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Background: This study aimed to explore the clinical significance of cellular

senescence in uterine corpus endometrial carcinoma (UCEC).

Methods: Cluster analysis was performed on GEO data and TCGA data based

on cellular senescence related genes, and then performed subtype analysis on

differentially expressed genes between subtypes. The prognostic model was

constructed using Lasso regression. Survival analysis, microenvironment

analysis, immune analysis, mutation analysis, and drug susceptibility analysis

were performed to evaluate the practical relevance. Ultimately, a clinical

nomogram was constructed and cellular senescence-related genes

expression was investigated by qRT-PCR.

Results: We ultimately identified two subtypes. The prognostic model divides

patients into high-risk and low-risk groups. There were notable discrepancies

in prognosis, tumor microenvironment, immunity, and mutation between the

two subtypes and groups. There was a notable connection between drug-

sensitive and risk scores. The nomogram has good calibration with AUC values

between 0.75-0.8. In addition, cellular senescence-related genes expression

was investigated qRT-PCR.

Conclusion: Our model and nomogram may effectively forecast patient

prognosis and serve as a reference for patient management.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the

three major gynecological malignancies, second only to cervical

cancer in incidence (1, 2). Hypertension, diabetes, obesity,

infertility, and family history are risk factors for UCEC (3).

However, because of the scarcity of effective timely detection of

UCEC, many patients have progressed to advanced stages by the

time they are diagnosed (4). At the same time, the poor prognosis

for patients who develop metastases despite treatment is now a

pressing issue (5). Treatment options other than first-line

chemotherapy drugs remain limited (6). Studies show that the

treatment and prognosis of patients can be assessed through

predictive models and biomarkers (7). However, there are no

credible biomarkers to assess the outcome for UCEC.

Cellular senescence is the central process of aging, bringing the

cell cycle to a permanent standstill (8). Cellular senescence can

promote repair and prevent tumorigenesis. Meanwhile, some

degenerative diseases and cancers are associated with abnormal

accumulation of senescent cells (9, 10). Senescent tumor cells can

modulate the tumor microenvironment (TME), transform

surrounding unsenescent cells into senescent cells, and recruit

and activate immune cells to produce anti-tumor and pro-tumor

effects (8, 9). Cellular senescence is capable of limiting tumor growth

progression and is considered a potential therapeutic target (11).

Adriamycin and bleomycin can induce senescence and thus exert

anti-tumor effects. Therefore, studying the effects of cellular

senescence in tumors can help develop new approaches to tumor

therapy (12). However, the role of cellular senescence in UCEC and

the relationship with UCEC prognosis remains unclear.
Materials and methods

Data collection

From TCGA and GEO databases, the gene expression and

clinical data of UCEC were downloaded. The GEO cohort

GSE119041 and TCGA cohort were acquired (13). Among

them, patients in the integrated cohort of the TCGA cohort

and the GEO cohort were randomly divided into training cohort

and testing cohort at the ratio of 1:1, the integrated cohort was

also defined as validation cohort. We normalized the expression

of the genes by using “ComBat” algorithm from the “sva”

package (14). Patients with inadequate clinical data and

survival information were eliminated.
The clustering analysis

We collected 307 cellular senescence related genes from the

previous study (15). Full details of these genes were shown in

Table S1. The “ConsensusClusterPlus” package was used to
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perform consistent unsupervised cluster analysis to classify

patients into different subtypes. We screened out clusters with

high intra-type correlation and low inter-type correlation for

subsequent analysis (16).
Multi-omics analysis of UCEC subtypes
based on senescence genes

First, to validate the categorization of patient subtypes, we

used principal component analysis (PCA). We investigated the

link with the subtypes and patient clinical characteristics. We then

performed a survival analysis using the “survival” package to draw

Kaplan–Meier curves to assess differences in survival between

subtypes. Next, we explored the differences in the TME between

different subtypes. Violin plots were used to show the distribution

of TME scores for each sample across subtypes. a score of 22

immune cells was obtained by the CIBERSORT method (17). To

measure the amount of immune cell infiltration, the single sample

gene set enrichment analysis (ssGSEA) technique was utilized

(18). Finally, we explored differences in PD-L1 and PD-L2

expression among different subtypes.
Enrichment analysis

Using the “clusterProfiler” software package, we performed

Gene Ontology (GO) analysis to identify functions for these

genes, and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis to identify enriched pathways for these genes

