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In recent years, numerous studies have demonstrated that the tumor immune

microenvironment (TIME) is capable of regulating the growth of tumors, and

tumor-infiltrating immune cells in the TIME can affect the prognosis and

treatment responses of patients. Consequently, therapies targeting these

immune cells have emerged as important antitumor treatments. As a crucial

componet of the perioperative treatment of malignant tumors, neoadjuvant

chemotherapy (NACT) can improve the surgical resection rate and prognosis of

patients and is a suitable clinical model to evaluate the effect of chemotherapy

on the TIME. To provide a rationale for developing valid combinational

therapies, this review summarizes the impact of NACT on the TIME, the

relationship between tumor-infiltrating immune cells and treatment

responses of patients, and the prognostic value of these infiltrating

immune cells.

KEYWORDS

tumor immune microenvironment, tumor-infiltrating immune cells, neoadjuvant
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Introduction

Neoadjuvant chemotherapy (NACT) is a central part of the comprehensive

treatments for locally advanced malignant tumors and was first proposed by Frei in

1982 (1), referring to systemic chemotherapy applied before surgery or radiotherapy.

NACT is superior in reducing the clinical tumor stage, increasing the surgical resection

rate, reducing postoperative complications, preventing postoperative metastasis, and

improving the postoperative survival rate of patients. Because of its sensitivity and
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efficiency, NACT is beneficial for establishing an effective

chemotherapy regimen for postoperat ive adjuvant

chemotherapy and for improving the long-term efficacy of

treatment after surgery (2–9).

The tumor microenvironment (TME), which is closely

associated with tumor progression and the response to

treatments, includes blood vessels, immune cells, fibroblasts,

and extracellular matrix (10–13). All immune components

within the TME, including innate and adaptive immune cells,

extracellular immune factors, and cell surface molecules, are

defined as the tumor immune microenvironment (TIME), which

is very relevant to the occurrence, development, recurrence, and

metastasis of tumors (14–16). The immune structure, composed

of the location, type, density, and functional status of immune

cells in tumors, is different among patients and is crucial to the

response rates and prognosis of patients (17–19).

Chemotherapy, a conventional treatment for most

malignancies, can inhibit tumor cell mitosis and nucleic acid

anabolism as well as directly interfere with tumor cell DNA

replication (20). Although considered to weaken the immune

system and induce various adverse effects in prior reports, recent

studies have proven that classical cytotoxic drugs not only kill

tumor cells but also induce immunogenicity. Meanwhile,

chemotherapy activates the immune system by promoting

lymphocyte activation and decreasing suppressive immune

cells (21, 22).

NACT is a good clinical model to evaluate the effect of

chemotherapy on the TIME because it is convenient to obtain

paired tumor tissues before and after treatment. To provide

strategies and theoretical bases for combining immunotherapy

and enhancing the efficacy of NACT, this review summarizes the

remodeling effect of NACT on the TIME in gastrointestinal

tumors by outlining the changes in tumor-infiltrating immune

cells before and after NACT, the efficacy prediction, and the

associated prognostic value (Table 1).
The composition of TIME with clinical
significance

The TIME, where tumor cells can effectively modify their

surroundings by secreting a variety of cytokines and

chemokines, is an integral and indispensable part of tumor

tissues (Figure 1). Moreover, immune cells in the TIME have

been proven to be related to tumor development, metastasis, and

recurrence. Innate immune cells (macrophages, neutrophils,

dendritic cells, myeloid-derived suppressor cells, and natural

killer cells) and adaptive immune cells (T and B cells) in the

TIME can act as tumor antagonists or tumor agonists. Although

these immune cells tend to kill tumor cells in the early stage,

tumor cells are still able to evade immune surveillance through a

variety of mechanisms, even creating a variety of ways to inhibit
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the function of antitumor immune cells and reduce the clinical

effectiveness of antitumor therapies.

CD8+ T cells
CD8+ T cells, a key component of the adaptive immune

system (23), play an important role in antitumor immune

responses by recognizing and eliminating tumor cells. It has

been reported that the density of CD8+ T cells is closely related

to the clinical prognosis of patients (24, 25). To elicit efficient

anticancer immune responses, CD8+ T cells need to go through a

series of events in the ‘cancer immune cycle’, including

neoantigen production by tumor cells, antigen recognition and

antigen presentation by dendritic cells (DCs), and activation of

cytotoxic lymphocytes (cytotoxic T lymphocytes, CTLs). Finally,

activated CTLs infiltrate into tumor tissues and destroy tumor

cells (26–28).

However, the immunosuppressive network in the TME can

remodel CD8+ T cells, leading to CD8+ T-cell dysfunction,

failure to remove tumor cells, and weakened antitumor

immunity (26, 29). Two of the main dysfunctional states of T

cells in the TME are ‘exhaustion’ and ‘senescence’ (29, 30).

