and left ventricle (LV)] The target volumes

consisted of the clinical target volume (CTV) and planning

target volume (PTV). These cardiac substructure contours are

derived from a previous study in our group (15). However,

datasets are randomly re-selected for training and validation

cohorts in this study. The model constraints have also been re-

tuned to improve model robustness.
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RapidPlan knowledge-based
planning model

RapidPlan is a knowledge-based planning (KBP) module

integrated within the Eclipse treatment planning systems

(Varian medical Systems, Palo Alto, CA). RapidPlan has been

widely studied and validated for various treatment sites (13, 14,

18–23). Briefly, RapidPlan utilizes anatomical and geometrical

features from previously optimized plans to build a dose

prediction model. The trained model is then used to predict

dose volume histograms (DVHs) of various OARs and target

structures for a new case of the same disease site. Detailed

information on knowledge-based planning can be found in

previous publications (24–26). To build a cardiac-

substructure-specific KBP model (CS-KBP), we first optimized

the 27 patients’ plans with their cardiac substructure preferences.

To optimize plans with cardiac substructure preference, we used

a line constraint for each cardiac substructure in the

optimization template. Each line constraint is a collection of

dose-volume point constraints placed based on RapidPlan

DVH predictions.

To train the CS-KBP model, these CS-optimized plans were

then used as an input along with structures including CTV, PTV,

cardiac substructures, and additional organs at risk (OAR)

structures (ipsilateral and contralateral lung, whole lungs,

lungs cropped out of CTV, esophagus, and spinal cord). For

validation, the trained CS-KBP model was then used to

retrospectively generate a separate cohort of the 28 NSCLC

patients’ treatment plans. In the treatment planning system

(TPS), the DVH estimation tool was used to initialize the

optimization to generate plans without any intervention.

Dosimetric results of this validation cohort from CS-KBP

were compared against two other set of plans: clinically

optimized plans and the plans generated from cardiac-based

KBP model (C-KBP). Clinically optimized plans were optimized

by our dosimetry team to meet desired clinical dosimetric goals

for relevant OARs including the whole heart as a single structure.

The C-KBP model was trained with cardiac-optimized treatment

plans with the whole heart and other clinically relevant OARs as

the structural input. The plan parameters including number of

arcs and control points were held constant for each plan in three

datasets. Table 1 shows the summary of the three different set of

plans with corresponding preferences and model inputs.
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Plan evaluations

The treatment plans generated by the CS-KBP model were

compared against clinically optimized plans and plans generated by

the C-KBP model, respectively. All dose calculations were

performed in the Eclipse treatment planning software by using

the Anisotropic Analytical Algorithm, version 15.6.05. To perform

the dose calculation, contours were transferred through rigid

registration to the average 4D CT. For dosimetric evaluations of

OARs structures, clinically relevant dose volume constraints were

compared across the three optimization methods. In addition to the

maximum and mean doses to each cardiac substructure, we also

investigated the changes in cardiac substructures’ specific dose

volume metrics that have been shown to be associated with post-

RT cardiac toxicities (8, 11, 12, 27, 28). We performed a paired two-

tailed t-test to determine whether there is statistical evidence that

the mean difference between paired observations is significantly

different from zero. The statistical analysis was performed using

Matlab’s statistical toolkit (Matlab, Mathworks Inc.). We compared

the CS-KBP vs. C-KBP and CS-KBP vs. clinical plans with 95% and

99% confidence intervals for each dosimetric parameter. This test

was performed with statistical significance set at p < 0.05. Finally, it

is important to note that all plans were normalized to cover 100%

PTV by ≥95% of the prescribed dose (57 Gy).
Results

We performed qualitative (Figure 1) and quantitative

(Figures 2, 3, 4; S1, 2) comparisons among the treatment

plans generated by three methods. Figure 1 shows the dose

distribution comparison among three different methods for

two sample cases, each with the same CT scan slice, from the

validation cohort. Clinically optimized plans are more

conformal than the plans produced by C-KBP and CS-KBP

for both cases, but at the expense of higher doses to coronary

arteries such as LADA, LCFLX, and LMCA. While the C-KBP

plan leads to better substructure sparing than clinical plan, the

left circumflex coronary artery receives up to 33 Gy dose. CS-

KBP plans spare cardiac substructures to a large extent with a

tolerable tradeoff in plan conformity. Table 2 shows the

dosimetric comparisons among the three techniques for the

two cases shown in Figure 1.
TABLE 1 Summary of three sets of validation cohort and corresponding input structures.