(19). We retained analysis results with p-values less than 0.05

and displayed them in bar graphs.
Difference analysis

Based on gene expression between the two subtypes, we

screened for genes that differed between the two subtypes (20).

In addition, we analyzed the pathways that differed between the

two subtypes by means of KEGG enrichment analysis.
The differential genes clustering analysis
and multi-omics analysis

First, we used the same method as above for cluster analysis.

Then, we explored the association of this subtype with clinical

factors and performed survival analysis. Besides, we performed

TMB analysis and checkpoint analysis of PD-L1 and PD-L2.
Model construction and evaluation

In the training cohort, we performed the least absolute and

selection operator (LASSO) regression analysis to select cellular
frontiersin.org
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senescence related genes to connect to the prognosis. The

model’s predictive performance was tested using test and

validation cohorts. Based on the median risk score, we

classified the patients into two groups: high-risk and low-risk.

Between the two groups, we investigated variations in clinical

features and patient outcomes. The time-dependent receiver

operating characteristic (ROC) curve was utilized to assess the

model’s accuracy. Besides, univariate and multivariate cox

analyses were also performed (21).
Multi-omics analysis for the model

First, the link between risk scores and clinical factors was

investigated. We then explored the TME based on the model.

One-class logistic regression (OCLR) machine-learning

algorithm was used to quantify the stemness of tumor samples

by calculating cancer stem cell indices (22). Pearson analysis was

used to reveal the correlation of risk score and RNAss. Between

the two groups, the GSEA analysis was carried out to evaluate

variations in enriched pathways. Besides, we also performed

immune microenvironment (IME) analysis. We immunotyped

the patients and investigated the association with both risk score

and immunotyping to learn more about the based on risk score

and immunity.

Studies showed that tumor mutational burden (TMB)

correlates with IME (23). Therefore, we calculated TMB for

each sample by somatic mutation profiles and investigated the

link between risk score and TMB. Based on the median TMB, we

separated patients into high-TMB and low-TMB groups and

performed survival analysis. In addition, we combined TMB

with risk scores for survival analysis. Besides, we analyzed the

relationship among riskscores and microsatellite instability

(MSI) and immunophenoscore (IPS).

The “PRROPHOPIC” pack includes hundreds of medicines

(24). From it, we calculated the half inhibitory concentration

(IC50) value of the drug and screened out the drugs with

significant differences in the two risk groups.
Nomogram construction and evaluation

We created a nomogram using the riskscores and clinical

data. The nomogram’s accuracy was assessed using the C-index,

ROC curve, and calibration curve.
Quantitative RT-PCR

A total of 12 UCEC tissues from patients in the Nantong

Maternal and Child Health Hospital Affiliated to Nantong

University were paired with normal tissues. The Ethics

Committee of the Nantong Maternal and Child Health
Frontiers in Oncology 03
Hospital Affiliated to Nantong University approved the study.