‘Exhausted’ T cells are characterized by upregulated expression

of inhibitory receptors, such as programmed cell death protein 1

(PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), T-cell

immunoglobulin and mucin domain containing-3 (Tim-3),

lymphocyte activation gene 3 (LAG-3), T-cell immunoreceptor

with Ig and ITIM domains (TIGIT), and so on (29, 31). Elevated

levels of ‘exhausted’ T cells in tumors are associated with a poor

prognosis, and targeting inhibitory receptors to restore CD8+ T-

cell function has important implications in clinical treatments

(29, 32). Moreover, the efficacy of immune checkpoint blockade

(ICB) therapy has been demonstrated in various antitumor

immunotherapies (29, 33). Unlike ‘exhausted’ T cells,

‘senescent’ T cells exhibit a senescence-associated secretory

phenotype (SASP), producing a mass of inflammatory

cytokines (IL-2, TNF-a, IFN-g) and suppressive cytokines (IL-

10 and TGF-b). Due to their vital roles in immunosuppression

and tumor progression, senescent T cells are new targets for

antitumor immunotherapy (29, 34).

CD4+ T cells
CD4+ T cells, helper T lymphocytes (Th), are involved in

adaptive immune responses (35) and can regulate the state and

function of other immune cells, playing a significant role in

autoimmunity, allergic reactions, and antitumor immune

responses (36). CD4+ Th cells are divided into different

subpopulations, including Th1, Th2, Th17, Tfh, and Tregs,

and each subpopulation displays a specific role in tumor

immune responses, inhibiting or promoting tumor cell growth

(24). After antigen-induced activation, Th1 cells generate

inflammation by producing inflammatory factors such as

TNF-a and IFN-g, as well as promoting DC maturation and
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TABLE 1 Summary of the remodeling effect of NACT on the TIME and the associated prognostic significance.

Cancer type Markers Changes with
NACT

Efficacy prediction Prognostic value First author
[Ref],year

Gastric cancer CD4
CD8
PD-1
PD-L1
TIM3

Increased None Improved OS with increased CD8, PD-1, and
PD-L1

Yu Y (98), 2019

Gastric cancer Foxp3 Unchanged None None Yu Y (98), 2019

Gastric cancer Foxp3 Decreased None None Xing X (99), 2022

Gastric cancer CD68 Decreased None None Xing X (99), 2022

Gastric cancer The diversity of
TCR clonotypes

Increased None None Xing X (99), 2022

Gastric cancer CD68
CD163

Increased None Poor OS with increased CD163 Wei Q (100), 2021

Gastric cancer DCs Increased None Improved with increased DCs Hu M (101), 2014

Gastric cancer Foxp3 Decreased None Improved with decreased Tregs Hu M (101), 2014

Gastric cancer TANs Decreased Decreased TANs with tumor
regression

None Hoffmann A (102),
2021

Gastric cancer B7-H4 Decreased Decreased B7-H4 with tumor
regression

Improved with decreased B7-H4 Maskey N (104),
2014

Gastric cancer IL-17
CD8
Foxp3
Tbet
CD20

Unchanged None None Hennequin A
(105), 2016

Gastric cancer CD20 Decreased None None Christina Svensson
M (106), 2021

Esophagus cancer CD4
CD8
HLA I

Increased None None Tsuchikawa T
(107), 2012

Esophagus cancer PD-L1 Increased None None Fukuoka E (108),
2019

Gastroesophageal
junction
adenocarcinoma

PD-L1 Increased None None Jomrich G (109),
2022

Pancreatic cancer HLA-I, HLA-II
CD8

Increased None None Michelakos T
(111), 2021

Pancreatic cancer Tregs
M2

Decreased None Poor OS with increased M2 Michelakos T
(111), 2021

Pancreatic cancer Tregs
MDSCs
NK cells
B cells

Decreased None Improved with decreased NK cells Mota Reyes C
(112), 2020

Pancreatic cancer CD8
DCs

Increased None Improved with decreased DCs and CD4+ T
cells

Mota Reyes C
(112), 2020

Pancreatic cancer PD-L1 Increased None None Farren M R (114),
2020

Rectal cancer CD8 Increased Increased CD8+ T cells with
tumor regression

None Matsutani S (115),
2018

Rectal cancer Ki67high T cells Increased Increased Ki67high T cells with
tumor regression

Improved with increased Ki67high T cells Imaizumi K (116),
2020

Colorectal cancer CD4+GzmB+ T
cells

Increased None Improved OS and DFS with increased
CD4+GzmB+ T cells

Qi J (117), 2021

Colorectal cancer CD8
PD-L1

Increased None Improved DFS with increased T cells and PD-
L1

Jary M (119), 2021

(Continued)
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TABLE 1 Continued

Cancer type Markers Changes with
NACT

Efficacy prediction Prognostic value First author
[Ref],year

Liver metastases of
colorectal cancer

CD8+ T cells Increased None Poor prognosis with increased CD8+ T cells Ledys F (123),
2018