Training cohort (27 cases) Validation cohort (28 cases) Model input structures

N/A Clinically optimized plans N/A

Cardiac optimized treatment plans C-KBP plans Relevant OARs + Whole heart structure + target structures

Cardiac substructure optimized treatment plans CS-KBP plans Relevant OARs + 15 cardiac substructures + target structures
frontiersin.org

https://doi.org/10.3389/fonc.2022.1055428
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Momin et al. 10.3389/fonc.2022.1055428
Figure 2A shows that the CS-KBP model significantly reduced

the volume covered by 15, 20, 30, 40, and 45 Gy isodose volumes for

LADA compared to two competing methods (Figure 2B). The CS-

KBP model also produced plans with significantly lower mean and

maximum doses (9.02 Gy and 20.04 Gy) than the plans generated by

the C-KBPmodel (12.88 Gy and 25.94 Gy) andmanual optimization

(16.05 Gy and 29.65 Gy). A similar trend is observed for mean doses

to LCFLX (12.74Gy vs. 17.68Gy and 20.68Gy), LMCA (11.36 Gy vs.

20.44 Gy and 26.74 Gy), and RCA (11.36 Gy vs. 20.44 Gy and 26.74

Gy) (Figures 2C, D). In general, CS-KBP outperformed competing

methods for reducing doses to coronary arteries.
Frontiers in Oncology 04
Figure 3 outlines the doses to the chambers of the heart from

the three techniques. While there was no significant differences in

maximum dose and V63 Gy for LA among the three techniques, CS-

KBP produced plans with the significant sparing of LAmeasured in

terms of mean dose (13.34 Gy vs. 16.22 Gy and 17.79 Gy) and V45

Gy (6.74 cc vs. 7.88 cc and 11.13 cc) in comparison to treatment

plans generated by the C-KBP model and manual optimizations

(Figures 3A, B). For LV (3.55 Gy vs. 4.72 Gy and 6.52 Gy), RV (2.80

Gy vs. 4.11 Gy and 5.95 Gy) and RA (3.95 Gy vs. 5.59 Gy and 6.55

Gy), CS-KBP produced significant sparing across all dose volume

metrics (Figures 3C-F).
FIGURE 1

Dose distribution comparison between CS-KBP, C-KBP, and manually optimized plans for two sample cases from the validation cohort.
B

C D E

A

FIGURE 2

Box plots for clinically relevant dose volume metrics for LADA (A, B), LCFLX (C), LMCA (D), and RCA (E) over 28 treatment plans generated by
clinically optimized (orange), CKBP (purple), and CS-KBP (yellow). The central mark indicates the median, and the bottom and top edges of the
box indicate 25th and 75th percentile, respectively. The whiskers extend to the most extreme data points not considered outliers, and the
outliers are plotted individually using the ‘+’ marker symbol. p < 0.05 is denoted as ‘*’; p < 0.01 is denoted as ‘**’; NS = Not Significant.
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Figure 4 summarizes the results for the great vessels across

all three methods. Figure 4 shows a significant difference

between CS-KBP and clinical plans for AA. However, Figure 4

shows that all three methods performed comparably (p > 0.05)

for maximum doses to PA and SVC. However, CS-KBP plans

resulted in significantly lower mean doses to all three great

vessels compared to two competing methods. As shown in

Figure S2, CS-KBP also produced plans with significant

sparing of all four cardiac valves compared to C-KBP and

manually optimized plans. For whole heart structures, mean

doses were 14.87 ± 5.01 Gy, 10.97 ± 3.41 Gy, and 8.95 ± 3.89 Gy

for clinical, C-KBP, and CS-KBP plans, respectively. In terms of

doses to the lungs, spinal cord, and esophagus, manually

optimized plans largely performed better than both KBP

models (Figures S1, S3). However, it is important to note that

there was no violation of the clinically important dose volume

constraints for these structures by treatment plans generated by

the C-KBP and CS-KBP model.
Discussion

A large number of studies in the literature have shown a

correlation between post-radiotherapy cardiac toxicities and

cardiac substructure irradiation (1, 3, 6, 10, 11, 29, 30). As a

result, recent treatment planning efforts for thoracic cancers

have been placed on sparing cardiac substructures surrounding
Frontiers in Oncology 05
the PTV compared to the traditional approach of sparing the

heart as a single organ. Given a large number of substructures, it

can be time-consuming to reach a desired treatment plan while

effectively sparing substructures and other OARs. In general, it is

challenging to build a KBP model for lung cancer due to

variations in the location, shape, size, and orientation of PTV

with respect to cardiac substructures and other critical OARs.

