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Resistance to drug treatment is a critical barrier in cancer therapy. There is an

unmet need to explore cancer hallmarks that can be targeted to overcome this

resistance for therapeutic gain. Over time, metabolic reprogramming has been

recognised as one hallmark that can be used to prevent therapeutic resistance.

With the advent of metabolomics, targeting metabolic alterations in cancer

cells and host patients represents an emerging therapeutic strategy for

overcoming cancer drug resistance. Driven by technological and

methodological advances in mass spectrometry imaging, spatial

metabolomics involves the profiling of all the metabolites (metabolomics) so

that the spatial information is captured bona fide within the sample. Spatial

metabolomics offers an opportunity to demonstrate the drug-resistant tumor

profile with metabolic heterogeneity, and also poses a data-mining challenge

to reveal meaningful insights from high-dimensional spatial information. In this

review, we discuss the latest progress, with the focus on currently available

bulk, single-cell and spatial metabolomics technologies and their successful

applications in pre-clinical and translational studies on cancer drug resistance.

We provide a summary of metabolic mechanisms underlying cancer drug

resistance from different aspects; these include the Warburg effect, altered

amino acid/lipid/drug metabolism, generation of drug-resistant cancer stem

cells, and immunosuppressive metabolism. Furthermore, we propose solutions

describing how to overcome cancer drug resistance; these include early

detection during cancer initiation, monitoring of clinical drug response, novel

anticancer drug and target metabolism, immunotherapy, and the emergence

of spatial metabolomics. We conclude by describing the perspectives on how

spatial omics approaches (integrating spatial metabolomics) could be further

developed to improve the management of drug resistance in cancer patients.
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1 Introduction

Cancer drug resistance occurs when the tumor is getting

insensitive to drug treatment, which also explains tumor

recurrence and metastasis (1). Resistance to anticancer drugs

may be attributable to a number of factors, including but not

limited to: genetic mutations (2–5), epigenetic changes (6–10),

drug efflux (11–13), altered target engagements (4, 14), and

cellular mechanisms (15, 16).

The complexity of mechanisms underlying cancer drug

resistance requires omics-driven systems approaches. Our

focus has long been on mapping the alterations at the genome,

epigenome and proteome levels, even though changes at the

metabolome level are more closely related to the drug resistance

phenotype (17). However, our understanding of metabolic

dysfunction remains very limited. Over time, metabolic

reprogramming has been recognised as a hallmark of cancer

(18–20) (Figure 1). Metabolic changes can provide cancer cells

with an advantage over normal counterparts in terms of

exploiting energy. Furthermore, the altered metabolism can

generate a significant amount of intermediate metabolites,

which are essential for the biosynthesis of macromolecules and

can potentially facilitate cancer proliferation, metastasis, and

drug resistance as well (21–24).

Metabolomics, particularly the emerging spatial metabolomics

driven by developments in mass spectrometry imaging (MSI)

technologies, holds great promise for an improved understanding

of cancer drug resistance. As its name suggests, spatial

metabolomics can globally profile metabolites, lipids, drugs, and

other small molecules; profiled so in the spatial context of cells,

tissues, organs, and even the whole organism (25). It is well-suited

to generate metabolomic profiles for heterogenous and complex

biological systems, such as tumors, where the spatial information

about the cancer cells and the tumor microenvironments is

captured bona fide (26). Via spatial metabolomics, metabolic

profiles specific to R-CHOP-resistant diffuse large B-cell

lymphoma (DLBCL) have been characterised (27), and metabolic

enzymes/pathways in esophageal squamous cell carcinoma have

been discovered (28). Moreover, metabolomics-led subtypes of

gastric cancer patients have been identified to correlate with

trastuzumab therapy efficiency (i.e., trastuzumab-sensitive versus

trastuzumab-resistant) (29). Recently, spatial metabolomics has

been found to be helpful in classifying non-small cell lung cancer

(NSCLC) patients into responders and non-responders of

neoadjuvant chemotherapy (30).