Liver metastases of
colorectal cancer

T cells Increased within a
short interval

None None Dagenborg V J
(124), 2020

Liver metastases of
colorectal cancer

MRC+CCL18+

M2
Decreased Decreased MRC+CCL18+ M2

with tumor regression
None Wu Y (122), 2022

Liver metastases of
colorectal cancer

CTLs Increased Increased CTLs with tumor
regression

None Wu Y (122), 2022

Breast cancer CD4
CD8
PD-1+CD8+ T
cells
CD73
PD-L1

Increased None None Graeser M (128),
2021

Breast cancer TILs Increased after one
cycle of NACT

Increased TILs and CD8+ T
cells with tumor regression

None Park Y H (129),
2020

Breast cancer TILs Decreased at the
end of NACT

None None Park Y H (129),
2020

Breast cancer M2 Increased at the
end of NACT

None None Park Y H (129),
2020

Liver cancer CD4+Foxp3+ T
cells
CD8+PD-1+ T
cells

Decreased None Improved DFS with decreased CD4+Foxp3+

cells
Pinato D J (127),
2021

Oral squamous cell
carcinoma

CD4
CD8
CD56

Increased None None Takakura H (130),
2017

Oral squamous cell
carcinoma

Tregs
PD-1+ cells

Decreased None None Takakura H (130),
2017

Non-small cell lung
cancer

CTLs
CD20+ B cells
Tissue memory T
cells

Increased None None Gaudreau P O
(131), 2021

Ovarian cancer IFN-g
Th1
PD-L1

Increased None None Böhm S (132),
2016

Ovarian cancer Tregs Decreased None None Böhm S (132),
2016

Ovarian cancer CD8+

Memory T cells
Unchanged None None Böhm S (132),

2016

Ovarian cancer TILs
PD-L1

Increased None Improved PFS with increased TILs Mesnage S J L
(133), 2017

Ovarian cancer CD8
CD3

Increased None Improved PFS with increased CD8+/Foxp3+,
CD3+/Foxp3+, CD68+/CD163+ ratios

Leary A (134),
2021

Cervical cancer CD200
CD4
CD8
CD20
CD56

Increased None None Zhang Y (135),
2021

Osteosarcoma CD3
CD8
PD-L1
Ki67+CD8+ T
cells

Increased None None Deng C (136),
2020

Osteosarcoma MDSCs Decreased None None Deng C (136),
2020
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improving CTL function (37). Th1 cells are frequently associated

with favorable clinical outcomes in patients (38). Studies have

shown that cytokines such as IFN-g secreted by Th1 cells not

only enhance CD8+ T-cell differentiation but also directly inhibit

tumor cell growth by causing their senescence (39, 40). Tfh

(follicular helper T cells, Tfh) cells exert antitumor effects in

tumors by mediating B-cell differentiation into plasma cells,

antibody class switching, and the production of antibodies.

Although the presence of Tfh cells predicts a favorable

outcome, their antitumor functions may be blocked by the

PD-L1/PD-1 signaling pathway in the TME (41).

Regulatory T cells (Tregs), expressing forkhead protein P3

(Foxp3), are pivotal in maintaining immune homeostasis and

peripheral tolerance (42), as well as suppressing overactive

immune responses such as autoimmune diseases (43). Clonal

expansions of Tregs are highly heterogeneous, observed in many

types of tumors, and are closely associated with a poor prognosis

and reduced survival rates (44, 45). In the TIME, Tregs mainly

inhibit antitumor immune responses through two mechanisms

and participate in the process of immune escape (43, 46). Tregs

release inhibitory cytokines (such as IL-10 and TGF-b) to

prevent the infiltration and activity of tumor-specific T cells

(37). However, Tregs also impede the development and

maturation of DCs (47). Tumor-infiltrating Tregs express

numerous negative costimulatory molecules (such as PD-L1

and PD-L2) that inhibit CD8+ T-cell activation and interact

with the receptor PD-1 on CD8+ T cells to block TCR signaling,

thereby repressing the activity of CD8+ T cells (48).
Frontiers in Oncology 05
NK cells and NKT cells
NK (natural killer, NK) cells are innate lymphocytes that kill

tumor cells nonspecifically in the early stages, performing

antitumor immune surveillance (49). According to their

expression of CD16 and CD56, NK cells are divided into two

subsets: CD56hiCD16± and CD56loCD16hi (50). The

CD56hiCD16± subset secretes inflammatory cytokines, whereas

CD56loCD16hi mainly exerts cytotoxic and killing functions

(50). To promote antitumor immune responses, NK cells

recruit DCs to tumor sites and secrete cytokines, promoting

DC maturation (51). In addition, the quantity of infiltrating NK

cells is remarkably linked to improved patient outcomes (52, 53).

Tumor cells and other cells in the TME may prevent NK-cell

activation and inhibit their function by secreting a variety of

cytokines (including IL-6, IL-10, TGF-b, PGE2, and IDO) (49,

54). Moreover, the activation of inhibitory immune checkpoints

(such as CTLA-4, PD-1, and Tim-3) hampers NK-cell function

(49). Blocking the checkpoint receptor TIGIT can prevent NK-

cell exhaustion and restore NK-cell activity (55).

NKT (natural killer T, NKT) cells, a subset of natural

lymphocytes, simultaneously express certain surface markers

of T cells and NK cells (56) and play a critical role in innate

and adaptive immunity. In light of the various types of TCRs,

NKT cells exhibit two main subtypes: type I NKT and type II

NKT cells. Type I NKT cells secrete Th1-type cytokines (IFN-g,
IL-12) to boost antitumor immune responses (57), while type II

NKT cells suppress antitumor immunity by producing IL-13 to

restrain the function of CD8+ T cells (58). In addition, NKT cells
FIGURE 1

Immune cells within the TIME and related cancer immunotherapies. The TIME consists of various innate immune cells (macrophages,
neutrophils, dendritic cells, myeloid-derived suppressor cells, and natural killer cells) and adaptive immune cells (T and B cells). During different
stages of tumors and due to the diversity of the TIME, these immune cells have distinct roles in antitumor immunity. Therefore, methods for
cancer immunotherapy that target tumor-suppressing immune cells include ‘exhausted’ T cells (ICB), ‘senescent’ T cells, exhausted NK cells,
DC-mediated immunological tolerance, and MDSCs (inhibiting the function of MDSCs, preventing the migration of MDSCs, reducing the
number of MDSCs, and inducing the differentiation of MDSCs). (Created with Biorender.com).
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transform into their various subpopulations and exhibit different

functions in different environments (59, 60).