This study developed a CS-KBP model and demonstrated its

utility in the significant sparing of cardiac substructures for the

VMAT of patients treated with definitive RT for locally

advanced NSCLC.

For thoracic cancers, original QUANTEC recommendations

are to limit the volume of the heart receiving ≥25 Gy less than

10% to keep the risk of cardiac mortality under 1% (31). Most

current protocols now, however, aim to keep the mean heart

dose below 20 Gy due to its correlation with a significantly

higher rate of cardiac events (32). Recent works recommended

substructure-specific dose volume constraints for various

endpoints. For instance, Dmax of 19.5 Gy to RCA has been

associated with worse overall survival (11). The CS-KBP model

(Dmax = 8.1 ± 10.2 Gy) was able to reduce doses to RCA by 5.1

Gy and 10.1 Gy, respectively, compared to plans generated by C-

KBP and manual optimization. For LADA, Dmean ≥23.8 Gy and

V15 Gy ≥10.0% has been associated with an increased percentage

of serum troponin-T, which is an indicator of myocardial

infarction. The CS-KBP model was able to generate plans with

significantly lower mean doses to LADA compared to two
B C

D E F

A

FIGURE 3

Box plots for clinically relevant dose volume metrics for LA (A, B), LV (C, D), RA (E), and RV (F) over 28 treatment plans generated by clinically
optimized (orange), CKBP (purple), and CS-KBP (yellow). The central mark indicates the median, and the bottom and top edges of the box
indicate 25th and 75th percentile, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers
are plotted individually using the ‘+’ marker symbol. p < 0.05 is denoted as ‘*’; p < 0.01 is denoted as ‘**’; NS = Not Significant.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1055428
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Momin et al. 10.3389/fonc.2022.1055428
competing methods (9.02 Gy vs. 12.88 Gy and 16.05 Gy), and

also a lower volume of LADA covered with 15 Gy isodose than

two competing methods (0.69 cc vs. 1.04 cc and 1.23 cc). In

terms of great vessels, Dmean ≥8.5 Gy to AA, PA, and SVC has

been linked to worse overall survival (9). While all three methods

met these constraints, the CS-KBP model significantly reduced

radiation doses to great vessels (Figure 4). However, it is

important to note that great vessels of the heart were not

entirely contoured within the whole heart structure for clinical

and C-KBP plans, which is one limitation of this study. For LV,

the volume covered by the 5 Gy (V5) isodose has been linked to

overall survival and acute coronary events (12, 33). The CS-KBP

model-produced plans significantly improved this constraint

compared to the C-KBP and optimized plans (Figure 3). For

LV, Dmean ≥ 6.7 Gy has been shown to increase the percentage of

serum troponin (8). While all three techniques satisfied this

constraint, the CS-KBP model resulted in lower Dmean to LV

than C-KBP and manual optimization (3.55 Gy vs. 6.52 Gy and

4.72 Gy). For LV, V30 Gy is also linked with symptomatic cardiac

events (34). Plans generated by the CS-KBP model resulted in
Frontiers in Oncology 06
lower values of V30 Gy compared to two competing methods

(1.54 cc vs. 3.46 cc and 9.44 cc). In terms of atrial valve (AV),

Dmax ≥19.5 Gy has been associated with worse overall survival

(11). While all three methods met this Dmax constraint for AV,

the CS-KBP model produced plans with the significantly lower

Dmax and Dmean to the valves of the heart (Figure S2). Pericardial

effusion is commonly reported as one of the cardiac toxicities

post thoracic radiotherapy (35). The occurrence of pericardial

effusion of any grade has been reported to be higher in patients

with a mean heart dose >23.45 Gy (2). While the mean heart

dose constraint is met with all three techniques in this study, the

proposed CS-KBP outperforms the other two techniques

(Clinical: 10.68 Gy; C-KBP: 8.57 Gy; CS-KBP: 6.36 Gy).