In the remaining sections of this review, we provide an in-

depth appraisal of the technologies and methods currently

available for bulk, single-cell, and/or spatial metabolomics, and

discuss how these latest advances have improved our

understanding of mechanisms underlying the metabolic

reprogramming in tumor responses to anticancer drugs. We

will also discuss the outstanding challenges involved and share

our perspectives on further developing integrative spatial omics
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approaches to maximise the potential of metabolomics in

dissecting cancer drug resistance.
2 Advances in developing
metabolomics technologies and
data-mining tools

Metabolites are essential components of the complex

biological system, which reflect the environment in which the

cells are located. They are tightly correlated with the effects of

drugs, the nutritional status of cells, and the influence of other

external factors. The term “metabolomics” describes the global

identification and quantification of metabolites. Technologies

used to identify and quantify metabolites globally have evolved

from classic bulk metabolomics, single-cell metabolomics and

spatial metabolomics, and to the emerging spatial single-

cell metabolomics.
2.1 Bulk metabolomics

Bulk metabolomics involves the detection and quantification

of all metabolites altogether from samples, such as in vitro

cultured cells, tissues, and biofluids (31–33). Analytical

platforms for bulk metabolomics have been diversified over

the past decade and mainly include nuclear magnetic

resonance (NMR) and mass spectrometry. According to

separation techniques, mass spectrometry can be subdivided

into gas chromatography-mass spectrometry, l iquid

chromatography-mass spectrometry (LC-MS), capillary

electrophoresis-mass spectrometry, Fourier transform-mass

spectrometry, and ultra-performance liquid chromatography.

These platforms produce spectra or chromatograms that

consist of thousands of peaks, each corresponding to one or

more unique compounds (for mass spectrometry) or part of a

single compound (for NMR). The platforms have their own

reference databases containing mass spectrometry or NMR

spectra of pure compounds; they are used for spectral

deconvolution to determine the spectral peaks that are

matched to specific chemical compounds (34–36). Several

statistical methods and pathway analyses have been developed

to determine compounds or spectral peaks that have changed

significantly (sample-wise or group-wise) (37–39). The readers

are referred to these two previous reviews (34, 40) on high-

performance data processing tools. Bulk metabolomics has been

successfully applied to early cancer detection, cancer monitoring

and therapy screening, and cancer drug resistance (41–44).

Despite these successes, an overall profile via bulk

metabolomics (Figure 2, left panel) may obscure the true

signals involved in the tumorigenesis or therapeutic resistance

of a rare cell population; it is crucial to note that the metabolic

programs are highly heterogeneous among tumor cells.
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2.2 Single-cell metabolomics

Unlike single-cell RNA-seq, which has been widely used for

many years, single-cell mass spectrometry techniques are in their

infancy stages with the limited applications. To date, the

reported single-cell mass spectrometry techniques include, but

are not limited to: secondary ion mass spectrometry (SIMS) (45),

matrix-assisted laser desorption/ionisation mass spectrometry

(MALDI-MS) (46), laser ablation electrospray ionisation mass

spectrometry (47), live-single cell video mass spectrometry (48),

single-probe mass spectrometry (49), and T-probe mass

spectrometry (50). The precision of single-cell mass

spectrometry data relies heavily on how to isolate individual

target cells from a solid tissue or how to pick up individual cells
Frontiers in Oncology
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from a cell suspension. The commonly used single-cell isolation

methods include laser microdissection, microfluidics,

fluorescence-based cell sorting, limiting dilutions, and manual

cell-picking with a micromanipulator (Figure 2, middle panel);

the choice of these methods largely depends on the source of the

target cells. Depending on the downstream metabolomics

analytical platform, the isolated single cells can be either

sampled directly for metabolomics analysis or subjected to

culturing prior to downstream analysis. Single-cell mass

spectrometry has been combined with machine learning

models to predict the drug-resistant cancer cell phenotype

(51). Other applications of this technology include: the

detection of the occurrence of significant cell-to-cell differences

within the neuronal cell (52, 53), identification of metabolic
frontiersin.org
FIGURE 1

Conceptualisation of cancer hallmarks evolving from 2000 to 2022. The first six cancer hallmarks were presented in 2000. Additional four
hallmarks (the metabolism, immunity, inflammation, and genome instability) were added in 2011, with the focus on the metabolism dysfunction
in cancer. In 2022, the cancer hallmarks were extended to 14 items, with newly added four hallmarks including: unlocking phenotypic plasticity,
senescent cells, non-mutational epigenetic reprogramming, and polymorphic microbiomes. The bottom panel lists the hallmarks and the
corresponding metabolic processes or metabolites involved. The illustration is mainly inspired by these three articles (18–20).
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differences between cancer stem cells (CSCs) and non-CSCs at a

single-cell resolution (54), and discrimination between breast

cancer subtypes (55).
2.3 Spatial metabolomics

Spatial metabolomics has recently attracted increased attention

as a novel technique for exploring the molecular interactions and

histological heterogeneity. It enables the quantitative, qualitative,

and localisation analysis of metabolites from three dimensions in

situ within a sample from different biological tissues and organs,

using MSI techniques, thus optimising and complementing

traditional metabolomics approaches. The histology of cancer

tissues is highly dynamic and complex (56, 57). Spatial
Frontiers in Oncology 04
metabolomics is unique in preserving the spatial information of

metabolites by simultaneously measuring a large number of small

molecules in situ. Most spatially-resolved metabolomics studies

employ ionisation techniques coupled with MSI to create images

of metabolite distribution. The main instruments used for spatial

metabolomics are summarised in Table 1.