Dendritic cells
DCs are recognized as the most powerful and specialized

antigen-presenting cells known so far (61). DCs recognize and

present antigens to CTLs and simultaneously provide

costimulatory signals and cytokines to T cells for further

activation (49, 62). As reported, infiltrating DCs in the TME

are positively associated with the prognosis of patients (63, 64).

DCs are functionally differentiated into distinct subpopulations:

classical DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-

derived inflammatory DCs (moDCs) (59). cDCs and pDCs are

present and active under steady-state conditions, whereas

moDCs appear only during inflammation (59). In the TME,

multiple immunosuppressive factors, such as VEGF and IL-10,

hinder DC maturation and impair their capability for antigen

presentation and T-cell activation (65, 66). Tumor cells can also

polarize DCs into tolerogenic DCs (67), and reversing DC-

mediated immune tolerance is the main therapeutic strategy

against DCs in the TME.

Macrophages
Macrophages derived from circulating monocytes are

significant immune cells in the TME, accounting for

approximately 50% of tumor tissues (68–70). Macrophages

play a principal role in immune defense, immune homeostasis,

immune surveillance, antigen presentation, and immune

regulation (71). Macrophages exhibit two distinguished types,

inflammatory M1 (classically activated) and immunosuppressive

M2 (alternately activated) (72). M1 macrophages secrete

inflammatory cytokines and reactive oxygen/nitrogen that are

essential for host defense and tumor killing (73, 74). Monocytes

in the bone marrow are recruited into the TME under the action

of various chemokines and further differentiate and develop into

mature macrophages (75–77), tumor-associated macrophages

(TAMs). TAMs are phenotypically and functionally similar to

M2 macrophages, which express low levels of MHC class II

molecules, manifest decreased antigen presentation activity, and

secrete high levels of immunosuppressive cytokines. During the

course of tumor evolution, TAMs accelerate tumorigenesis,

development, invasion, and metastasis, especially in

angiogenesis and lymphangiogenesis (72, 78).

Neutrophils
Neutrophils represent the front line of the body’s defense

system, accounting for 55% to 70% of circulating leukocytes

(79). By creating neutrophil extracellular traps and secreting

different cytokines and chemokines, neutrophils not only fight

infection by phagocytosis but also trigger inflammatory

responses (80, 81). Tumor-associated neutrophils (TANs)

manifest N1 (tumor-suppressing) and N2 (tumor-promoting)
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phenotypes, and the phenotype of TANs depends on the type

and stage of tumors (59). In the early stage of tumorigenesis,

neutrophils secrete cytokines (such as IFN-g) to recruit and

stimulate immune cells to restrain tumor growth. Neutrophils

isolated from early-stage lung cancer prompted CD4+ T cells to

release IFN-g, which in turn enhanced the differentiation of

CD8+ T cells (82) and supported antitumor immunity. However,

with the development of tumors, neutrophils gradually shift into

an immunosuppressive phenotype (59, 83) and promote tumor

progression (82). TANs have been reported to be associated with

a poor prognosis in gastric cancer by enhancing the migration,

invasion, and epithelial-mesenchymal transition of gastric

cancer cells (84). Additionally, TANs recruit macrophages and

Tregs to the TME, resulting in liver cancer progression and

resistance to sorafenib (14).

Myeloid-derived suppressor cells
MDSCs, tumor-promoting cells in the TME, are bone

marrow-derived immunosuppressive heterogeneous cell

populations consisting of myeloid progenitor cells, immature

macrophages, immature granulocytes, and immature dendritic

cells (85). Granulocytic or polymorphonuclear MDSCs (PMN-

MDSCs) and mononuclear MDSCs (monocytic MDSCs, M-

MDSCs) are the two main subsets of MDSCs (86, 87). In

addition to promoting tumor angiogenesis, stemness, and

metastasis, activated MDSCs suppress antitumor immunity

mediated by T cells, NK cells, and macrophages (88, 89). In

addition, MDSCs are linked to a shorter overall survival (50) and

they are vital therapeutic targets due to their important role in

the establishment of a premetastatic niche (59). Currently,

therapies against MDSCs basically focus on inhibiting their

immunosuppressive function, preventing their migration to

the TME, reducing their numbers, and driving their

differentiation into an inflammatory phenotype (90).

B cells
Although the research to date primarily concentrates on T

cells, increasing evidence suggests that tumor-infiltrating B

lymphocytes (TIL-Bs), comprising tumor-infiltrating B cells

and plasma cells, have an indispensable synergistic role in

tumor control (91). The most prominent phenotypes of TIL-

Bs are the effector and regulatory B-cell (Breg) subsets (91).