Sparing of cardiac substructures comes with some necessary

tradeoffs. Radiation doses to 65% of the lungs were significantly

lower in manually optimized plans than both KBP plans. In terms

of mean doses to lungs, plans generated by C-KBP (14.23 Gy)

resulted in slightly lower doses than CS-KBP (14.85 Gy) and

manual optimization (14.31 Gy). In terms of the dose received by

0.03 cc of the spinal cord, manually optimized plans resulted in
B

C D

A

FIGURE 4

Box plots for volume of PA covered by 40 Gy isodose line (A) , maximum and mean dose to PA (B) , AA (C) , and SVC (D) over 28 treatment plans
generated by clinically optimized (orange), C-KBP (purple), and CS-KBP (yellow). The central mark indicates the median, and the bottom and top edges
of the box indicate 25th and 75th percentile, respectively. The whiskers extend to the most extreme data points not considered outliers, and the
outliers are plotted individually using the ‘+’ marker symbol. p < 0.05 is denoted as ‘*’; p < 0.01 is denoted as ‘**’; NS = Not Significant.
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the lowest dose (28.06 Gy) compared to C-KBP (30.77 Gy) and

CS-KBP (34.26 Gy). Nonetheless, all three techniques satisfied the

clinical constraints of keeping the maximum cord dose below 40

Gy. Plans generated with CS-KBP had higher plan complexity

(630MU) than the ones generated via the C-KBP model (565MU)

andmanual optimization (486MU). This tradeoff among different

structures and in increased plan complexity is consistent with that

of Harms et al., who found that their clinical RapidPlan™ (RP)

model significantly outperformed the cardiac sparing RP model

with increased plan complexity by the cardiac sparing RP model

in terms of the number of monitor units (15). While CS-KBP led
Frontiers in Oncology 07
to the lowest overall doses to the cardiac substructures, the two

competing methods also achieved the dose-volume constraints.

The clinical impact of recently introduced cardiac substructure-

specific dose constraints is actively being studied based on

randomized trials and from real-world datasets on lung cancer

(36). In contrast, there are standardized dose volume constraints

for other OARs (i.e., lung and spinal cord). This study

demonstrates the ability of CS-KBP to meet these standard dose

volume constraints of other OARs while significantly reducing the

doses to cardiac substructures. Though the direct clinical benefits

from reducing the dose to cardiac substructures is yet to be
TABLE 2 Comparison of dosimetric parameters among three techniques for two cases shown in Figure 1.