The spatial metabolomics techniques mainly originate

from either matrix-assisted laser desorption/ionisation-MSI

(MALDI-MSI) or desorption electrospray ionisation-MSI

(DESI-MSI). The imaging process involves the virtual

separation of the sample into many “pixels”, each described

by a mass-to-charge (m/z) spectrum (63). Specialised analysis

tools are used to form clusters of labelled pixels with similar

metabolite signals (64–66) and generate one image per sample

(Figure 2, right panel). In short, the metabolites are detected by

pixels in order to preserve the spatial information. Notably,
FIGURE 2

Flowcharts of bulk metabolomics, single-cell metabolomics, and spatial metabolomics. Bulk metabolomics (left panel): the samples are a
mixture of biofluid, cell and tissue extracts, with all the molecules unable to get back to the original of primary cells after chromatographic
separation. The molecular fragments are ionised in mass spectrometry to measure the m/z profiles and estimate their identity. Traditional
analyses, such as differential analysis and pathway enrichment, can be performed. Single-cell metabolomics (middle panel): the cultured cells or
tissues are separated into single cells by cell trap, followed by the metabolites of each cell measured by mass spectrometry. The single-cell data
make it easier to determine the cell heterogeneity, which is useful for cancer drug-resistant research. Spatial metabolomics (right panel): an
emerging field of omics research that has enabled the localisation of metabolites, lipids, and drugs in tissue sections. Spatial metabolomics and
its enabling technology (that is, mass spectrometry imaging) generate hyperspectral imaging data that not only receive the m/z profiles, but also
provide the access to the locations of the molecules in the cells or tissues for mass spectrometry imaging analysis. Technologies and methods
can be used to acquire raw data, thus providing the starting point for computational analysis.
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MALDI and DESI use different ionisation principles, each with

unique advantages (Table 1).

In parallel with advances in spatial metabolomics

techniques, recent years have seen an active development of

computational methods. The typical data analysis workflow,

which includes signal preprocessing, statistical analysis,

visualisation, and molecular identification, validation and

interpretation is similar to that used for bulk metabolomics,

with an increased focus on the last three analyses in recent years.

A classification scheme, using high mass resolution MALDI-MSI

combined with K-means clustering analysis, has been proposed

to stratify patients with gastric cancer (29). A computational

multimodal spatial correlation image analysis workflow has been

developed for immunohistochemistry-guided in situ

metabolomics on intact tissue sections, thus allowing for

comprehensive analyses of metabolic heterogeneity (67). A

three-dimensional spatially-resolved metabolomic profiling

framework has been introduced to map out the spatial

organisation of metabolic fragments and protein signatures in

immune cells from human tonsils (68). Spatial metabolomics is

also used to assess neoadjuvant therapy in NSCLC patients (30).
2.4 Spatial single-cell metabolomics

Motivated by a combination of single-cell metabolomics and

spatial metabolomics, the use of spatial single-cell metabolomics

starts to gain popularity (69). Owing to its increased sensitivity

and accuracy, MSI plays a key role in advancing spatial single-

cell metabolomics detecting and quantifying metabolites with

high spatial resolution profiles in situ. Advances in single-cell

metabolomics have allowed the evaluation of spatially-resolved

mass spectrometry images at the single-cell level. Various spatial
Frontiers in Oncology 05
single-cell metabolomics techniques have been proposed,