Depending on the composition of the TME and the phenotype

and antibodies produced by B cells, TIL-Bs exert antitumor or

protumor effects (92). By presenting antigens to CD4+ and CD8+

T cells, B cells trigger antigen-specific immune responses in the

TME (92, 93). In addition, B cells promote tumor-specific B-cell

maturation and isotype switching and tumor-specific T-cell

effects by promoting the formation of tumor-associated

tertiary lymphoid structures (TLSs) (92, 94). In vitro, B cells

isolated from melanoma patients triggered antibody-dependent

cell cytotoxicity (ADCC) after producing IgG (immune globulin
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G, IgG), thus eliminating tumor cells (92). Studies have shown

that the presence of TIL-Bs is associated with a favorable

prognosis in patients (91, 95). However, Bregs can suppress

antitumor immunity by releasing inflammatory mediators (such

as IL-10) and expressing inhibitory costimulatory molecules

(such as PD-L1), and the infiltration of Bregs is positively

correlated with Tregs (96, 97).
The remodeling effect of NACT on the
TIME and its prognostic value in
gastrointestinal tumors

Gastric cancer
An analysis of paired pre- and post-NACT tumor samples

from 60 patients with gastric cancer revealed that, whereas the

expression of Foxp3 remained unchanged, the expression of

CD4, CD8, PD-1, PD-L1, and TIM3 increased dramatically after

NACT. These increased CD4+ T cells and CD8+ T cells following

NACT demonstrated that chemotherapy sparked hosts’

antitumor immune responses. However, following initial

immune stimulation, IFN-g produced by activated T cells

generated negative feedback to induce the expression of PD-

L1, which then reprogrammed the TIME from an active state to

a generally balanced environment. This indicated the dynamic

bidirectional transfer of the gastric cancer TIME during

chemotherapy (98). Additionally, variations in TIM3, PD-1,

and PD-L1 between baseline and post-NACT demonstrated a

substantially positive relationship with one another, suggesting

that dual targeting against PD-L1 and TIM3 may be a potentially

beneficial choice for gastric cancer patients (98). In multivariate

analysis, upregulated expression of CD8+ T cells, PD-1, and PD-

L1 post-NACT were favorable prognostic factors of overall

survival (OS) (98), possibly because they reflected powerful

immunological flexibility.

However, another study uncovered slightly dissimilar

outcomes. Foxp3+ Tregs decreased significantly in a cohort of

30 matched patients (before and after NACT), according to

research by Xing X et al. Furthermore, patients who responded

to chemotherapy had higher levels of Tregs prior to NACT, and

following NACT, these patients had lower Treg and higher CTL

levels (99). In addition, the TCR numbers decreased

significantly, while the number of specific TCR clones

increased, indicating an increase in T-cell diversity following

NACT (99). This suggests that chemotherapy can boost

antitumor immunity and alleviate immunosuppression in

gastric cancer patients by increasing the expansion of T cells.

Moreover, Xing X et al. also analyzed another 1416 patients (341

of whom underwent NACT) and discovered that the

recruitment of CD68+ macrophages was reduced in the NACT

group and that CD8+ T cells post NACT were an independent

predictor of a better outcome (99).
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In contrast, the study by Wei Q et al. showed that in 50

paired patients, the expression of CD68 and CD163 increased

significantly after NACT, implying that NACT promoted the

recruitment of CD68+ macrophages and CD163+ macrophages

(100). Higher CD163 expression after NACT was found to be an

independent predictor of a poor OS in multivariate analysis.

Moreover, the CD163/CD68 ratio and the CD8/CD3 ratio

after chemotherapy were correlated, and a higher CD8/CD3

ratio neutralized the immunosuppressive effect of M2

macrophages (100).

Another examination of postoperative samples from 102

patients (56 patients receiving NACT: NACT group) revealed

that DCs increased considerably in the NACT group and were

significantly associated with histopathological type, depth of

invasion, TNM stage, and lymph node metastasis. Consistent

with the above study (99), this study also noted a reduced

number of Tregs following NACT. Increased DCs and

decreased Tregs post-NACT served as biomarkers for a

favorable prognosis in gastric cancer (101).To explore the

alterations of TANs in the TME, Hoffmann A et al. analyzed

postoperative gastric cancer tissues from 622 patients (173

patients receiving NACT) and assessed TANs in the mucosa,

tumor surface, tumor center, invasion front, and tumor scar.

According to their findings, TANs at the invasion front

decreased remarkably in the NACT group, and the

proportions of TANs at the tumor center and invasive front

were correlated with tumor regression. TANs were also linked to

the ratio of CD8+ T cells in the tumor center and invasive front,

and a higher density of CD8+ T cells in the tumor center was

associated with an improved OS (102). The decreased

proportion of TANs post-NACT was further confirmed by

transcriptome sequencing data from another study involving

35 paired patients (103). These studies demonstrate that the

systemic influences of NCAT (leukopenia and neutropenia) also

lead to local effects of markedly reduced TANs in the TME (102).

In addition to concentrating on tumor-infiltrating immune

cells, studies have also investigated the expression of

costimulatory molecules after NACT. The expression of the

negative costimulatory molecule B7-H4 decreased after NACT,

and its lower expression was a biomarker for treatment

effectiveness and a good prognosis. Thus, NACT enhanced

antitumor immunity by downregulating the expression of the

negative costimulatory molecule B7-H4, leading to reduced

survival rates in gastric cancer patients (104).