Dosimetric parameters Case 1 Case 2

Clinical C-KBP CS-KBP Clinical C-KBP CS-KBP

LADA V15 Gy(cc) 2.46 1.86 1.23 4.50 4.09 0

LAD V20 Gy(cc) 1.91 0.83 0.02 4.50 3.52 0

LAD Dmax (Gy) 37.77 27.68 21.32 48.36 31.96 14.43

LAD Dmean (Gy) 24.61 17.55 14.16 41.40 23.42 7.15

LCFLX Dmax (Gy) 59.89 59.11 59.02 54.29 38.95 33.44

LCFLX Dmean (Gy) 45.56 28.60 26.93 47.97 33.35 21.02

LMCA Dmax (Gy) 46.65 27.46 17.4 48.69 26.14 11.66

LMCA Dmean (Gy) 41.68 24.78 10.58 38.78 19.74 7.02

RCA Dmax (Gy) 35.50 12.20 7.08 11.17 11.16 4.32

RCA Dmean (Gy) 19.65 7.50 3.93 5.61 9.16 2.92

AA Dmax (Gy) 65.62 63.93 63.44 47.25 34.10 33.92

AA Dmean (Gy) 47.47 28.26 17.10 19.14 15.64 9.84

PA Dmax (Gy) 67.53 69.25 65.73 63.55 66.1 64.23

PA Dmean (Gy) 53.02 43.66 34.56 41.99 31.18 25.07

SVC Dmax (Gy) 67.05 65.52 64.09 39.81 43.30 29.56

SVC Dmean (Gy) 51.19 46.48 38.75 19.78 24.69 13.45

LA Dmax (Gy) 67.99 66.61 65.67 49.86 37.97 23.35

LA Dmean (Gy) 38.54 31.24 25.58 19.73 23.54 9.04

LV Dmax (Gy) 54.61 23.54 26.95 53.53 39.49 26.25

LV Dmean (Gy) 17.56 8.48 7.45 26.87 20.43 9.58

RA Dmax (Gy) 35.78 20.93 11.35 17.38 18.37 9.26

RA Dmean (Gy) 10.14 7.21 4.75 7.26 10.73 4.53

RV Dmax (Gy) 36.55 15.57 15.08 28.40 22.55 13.34

RV Dmean (Gy) 11.77 5.41 3.79 14.80 10.48 5.99

AV Dmax (Gy) 52.96 24.97 9.73 22.58 22.38 9.39

AV Dmean (Gy) 40.15 16.49 6.54 12.73 14.99 4.77

MV Dmax (Gy) 44.84 16.88 14.46 39.11 34.85 17.41

MV Dmean (Gy) 29.00 10.88 7.75 25.37 24.85 9.00

PV Dmax (Gy) 49.62 24.37 7.97 27.19 16.00 8.68

PV Dmean (Gy) 38.22 21.80 5.68 18.93 10.23 3.58

TV Dmax (Gy) 18.03 8.03 4.61 15.95 10.82 7.23

TV Dmean (Gy) 12.00 5.73 3.21 13.36 8.88 4.20

Lungs Dmax (Gy) 67.79 66.39 67.04 63.86 65.75 64.77

Lungs Dmean (Gy) 16.14 18.40 20.43 15.08 15.81 17.04

Cord D0.03 cc (Gy) 37.79 43.76 45.39 30.36 36.61 35.56

Cord D1.2 cc (Gy) 36.11 34.87 37.46 27.42 29.12 31.43
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validated with patient outcome data, lower doses to these cardiac

substructures are expected to translate to reduced probability of

radiation-induced cardiac toxicities post radiotherapy.

A limitation of the present study is that all the manually

optimized plans were generated by a few dosimetrists and all

thoracic OARs were contoured by a single observer. Another

limitation of this study is the use of conventional CT for

contouring cardiac substructures, which may introduce

uncertainty due to the poor discernibility of substructures on

CT images. This limitation can potentially be addressed by

previous studies that leveraged the enhanced soft tissue

contrast of MRI with conventional non-contrast CT to develop

a deep learning-based framework (37) and a hybrid MR/CT

segmentation atlas-based framework (38) for cardiac

substructure segmentation. Though training the sample size

was relatively small, it was within a range that had been

shown to be adequate for a KBP model for thoracic radiation

therapy (39). Another minor limitation of this study is a slight

mismatch between the contours and the plans. Cardiac

substructures were contoured on free-breathing scans for

higher spatial resolution and then transferred via rigid

registration to the average 4D CT for treatment planning.

Although all patients in the cohort were treated with a free

breathing technique, slight differences between the free

breathing scans and the 4D average scans can be expected.

Nonetheless, since all three sets of plans were generated on the

same datasets, the results reflect the true differences among the

three techniques. Following preliminary cardiac substructure

segmentations by a physician resident, al l cardiac

substructures were verified by an attending physician. While

we did not perform a robust evaluation for the quality of

segmentation due to the nature of this study; different

strategies such as percent overlap of observer volumes, a

robust atlas-based method, etc. can be utilized clinically to

ensure high quality segmentation of cardiac substructures.

All treatment plans were generated within one institution,

lacking variations in terms of contouring and dosimetric

protocols from multi-institutions. A validation cohort from

multi-institutional data is necessary to further ensure the

robustness of this model and also consider differences between

planners and dosimetry protocols. Nonetheless, there was a large

variation in the size of the PTV volumes in the validation cohort

(454.05 ± 249.42 cc) of this study, demonstrating the feasibility

of the proposed model for variable tumor sizes. In this study, all

the structures were manually contoured, which may be time

consuming. Various deep learning frameworks have been

introduced to increase treatment planning efficiency (40). The

impact of auto-contouring versus manual contouring on the

prediction model will be investigated in the future studies. While

KBP models have been built for various treatment sites, it has

not been widely adopted for the purpose of cardiac substructure

sparing (13). Overall results demonstrated the ability of

proposed CS-KBP model to achieve significant cardiac
Frontiers in Oncology 08
substructure sparing compared to the traditional method of