All patients signed the informed consent form. Use TRIZOL

reagent (Thermo Fisher Scientific, USA) to separate total RNA

from the sample, then use Revert Aid first strand cDNA

synthesis kit (Thermo Fisher Scientific, USA) to reverse

transcribe it into cDNA, and use SYBR Green PCR kit

(Takara, Tokyo, Japan) for real-time quantitative PCR (qRT-

PCR) analysis. GAPDH was used to regulate the relative

expression of genes. The sequence is listed in Supplementary

Table S3.
Results

Establishment and assessment of
senescence subtypes

We included 593 patients from both TCGA and GEO

cohorts in our study for further analysis. Based on cellular

senescence related gene expression, we classified patients using

a consensus clustering approach(Figure S1). The results of the

analysis show that k=2 is the optimal number of groups

(Figure 1A). We then divided them into subtype A and

subtype B based on the above results. PCA analysis indicated

that subtypes A and B successfully distinguished patients

(Figure 1B). Survival analysis incidated that our subtype

successfully stratified the survival of patients, and the survival

time of subtype A was longer (Figure 1C). However, after

comparing the clinical factors of the patients, we found no

difference in the expression of pyroptotic genes with age, stage,

grade, survival status, and histological type (Figure 1D).
Multi-omics analysis of different
senescence subtypes

TME plays a key role in tumorigenesis and progression.

Therefore, we first analyzed the TME. Violin plots showed

significant differences in stromal, immune, and ESTIMATE

scores between the two subtypes (Figure 2A). We further

analyzed the immune-related functions and infiltration of

immune cells of two subtypes based on the above results. A

subtype had higher infiltration levels of NK cells activated, T

cells regulatory, and T cells CD8, while B cells naive, T cells

follicular helper, and Macrophages M1 had greater levels of

infiltration in the B subtype (Figure 2B). ssGSEA analysis further

confirmed that immune cell infiltration levels differed

significantly between the two subtypes (Figure 2C). Besides,

the expression of HLA-A, HLA-DMA, and HLA-F was higher

in subtype A, while the expression of HLA-DMB and HLA-DOA

in subtype B was higher (Figure 2D). The results of the

checkpoint analysis indicated B subtype showed greater levels

of PD-L1 and PD-L2 expression (Figures 2E, F).
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We also analyzed gene function and enriched pathways. GO

enrichment analysis revealed these genes were primarily associated

with cell mitosis, metabolism of genetic material, and ATP

metabolism (Figure 2G). KEGG enrichment analysis revealed

these genes were primarily associated with cell cycle, protein

processing, transport, and DNA replication (Figure 2H). Besides,

it also revealed subtype A was substantially more concentrated in

lipid metabolism, and subtype B had considerable cell cycle, cell

division, and tumor enrichment (Figure 2I).
Differential genes subtypes

Through differential analysis, we identified 1219 differential

genes. Based on these genes, we used the same cohort and

method to further subtype the patients (Figure S2A). We found

dividing patients into two subtypes (A and B) was optimal

(Figure S2B). Besides, the survival time of the two subtypes

was significantly different (Figure S2C). However, the heatmap

showed no differences in clinical factors between the two

subtypes (Figure S2D).

Then, we performed TME analysis. The results showed that

subtype A had higher stromalscore, immunescore, and

estimatescore, while subtype B had higher tumorpurity
Frontiers in Oncology 04
(Figures 3A–D). In addition, the A subtype of NK cells

activated, T cells regulatory (Tregs), and T cells CD8 have a

higher degree of infiltration, and the B subtype of Macrophages

M1, T cells follicular helper, and B cells naive have a higher

degree of infiltration (Figure 3E). The results of ssGSEA analysis

further confirmed that immune cell infiltration differed

significantly between the two subtypes (Figure 3F). At the

same time, the PD-L1 and PD-L2 genes of subtype B are

highly expressed (Figures 3G, H). Figure 3I showed that the

expression of HLA-related genes of the two subtypes was

significantly different. This is basically consistent with the

analysis of cellular senescence subtypes.
Model construction and evaluation

After LASSO analysis, a total of 4 genes were screened

(Figures 4A, B). The model’s calculating formula was as

follows: riskscore = BZW2*0.44481118 - NRIP1*0.38695576 +

ARHGAP29*0.22408622 + SIX1*0.18719355. Based on the

median risksocre in the training cohorts, patients in the three

cohorts were separated into high- and low-risk groups.