Despite the fact that the bulk of research has shown

variations in the TIME, Hennequin A et al. found no

significant variances. In their research, the proportions of IL-

17+ T cells, CD8+ T cells, Foxp3+ Tregs, Tbet+ T cells, and

CD20+ B cells in the central and invasive margins of

postoperative tumor tissue from 82 patients (42 of whom

received NACT) were analyzed. There was no discernible

impact of NACT on immune cell density, kind, or prognostic
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value (105). In contrast, another study found a reduction in the

fraction of CD20+ B cells after NACT in 39 esophageal and 109

gastric cancer paired patients (pre-NACT and post-

NACT) (106).

In view of the differences in the antibodies used, the number

of samples, and the heterogeneity between patients and within the

tumor, there are some discrepancies among the aforementioned

studies. In summary, NACT modulates the tumor immunity of

gastric cancer in a bidirectional manner, not only stimulating

antitumor immune responses but also inducing tumor

immunosuppression. The effect of chemotherapy on the TIME

should be taken into account when devising combined regimens.

Esophageal cancer
In an analysis of 18 patients with esophageal squamous cell

carcinoma (8 patients receiving NACT: NACT group),

Tsuchikawa T et al. illustrated that CD4+ T cells, CD8+ T cells,

and the expression of HLA I increased in the NACT group and

that in esophageal squamous cell carcinoma, NACT improved

patients’ survival by inducing T lymphocyte infiltration and

upregulating HLA class I expression (107).

Similarly, another study showed that in 69 paired patients

(pre- and post-NACT), the infiltration of CD8+ T cells and the

expression of PD-L1 on immune cells increased following

NACT, which suggested that PD-1/PD-L1 blockade synergizes

with NACT in the treatment of patients with esophageal

squamous cell carcinoma (108). Increased levels of PD-1 were

also observed in 40 patients with gastroesophageal junction

adenocarcinoma after NACT (109).

Overall, NACT influences the TIME of esophageal cancer

and gastroesophageal junction tumors, and combined therapy

targeting the PD-1/PD-L1 pathway may improve the prognosis

of these patients.

Pancreatic cancer
An investigation of the gene expression of pancreatic ductal

adenocarcinoma (PDAC) in the GEO database (gene chip:

GSE129492) made it obvious that 83 genes were differentially

expressed between the NACT and non-NACT groups.

Furthermore, these genes were mainly engaged in the

following biological pathways: immune system, cytokine signal

transduction in the immune system, innate immune system,

TCR signaling in CD8+ T cells, CD40/CD40 L signaling, and

TCR signaling in CD4+ T cells. These findings suggest that

NACT affects the TIME of PDAC (110).

Michelakos T et al. analyzed the expression of HLA-I, HLA-

II, and immune cells from 248 patients with PDAC. They found

that after NACT, HLA-A deficiency was reduced, immune

escape of tumor cells was weakened, the density of CD8+ T

cells increased, and Tregs and M2 macrophages decreased.

Additionally, abundant infiltration of M2 macrophages was an
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independent predictor of a poor OS. Therefore, NACT

ameliorated the immunosuppressive TIME in PDAC (111).

Similar to the study mentioned above (111), another

examination involving 27 pancreatic cancer patients treated

with NACT substantiated that NACT reactivated a potent and

prolonged local immune response in PDAC. After NACT, the

infiltration of Tregs, MDSCs, NK cells, and B cells was reduced

significantly, while the proportion of CD8+ T cells to all

leukocytes and the percentage of DCs increased dramatically.

Furthermore, CD4+ T cells and NK cells were independent

prognostic factors (112). Identical outcomes were noticed in

another investigation where the function of Tregs and B cells was

suppressed following NACT in PDAC (113).

Research has also been performed on the changes in Tfh cells

in PDAC following NACT. As previously reported, the PD-L1/

PD-1 signaling pathway may suppress the antitumor activity of

Tfh cells (41). In patients who received NACT, the function of

Tfh cells was reversed, and their capacity to express CXCL13 and

IL-21 was considerably enhanced. As a result, Tfh cells shaped

an immune-active TIME by recruiting CD8+ T cells and

promoting the maturation of B cells into antibody-producing

plasma cells. Meanwhile, a higher Tfh cell density was associated

with a better patient prognosis. These results suggested that

NACT unleashed antitumor immunity locally in PDAC by

reversing Tfh cell function (41).

In addition, NACT increased the expression of the

costimulatory molecule PD-L1 in 24 PDAC patients (6 of

whom received NACT) (114), suggesting that NACT patients

will benefit from PD-1/PD-L1 targeted therapy.

On the whole, NACT can reverse the suppressive

microenvironment of pancreatic cancer and reinforce patients’

antitumor immune responses. Incorporating immunotherapy

(such as PD-1/PD-L1 targeted therapy) may be beneficial for

patients with pancreatic cancer.
Colorectal cancer
According to an analysis by Matsutani S et al. of tumors

from 64 rectal cancer patients (33 of whom received NACT),

CD8+ T cells increased following NACT, and a higher density of

CD8+ T cells was associated with better clinicopathological

responses, which demonstrated that T-cell-mediated immune

responses play an essential role in the clinicopathological

reaction to NACT (115). Additionally, detection of T-cell

activation status revealed increased T-cell activation after

NACT. T-cell subset characterization of 188 rectal cancer

patients (46 patients receiving NACT) showed that the density

of total and activated T cells (Ki67high) increased remarkably

after NACT, and the infiltration of T cells was much greater in

patients with a better therapeutic outcome. In the multivariate

analysis, the number of stromal Ki67highCD8+ T cells following

NACT was a better prognostic factor (116).
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NACT can also activate local immune responses in

colorectal cancer. After analyzing immune cells in 77 patients

with stage II/III colorectal cancer (38 patients receiving NACT),

researchers discovered that in the NACT group, the infiltration

of CD4+GzmB+ T cells in the central region of the tumors

increased, and CD4+GzmB+ T cells were a better prognostic

factor for OS and disease-free survival (DFS) (117).