manual optimization as well as the KBP model based on

cardiac structure alone (C-KBP).
Conclusion

The proposed approach can aid future researchers to

implement the knowledge-based planning module to

effectively spare cardiac substructures while satisfying the

clinical constraints of other OARs and target coverage and

also further enhance treatment planning efficiency. This model

may offer reduced planning time, improve plan quality, and

should be studied in the prospective setting as a way to improve

outcomes in patients with locally advanced lung cancer.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Author contributions

SM: First authorship. JW, JR, YL, TL, JB, KH, XY: Co-

authorship. JZ: Senior authorship. All authors contributed to the

article and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1055428/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.1055428/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1055428/full#supplementary-material
https://doi.org/10.3389/fonc.2022.1055428
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Momin et al. 10.3389/fonc.2022.1055428
References

1. Venkatesulu BP, Mahadevan LS, Aliru ML, Yang X, Bodd MH, Singh PK,

et al. Radiation-induced endothelial vascular injury: a review of possible
mechanisms. JACC: Basic to Trans Sci (2018) 3(4):563–72. doi: 10.1016/
j.jacbts.2018.01.014

2. Bradley JD, Moughan J, Graham MV, Byhardt R, Govindan R, Fowler J, et al.
A phase I/II radiation dose escalation study with concurrent chemotherapy for
patients with inoperable stages I to III non-small-cell lung cancer: Phase I results of
RTOG 0117. Int J Radiat Oncol Biol Phys (2010) 77(2):367–72. doi: 10.1016/
j.ijrobp.2009.04.029

3. Stinchcombe TE, Lee CB, Moore DT, Rivera MP, Halle J, Limentani S, et al.
Long-term follow-up of a phase I/II trial of dose escalating three-dimensional
conformal thoracic radiation therapy with induction and concurrent carboplatin
and paclitaxel in unresectable stage IIIA/B non-small cell lung cancer. J Thorac
Oncol (2008) 3(11):1279–85. doi: 10.1097/JTO.0b013e31818b1971

4. Socinski MA, Blackstock AW, Bogart JA, Wang X, Munley M, Rosenman J,
et al. Randomized phase II trial of induction chemotherapy followed by concurrent
chemotherapy and dose-escalated thoracic conformal radiotherapy (74 gy) in stage
III non–small-cell lung cancer: CALGB 30105. J Clin Oncol (2008) 26(15):2457–63.
doi: 10.1200/JCO.2007.14.7371

5. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al.
Standard-dose versus high-dose conformal radiotherapy with concurrent and
consolidation carboplatin plus paclitaxel with or without cetuximab for patients
with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised,
two-by-two factorial phase 3 study. Lancet Oncol (2015) 16(2):187–99. doi:
10.1016/S1470-2045(14)71207-0

6. Faivre-Finn C. Dose escalation in lung cancer: Have we gone full circle?
Lancet Oncol (2015) 16(2):125–7. doi: 10.1016/S1470-2045(15)70001-X

7. Atkins KM, Chaunzwa TL, Lamba N, Bitterman DS, Rawal B, Bredfeldt J,
et al. Association of left anterior descending coronary artery radiation dose with
major adverse cardiac events and mortality in patients with non–small cell lung
cancer. JAMA Oncol (2021) 7(2):206–19. doi: 10.1001/jamaoncol.2020.6332

8. Skyttä T, Tuohinen S, Boman E, Virtanen V, Raatikainen P, Kellokumpu-
Lehtinen P-L, et al. Troponin T-release associates with cardiac radiation doses
during adjuvant left-sided breast cancer radiotherapy. Radiat Oncol (2015) 10
(1):1–8. doi: 10.1186/s13014-015-0436-2

9. McWilliam A, Kennedy J, Hodgson C, Osorio EV, Faivre-Finn C, Van Herk
M, et al. Radiation dose to heart base linked with poorer survival in lung cancer
patients. Eur J Cancer (2017) 85:106–13. doi: 10.1016/j.ejca.2017.07.053
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