indicating the superiority of getting enough metabolic profiles

to unveil cell types, locations and associated molecular changes

with different conditions (70). However, computational

approaches for spatial single-cell metabolomics face a

multitude of challenges, such as dealing with the batch effects

that minimise confounding factors, deconvolution of high-

dimension spatial resolution data, extraction of hidden

molecular features (and cell subpopulations as well) from the

signal noises, and linking of cell types to the cell metabolic states

of the tissues.
2.5 Data-mining tools for mass
spectrometry imaging

We enumerate open-source MSI tools (Table 2), with two

aims. The first aim is to make it easier for biologists to navigate

tools available for MSI data mining. The second aim is to give

inspirations to methodology developers. METASPACE is a web-

based application used to identify, visualise, and analyse

metabolites and lipids; additionally, it consists of a public

molecular annotation knowledgebase intended for spatial

metabolomes (76). It takes as inputs user-submitted data in the

centroided format (i.e., imzML), for which online browsing and

sharing of ion images are supported for annotated metabolites and

lipids, followed by signal preprocessing, data analysis,

visualization, and molecular identification. As a stand-alone

software, MSiReader provides a rich graphical user interface for

data visualisation, signal processing, and unsupervised analysis of

imaging mass spectrometry data (79). It supports the imzML

format and can be used on any operating system (if the Matlab

environment is also supported). Cardinal is an R package that
TABLE 1 Comparison of technologies used for spatial metabolomics.

Techniques (ionisation methods) MSI
types

Spatial
resolution

Advantages Limitations

Air flow-assisted desorption electrospray
ionisation (AFADESI)-MSI (28)

ambient ~100 mm ambient operating conditions; minimum samples
preparation; improved sensitivity and spatial resolution
from DESI

low reproducibility of results
due to complex parameters

Atmospheric pressure matrix-assisted laser
desorption ionisation (AP MALDI)-MSI
(58)

vacuum ~1.4 mm high spatial resolution; molecular information from 3D
surfaces

low coverage and low
sensitivity

Desorption electrospray ionisation (DESI)-
MSI (59)

ambient ~50-200 mm high-throughput; ambient operating conditions;
minimum sample preparation; quick results

low spatial resolution and
sensitivity

Matrix-assisted laser desorption ionisation
(MALDI)-MSI (60)

vacuum 10 mm high spatial resolution and mass resolution; suitable for
examining small samples; reliable results

extra preparation steps and
vacuum condition

Nanospray desorption electrospray
ionisation (nano-DESI)-MSI (61)

ambient ~10 mm ambient operating conditions; improved sensitivity and
high spatial resolution

instability of the nano-DESI
probes and alignment
difficulty

Secondary ion mass spectrometry (SIMS)-
MSI (62)

vacuum 50 nm ~ 200
mm

subcellular imaging; simple sample preparation
procedure

capabilities of biochemical
imaging to be improved
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implements statistical analysis methods, such as spatial

segmentation, classification, and class comparison (71). It

requires basic knowledge of R because no graphical interface is

provided. SEAM is a platform that combines experiments and

computational algorithms to quantitatively characterise metabolic

intra- or inter-cellular features (84). It relies on SIMS to provide a

multiscale spatial resolution, including single-nucleus

segmentation, single-nucleus representation, and differential

metabolite analysis. SpaceM is a newly developed method for

spatial single-cell metabolomics to unveil the relationship between

metabolism and phenotype at the single-cell level; it can examine

the native spatial context of metabolites and characterise

metabolic heterogeneity at the single-cell level (85). The readout

comprises the metabolic profiles, fluorescence intensities, and

spatio-morphological features.
3 Improved understanding of the
metabolic mechanisms underlying
cancer drug resistance

Drug resistance is a major cause of cancer therapy failure.

Despite considerable efforts over the past decades, knowledge
Frontiers in Oncology 06
about the mechanisms involved in drug resistance remains largely

unknown. Metabolomics has offered novel insights into these

mechanisms in cancer patients (87, 88). The metabolic alterations

and mechanisms associated with drug resistance have drawn

increasing attention and can be generalised into the following

aspects (top-right panel in Figure 3; also see Figure 4): the

Warburg effect, altered amino acid metabolism, altered lipid

metabolism, altered drug metabolism, generation of drug-

resistant cancer stem cells, and immunosuppressive metabolism.
3.1 The Warburg effect

In addition to promoting tumorigenesis, metabolic

alterations in cancer cells provide an environment that tends

to increase drug resistance. Glucose transporters, glycolytic

enzymes, and stress responses are potential mechanisms by

which the glycolytic pathway (Warburg effect) can confer a

chemo-resistant phenotype.

The entry of glucose into the cells is facilitated by a

transporter family known as the glutamines (GLUTs) (89),

with three members (GLUT1/3/4) widely studied in cancer. A

study using lung and breast cancer models revealed a potent
TABLE 2 The imaging-based mass spectrometry tools.