Furthermore, several studies noted increased expression of

CD8+ T cells and PD-L1 in tumors (118) and metastatic sites

(119, 120) of colorectal cancer after NACT, with upregulated T

cells and PD-L1 on immune cells predicting a better DFS (119).

Therefore, NACT enhanced the antitumor immune response by

promoting the recruitment of CD4+GzmB+ T cells and CD8+ T

cells in colorectal cancer. Recruited CD8+ T cells then released

IFN-g, which in turn led to upregulated PD-L1 levels.

Liver metastases, the leading cause of colorectal cancer

death, occur in 50% of patients and manifest a highly

heterogeneous microenvironment (121, 122). Understanding

how NACT affects the microenvironment of liver metastasis is

essential for developing therapeutic approaches as well as for

determining the key mechanisms of NACT. One study,

comprising 114 patients with colorectal cancer liver metastasis

(47 patients receiving NACT), highlighted that T-cell infiltration

and PD-L1 expression increased significantly in patients who

accepted NACT (123). These results suggested that NACT

recruited immune cells in patients with colorectal cancer liver

metastases, but the recruited CD8+ T cells might induce immune

tolerance, which is responsible for the poor outcome of certain

patients. Another study found time-dependent alternations in T

cells, with T cells increasing in the group that underwent surgical

resection only within a short interval (<9.5 weeks) after the

completion of NACT (124). Moreover, the Treg/CTL ratio was

lower in the short-interval group (124). This study illustrated

that the immunosuppressive milieu gradually becomes

prominent after NACT, while the time-dependent changes in

immune cells indicated that there might be a time window of

opportunity for application of immunotherapy.

Wu Y et al. depicted the spatiotemporal immune landscape

of colorectal cancer liver metastases at the single-cell level (a

total of 20 patients, 11 of whom received NACT) and learned

that there were highly metabolically activated MRC+CCL18+ M2

macrophages in the metastatic milieu. In patients with partial

remission, MRC+CCL18+ M2 macrophages decreased and CTLs

increased in the TIME of liver metastasis, indicating that

antitumor immunity had recovered, whereas the inhibitory

TIME was more obvious in nonresponding patients (122).

This study revealed that NACT potently restored the tumor

immunological homeostasis in patients who responded to

chemotherapy, and targeting metabolic pathways can be

employed as a combined therapy option.

To conclude, in patients with rectal cancer and

colorectal cancer, NACT stimulates antitumor immune
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effective choice. Meanwhile, NACT reshapes the TIME of

colorectal cancer liver metastases in a time-dependent

manner, and it is of benefit for these patients to combine

immunotherapy or metabolic therapy at an appropriate

time point.
Liver cancer
Transarterial chemoembolization (TACE) is a preferred

local therapy for patients with Barcelona stage B liver cancer

(125) and is able to hinder tumor progression. As has been

reported, the efficacy of TACE is correlated with treatment-

induced immune modulation (126). After analyzing 119 patients

with liver cancer (58 of whom received TACE before surgery),

Pinato D J et al. observed that CD4+Foxp3+ cells and CD8+PD-

1+ cells were lower in the TACE group, and lower CD4+Foxp3+

cells were associated with a better DFS. In addition, signaling

pathways associated with chemokine secretion, regulation of

immune cell function, complement cascade activation, and

production of interleukins and cytokines were upregulated.

This study found that TACE has pleiotropic effects in

regulating the TIME, reducing the proportions of Tregs and

exhausted T cells, and upregulating proinflammatory signaling

pathways. Adding immunotherapies such as depleting Tregs and

inhibiting Treg function to enhance the antitumor effect of

TACE can be viable therapeutic strategies (127).
Other types of tumors
There are studies regarding early changes in immune

infiltration post NACT in breast cancer. A study involving 66

paired triple-negative breast cancer patients showed that after one

cycle of NACT, the infiltration of total T cells, CD4+ T cells, CD8+

T cells, and PD-1+CD8+ T cells increased, and the expression of

CD73 and PD-L1 also increased significantly (128). Another study

also displayed dynamic changes in the TME following NACT.

According to the study by Park YH et al., NACT induced dynamic

changes in the TME, and the role varied with breast cancer

subtypes and pathological remission. Only one cycle of NACT

increased the infiltration of TILs and induced an activated

immune microenvironment. Compared with the baseline, the

residual tumors exhibited an immunosuppressive state at

the end of treatments, in which the abundance of TILs

and immune-stimulated cell types was reduced, and

immunosuppressive M2 macrophages were increased. Higher

levels of post-NACT TILs and CD8+ T cells were associated

with complete pathological remission. Additionally, the on-

treatment immune response was more predictive of treatment

outcome than immune signatures in paired baseline samples,

although these were strongly correlated (129). This study

showed that NACT initially induced antitumor immunity, but

eventually, it became immunosuppressive, and the antitumor
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efficacy was impaired. Including immunomodulatory therapy

might be more beneficial early on rather than later (129).