Figure 4C showed the distribution of patients grouped by two

cellular senescence subtypes, two differential gene subtypes, high
B

C D

A

FIGURE 1

Cellular senescence subtypes and clinical assessment. (A) Two subtypes and their associated regions. (B) PCA analysis. There are significant
differences between the two subtypes. (C) Survival analysis. Subtype B has a poorer prognosis. (D) There were no differences in clinical factors
between the two subtypes.
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and low-risk groups, and survival status. We also observed that

both the cellular senescence subtype and the differential gene

subtype had a higher risk score for the B subtype (Figures 4D, E).

Figure 4F shows that RNAss values are positively correlated with

risk scores. Furthermore, the risk score was linked to patient’s

clinical factors. The higher risk score, the more advanced and

poorly differentiated tumors, and the greater the likelihood of

death (Figures S3A–D). We also found a lower risk score for

tumors originating from endometrial tissue and a higher risk for

mixed and serous tissue (Figure S3E).

We then analyzed the relationship of the model to patient

survival. Patients were separated into high-risk and low-risk

groups based on the median (Figures S4A–C). At the same time,

the number of patient deaths was proportional to the risk score

(Figures S4D–F). Furthermore, in the high-risk group, BZW2,

ARHGAP29, and SIX1 were overexpressed, whereas NRIP1 was

overexpressed in the low-risk group (Figures S4G–I).

Then, we evaluated the accuracy of the model. The high-risk

group had the worst prognosis among the three groups

(Figures 5A–C). Figures S4A–H showed the results of survival

analysis for clinical factors. The AUC of the training cohort at 1,

3, and 5 years was 0.652, 0.722, and 0.771, respectively

(Figure 5D). The AUC of the test cohort at 1, 3, and 5 years

was 0.621, 0.619, and 0.645, respectively (Figure 5E). The AUC
Frontiers in Oncology 05
of the validation cohort at 1, 3, and 5 years was 0.644, 0.671, and

0.697, respectively (Figure 5F).
Independent prognostic analysis

For independent prognostic analysis, univariate and

multivariate COX regression models were utilized. The results

of the univariate COX analysis are as follows (Table S1). In the

training cohort, histological type, stage, riskscore were

independent prognostic factors. The grade was also an

independent prognostic factor in the testing cohort and

validation cohort. In the three cohorts, multivariate COX

analysis demonstrated riskscore and stage were independent

predictive variables (Table S2).
The model’s multi-omics analysis

First, GSEA analysis revealed the high-risk group was mostly

associated with cardio-renal diseases (Figure 6A). The low-risk

group was mostly associated with immunity and rejection

(Figure 6B). Then, we analyzed the relationship between the

TME and the model. StromalScore, ImmuneScore, and
B C

D E F

G H I

A

FIGURE 2

Multi-omics analysis based on senescence cluster. (A) TME analysis. Subtype A has a higher TME score. (B, C) Differences in immune cell
infiltration levels. (D) Differences in HLA-related gene expression levels. (E, F) The PD-L1 and PD-L2 genes of subtype B are highly expressed. (G,
H) The GO (G) and KEGG (H) enrichment analysis. (I) Differential KEGG enriched pathways between the two subtypes. Adjusted p-values were
shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1054564
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2022.1054564
B C

D E F

A

FIGURE 4

Prognostic model construction. (A, B) LASSO regression analysis. 4 genes were screened to build a prognostic model. (C) Distribution of
different subtypes, risk groups, and survival outcomes. (D, E) Distribution of risk scores for different subtypes. (F) RNAss values are positively
correlated with risk scores.
B C

D E F

G H I

A

FIGURE 3

Multi-omics analysis based on differential genes cluster. (A-D) TME analysis. Subtype A has higher TME scores and subtype B has higher tumor
purity. (E, F) The amount of immune cell infiltration differed significantly. (G) PD-L1, PD-L2 expression levels are higher in subtype (B-H) The A
subtype has higher expression levels of HLA-related genes. Adjusted p-values were shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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ESTIMATEScore were greater in low-risk group (Figure 6C). In

addition, riskScore is inversely proportional to StromalScore,

ImmuneScore, and ESTIMATEScore, and proportional to

TumorPurity (Figures 6D–G). Figure S5A illustrated the
Frontiers in Oncology 07
distribution of immune cell in two groups per patient. We