An analysis of 18 patients with oral squamous cell carcinoma

(8 of whom received NACT) showed that the infiltration of

CD4+ T cells, CD8+ T cells, and CD56+ NK cells into tumors

were much greater, whereas the proportions of Tregs and PD-1+

cells decreased. These results support the immunomodulatory

role of NACT in oral squamous cell carcinoma (130).

Gaudreau P O et al. studied the TIME of 511 patients with

non-small cell lung cancer (146 of whom had NACT) and

discovered that following NACT, the infiltration of CTLs,

CD20+ B cells, CD8+CD103+ and CD4+CD103+PD-1+TIM3-

tissue memory T cells increased noticeably. NACT, however,

had no impact on the clonality and abundance of TCRs or tumor

mutational load. This study showed that NACT promoted

antitumor immunity in non-small cell lung cancer by

recruiting T and B cells and by phenotypic polarization

toward cytotoxic and memory CD8+ T cells or CD4+ memory

T cells, suggesting that combining T-cell agonists (such as TLR9,

STING, and IL-10 agonists) can be a promising treatment for

non-small cell lung cancer (131).

NACT reshaped the TIME of ovarian cancer as well. An

analysis of 54 patients with high-grade serous ovarian cancer

who received NACT showed that IFN-g produced by CD4+ T

cells and antitumor Th1-related genes increased after NACT,

whereas CD8+ T cells and CD45RO+ memory cells remained

unaltered. Moreover, the expression of PD-L1 was significantly

elevated, and in patients responding well to chemotherapy, the

proportion of Tregs was reduced (132). Similarly, Mesnage S J

L et al. also observed a significant increase in TILs and PD-L1

following NACT, and multivariate analysis showed that a

higher TIL level post NACT was an independent predictor of

a better PFS (133). More recently, the study by Leary A et al.

focused on the impact of NACT on the balance between

immune-active and immune-tolerant subpopulations (134).

Their results indicated that NACT significantly increased

CD3+ T cells and CD8+ T cells, whereas higher CD8+/

Foxp3+, CD3+/Foxp3+, and CD68+/CD163+ ratios after

NACT were associated with a better PFS (134). Altogether,

NACT can enhance the immune response by regulating the

balance between immune-active and immune-tolerant subsets,

but this effect is attenuated by elevated PD-L1. Chemotherapy

combined with immunotherapy can help to improve disease

control in advanced high-grade serous ovarian cancer

(132–134).

In a retrospective analysis of 109 patients with cervical

cancer, increased signaling in CD4+ T cells, CD8+ T cells,

CD20+ B cells, and CD56+ NK cells was noticed after NACT,

particularly in those who had a good response. By RNA

sequencing, upregulation of the immunosuppressive molecule

CD200 was also detected. This study suggested that NACT

improved local antitumor immunity in cervical cancer, and
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exploration as an addition to NACT therapy (135).

Deng C et al. showed that after NACT, CD3+ T cells, CD8+ T

cells, Ki67+CD8+ T cells, and PD-L1+ immune cells increased,

while HLA-DR-CD33+ MDSCs decreased. The conclusion was

drawn that NACT activated the local immune state of

osteosarcoma and relieved the immunosuppressive state, and

research into the immunomodulatory effect of NACT on

patients with osteosarcoma may offer a stronger theoretical

foundation for selecting immunotherapies to combine with

NACT (136).
Conclusion and perspectives

The TIME plays a significant role in the survival and

prognosis of patients. Researchers have demonstrated that

chemotherapy can alter the TIME by regulating the amount

and activity of various immune cells. In light of its convenience

in obtaining clinical samples before and after chemotherapy,

extensive research has focused on the effect of NACT on the

TIME in gastrointestinal cancer, which assists in offering a

reference for formulating more effective combined therapeutic

methods. In this review, we recapitulated the remodeling effect

of NACT on the TIME, the efficacy prediction role of infiltrating

immune cells, and their associated prognostic value in multiple

tumors (Table 1). In general, NACT can impact the TIME and

improve antitumor immunity by changing the number and

function of infiltrating immune cells. After NACT, antitumor

immune cells, such as CD4+ T cells, CD8+ T cells, M1

macrophages, and DCs, increase, while immunosuppressive

cells tend to decrease. Additionally, NACT can alter the

expression of inhibitory receptors such as PD-1 and CTLA-4,

and therapies combining ICB with NACT may be a promising

approach to improving the treatment response and survival

of patients.

There are, however, some defects in the current research that

need to be resolved immediately. First, the fundamental status of

the included populations, the severity of their disease, and the

number of cycles of chemotherapy, are quite different across

studies. In addition, standards and norms for the score of

tumor-infiltrating immune cells vary from research to research.

Finally, inadequate preoperative biopsy representativeness and

inconsistent evaluation time points also lead to discrepancies. To

minimize these biases and better elucidate the immune alterations,

we need to broaden the included cohorts and set precise criteria

for assessing the infiltrating immune cells. Nevertheless, the effort

is worth it due to the expectation that appropriate individualized

immunotherapies will be administered based on the post-NACT

tumor-infiltrating immune cell profile, which is expected to

become a new approach to antitumor immunochemotherapy in

the future.
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