then investigated the model’s connection to immune cell

infiltration. Besides, T cells CD4 memory activated, T cells

follicular helper, T cells regulatory, NK cells resting,
B C D

E F G H

I J K L

A

FIGURE 6

Model multi-omics analysis. (A, B) GSEA enrichment analysis. (C-F) TME analysis. the low-risk group had higher StromalScore, ImmuneScore, and
ESTIMATEScore. Risk Score is inversely proportional to StromalScore, ImmuneScore, and ESTIMATEScore, and proportional to TumorPurity. (G-I) The
amount of immune cell infiltration differed significantly. (J) Immune cell infiltration and risk score were linked. (K) immune cells and Risk score were
linked. (L) immune cells and model genes were linked. Adjusted p-values were shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
B C

D E F

A

FIGURE 5

Prognostic model evaluation. (A-C) survival analysis. the high-risk group had a worse prognosis in training (A), test (B), and validation (C)
cohorts. (D-F) ROC curves. The AUC value of the model is basically between 0.6 and 0.7 in three cohorts.
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Macrophages M1, and Dendritic cells activated were distinct in

the two groups (Figures 6H, I). SsGSEA analysis also confirmed

that in the high-risk group, most immune cells had higher

infiltration levels (Figure 6J). The risk score was significantly

associated with immune cells, model genes (Figures 6K, L). We

found that T cell regulatory were negatively correlated with

riskscore, and all the rest of cells had a positive correlation to risk

score. (Figures S5B–F). Figure 6K showed the relationship

between model genes and immune cells. Then, we divided

patients into four subtypes based on their immunity (Figure

S5G). Different types of immune infiltration correspond to

tumor promotion and tumor inhibition, including C1 (wound

healing), C2 (INF-g dominance), C3 (inflammation) and C4

(lymphocyte depleted) (25). The risk score for the C2 subtype

was the greatest, while the risk score for the C3 subtype was the

lowest (Figure S5H). In addition, significant variations between

the two groups were also seen in the expression of

immunological checkpoint genes (Figure S5I). Among them,

CTLA4, PDCD1LG2, and PDCD1 were most associated with

risk scores (Figure S5J). Risk scores were inversely correlated

with PDCD1LG2, CTLA4, and PDCD1, and favorably correlated

with PDCD1LG2 (Figures S5K–M).

Studies have demonstrated that TMB can serve as an

important component of composite predictors to guide tumor

immunotherapy (26). We found that the three genes with the

greatest mutation probability in the high-risk group were TP53,

PIK3CA, and PTEN, while the three genes with the highest

mutation probability in the low-risk group were PTEN,
Frontiers in Oncology 08
ARID1A, and PIK3CA (Figures 7A, B). We then performed

survival analysis. The prognosis of patients with high-TMB

scores and high risk score was greater (Figures 7C, D). The

research by Ganesh et al. illustrated MSI is closely related to the

sensitivity to immunotherapy (27). The low MSI accounted for

the least, and the high MSI group had the lowest risk score

(Figures 7E, F). To further guide the patient’s treatment, we

performed a drug sensitivity analysis. First, we screened out

drugs related to model genes, including Tamoxifen, Dasatinib,

Panobinostat, etc (Figure 8A). Next, we further screened drugs

sensitive to the high-risk group, including Gemcitabine,

Doxorubicin, Docetaxel, Cisplatin, Vinorelbine, Paclitaxel,

Vinblastine (Figures 8B–H).
Nomogram construction and validation

We built a nomogram by combining riskscore and clinical

factors. According to the nomogram, the 1-, 3-, and 5-year

mortality rates for the patients were 0.0104, 0.0445, and 0.0644,

respectively (Figure 9A). The calibration curve showed the

nomogram had an excellent calibration (Figure 9B). The C-

index showed that the nomogram performed better than the risk

score and clinical factors (Figure 9C). The same conclusion was

drawn from the ROC curve, with the AUC of 0.751, 0766, and

0.786 in the nomogram at years 1, 3, and 5, respectively

(Figures 9D–F).
B C

D E F

A

FIGURE 7

Multi-omics analysis of the model. (A, B) Gene mutation frequencies in both groups. (C, D) Survival analysis. H-TMB has a better prognosis. (E, F)
MSI analysis. The low MSI accounted for the least, and the high MSI group had the lowest risk score.
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B C

D E F

A

FIGURE 9

Nomogram construction and evaluation. (A) According to the nomogram, the 1-, 3-, and 5-year mortality rates for the patients were 0.0104,
0.0445, and 0.0644, respectively. (B) Calibration curve for nomogram. (C) C-index curve. (D-F) ROC curves.
B C D E

F G H

A

FIGURE 8

Drug sensitivity analysis. (A) Relationship between model genes and sensitive drugs. (B-H) Sensitive drugs in high-risk group.
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Validating gene expression level of
cellular senescence-related genes in
UCEC samples

To validate the expression levels of cellular senescence-

related genes, we used qRT-PCR to detect the expression levels

of six cellular senescence-related genes in 12 UCEC samples and

12 normal tissues. The results indicated that ARHGAP29

expression was significantly higher in tumor samples, while

GNLY and NRIP1expression was significantly lower in UCEC

samples. There was no significant difference in BATF, BZW2

and SIX1 expression (Figure S6).
Discussion

In this study, to evaluate the involvement of senescence

genes in UCEC, we did a complete bioinformatics analysis.

Based on the senescence gene, we began by categorizing the

patients into two groups. Subtype B has a worse prognosis. TME,

immune checkpoint gene expression, and immune function also

differed significantly between the two subtypes. We further

discovered two gene subtypes based on the differential genes.

The results of correlation analysis showed that different genes

can be used as indicators of patient prognosis and TME.

Therefore, the prognostic model was built using differential

genes. The model’s predictive ability was proven using survival

analysis and ROC curves. Furthermore, this prognostic model

was significantly associated with clinical factors, TME, immune-

related markers, TMB, MSI, and drug sensitivity. Finally, we

built a nomogram by combining riskscore and clinical factors.

The results showed that the nomogram was successful in

stratifying patients and guiding them in prognostic assessment

and treatment selection.

In this study, we verified the expression levels of cell

senescence-related genes in tumor tissues and normal tissues.

Perhaps due to the small sample size, there was no difference in

BATF, BZW2 and SIX1 expression between tumor and normal

tissues. It is necessary to expand the sample size to further verify

this result. Senescence is a steady state that removes sick cells

and stabilizes the collective internal environment (11). It is also

thought to prevent tumor development (28). However, recent

studies have found that tumor progression can also be caused by

cellular senescence (29). Senescent cells secrete signaling

molecules that affect tumor proliferation, invasion and

metastasis, and angiogenesis (30). In addition, the senescence

of some tumor cells is reversible and they can escape cellular

senescence and re-enter the cell cycle, which is an important

cause of tumor recurrence and progression (31). As a result, it is

critical to thoroughly investigate the clinical importance of
Frontiers in Oncology 10
cellular senescence in malignancies. However, there are

currently no studies on the role of cellular senescence in UCEC.

Four genes have been identified as being involved in illness

development and progression. BZW2 is a protein that has a role

in cell adhesion (32). Huang et al. showed that BZW2 promoted

colorectal cancer progression (33). NRIP1 is a nuclear receptor

protein, and Its high expression is linked to a bad prognosis of

gastric cancer (34). ARHGAP29 is a GTPase that stimulates

prostate cancer development and metastasis (35). SIX1 is a

transcription factor with an important role in tumorigenesis

(36, 37). Our prognostic model combines these four genes,

which will give us a better understanding for cancer cells.

The function of programmed cell death in tumor therapy

and TME are receiving increasing attention (38, 39). Tumor

growth must evade tumor immunity, which is also considered an

important marker of tumor progression (40, 41). Despite

breakthroughs in the treatment of aggressive malignancies

with immunotherapy, a large minority of patients still have no

impact on treatment (42, 43). The immune microenvironment

of UCEC can predict patient survival (44). In this study, GSEA

analysis revealed that the low-risk group was mostly associated

to immunity. In addition, our study also found the riskscore was

inversely related to the patient’s stromalscore, immunescore,

estimatescore and proportional to tumorpurity. At the same

time, we also found that major immune checkpoint genes were

up-regulated in the low-risk group. This means that patients

with low-risk scores are more immunogenic and may benefit

from immunotherapy. Therefore, our study may guide the

immunotherapy of UCEC patients.

Studies have shown that immunotherapy is more effective in

people with a high TMB (45). Tissue TMB can also predict

patient response to immune checkpoint therapy (46). TP53

mutation is an independent marker of poor prognosis (47).

There is also evidence that human carcinogens can induce TP53

mutations (48). Our study also reached similar conclusions. The

mutation rate of TP53 is substantially greater in the high-risk

group than in the low-risk group. This helps us explore the

causes of tumorigenesis and the choice of treatment options for

patients. Besides, drug resistance of tumors has always been one

of the challenges of UCEC treatment (49). It is also difficult to

effectively treat advanced cases (50). To this end, our study

screened drug candidates for relevanche to prognostic models.

Our study has some limitations. First, our studies are all

from public databases. Due to the limited access to public data

sets and the limited amount of data, the clinicopathological

parameters analyzed in this study were not comprehensive, and

there were errors or biases. In the future, we will conduct basic

experiments in vivo or in vitro to confirm our findings. Second,

our study was a retrospective study. Future prospective clinical

validation is needed.
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This is the first prognostic model of UCEC based on cellular

senescence genes to our knowledge. Our analyses reveal a broad

range of regulatory regulatory mechanisms that facilitate

individualized treatment and prognosis prediction in patients.
Conclusion

We constructed a UCEC prognostic model based on cellular

senescence genes and combined with clinical factors to construct

nomograms, which showed good predictive performance. Using

this model, the prognosis and TME of UCEC patients can be

accurately estimated. Furthermore, our findings may lead to new

approaches for UCEC treatment.
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SUPPLEMENTARY FIGURE 1

Cluster analysis. Cluster analysis heatmap of cellular senescence genes

(k = 3-9).

SUPPLEMENTARY FIGURE 2

Cluster analysis. (A) Cluster analysis heatmap of differential genes (k = 3-
9). (B) Dividing patients into two subtypes was optimal. (C) Survival

analysis. Subtype B has a poorer prognosis. (D) There were no
differences in clinical factors between the two subtypes.

SUPPLEMENTARY FIGURE 3

Association of clinical factors with risk score. (A-E) Risk score in patients

with different age, grade, fustat, and histological_type.

SUPPLEMENTARY FIGURE 4

Model evaluation. (A-C) Patients were divided into high- and low-risk

groups based on the median risk score. (D-F) As the risk value increased,
the proportion of UCEC patients who died increased. (G-I) in the high-risk

group, BZW2, ARHGAP29, and SIX1 were highly expressed, whereas, in the

low-risk group, NRIP1 was highly expressed.

SUPPLEMENTARY FIGURE 5

Immunoassay of the model. (A) The distribution of immune cells for each

sample in the two groups. (B-F) The relationship between risk scores and
immune cells. T cell regulatory (Tregs) were negatively correlated with risk

score, and the remaining cells were all positively correlated with

risk score. (G, H) The relationship between immunophenotyping and
risk score. (I, J) Immune checkpoint analysis. There were also significant

differences in the expression of immune checkpoint genes between the
two groups. (K-M) PDCD1LG2 was positively associated with risk scores,

CTLA4, and PDCD1 were negatively associated with risk scores.

SUPPLEMENTARY FIGURE 6

The cellular senescence-related genes expression was investigated by

qPT-PCR.
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