Software Categories Techniques
(platforms)

Implementation Availability

BioMap Platform MALDI-MSI IDL™ http://www.maldi-msi.org

Cardinal (71) Statistics MALDI-MSI/DESI-MSI R https://www.cardinalmsi.org

ColocML (72) Statistics MSI Python https://github.com/metaspace2020/coloc

Datacube Explorer (73) Platform MSI C# (.NET) https://amolf.nl/download/datacubeexplorer/

MassImager (74) Platform AFADESI-MSI C++ http://www.chemmind.com/en/support_download.html

massPix (75) Annotation MSI R https://github.com/hallz/massPix

METASPACE (76) Platform MALDI-MSI/DESI-MSI Web-application http://metaspace2020.eu/

microMS (77) Platform microscopy-guided MSI Python https://neuroproteomics.scs.illinois.edu/microMS.htm

MIRION/Imaging3D (78) Statistics AP-SMALDI10 MSI MATLAB https://www.nature.com/articles/nmeth.4433#MOESM5

msIQuant (77) Statistics MALDI-MSI C++ http://www.maldi-msi.org

MSiReader (79) Statistics MSI MATLAB https://www.msireader.com/

OpenMSI (80) Platform MSI Web-application http://openmsi.nersc.gov

OpenMZxy (81) Platform LTP-MSI Python https://bitbucket.org/lababi/openmzxy/src/master/

pySM (82) Annotation MALDI-MSI/SIMS Python 2.7 https://github.com/alexandrovteam/pySM

rMSI (83) Platform MSI R https://github.com/prafols/rMSI

SEAM (84) Platform SIMS Python + MATLAB https://doi.org/10.5281/zenodo.5025068

SpaceM (85) Platform MALD-MSI Python https://github.com/alexandrovteam/SpaceM

SPUTNIK (86) Statistics MSI R https://github.com/paoloinglese/SPUTNIK
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anti-tumor effect of WZB117, a GLUT1 inhibitor, that could

decrease glycolysis and reduce intracellular adenosine

triphosphate (ATP) levels (90). In another study, an anti-viral

drug ritonavir, known to inhibit GLUT4 (91), inhibited the

proliferation of primary multiple myeloma cells (92). Drug

resistance acquired in glioblastoma cells was reported to be

associated with an increase in the major neuronal glucose

transporter GLUT3 (93).

Glycolytic enzymes have also been implicated in promoting

a drug-resistant phenotype. Two genes, HK2 and PKM2, encode

the first and final rate-limiting enzymes in the glycolytic

pathway, respectively. Both genes are known to be up-

regulated in cancer to induce drug resistance (94). The gene

LDHA encodes an enzyme that converts pyruvate into lactate

(the end-product of glycolysis; Figure 4), and increased levels

have been shown to confer resistance to trastuzumab in breast

cancer (95).

Nutritional deficiency promotes cellular adaptation to stress

by activating survival signals and leading to drug-resistant

phenotypes. Glucose deprivation can activate the heat shock

factor (HSF1) to regulate the heat shock response (96). HSF1 can

increase glucose uptake and promote glycolysis and cellular

adaptation to stress. A higher level of HSF1 has been reported

in trastuzumab-resistant cells, whereas inhibition of HSF1 led to
Frontiers in Oncology 07
the sensitisation of the cells to trastuzumab (97). Furthermore,

autophagy is associated with glucose deprivation. It is believed

that autophagy can promote cell survival by recycling

intracellular organelles to produce energy; autophagic cells are

highly resistant to drug treatments (Figure 4) (98).
3.2 Altered amino acid metabolism

The role of amino acids has been gaining popularity in the

field of cancer metabolism in recent years. Cancer cells

reprogram the amino acid metabolism to maintain tumor

progression and support the complex microenvironment in

driving the resistance to anticancer therapies. Amino acid

provides resistant cells with drug-specific adaptations, drive

the epigenetic modulation of drug-resistant cancer cells,

modulate the tumor microenvironment to anticancer

therapies, mediate tumor immune evasion, and regulate CSCs

to promote cancer aggressiveness.

Amino acid metabolism provides resistant cancer cells with

specific adaptive mechanisms to counteract anticancer drugs

(Figure 4). Cancer cells generally display metabolic adaptations

during tumor genotoxic therapies by up-regulating nucleotide

biosynthesis to prevent DNA damage-induced cell death (99).
FIGURE 3

A model for understanding and overcoming cancer drug resistance. The top panel shows the metabolic changes that drive cancer drug
resistance and can be generalised into: the Warburg effect, altered amino acid metabolism, altered lipid metabolism, altered drug metabolism,
generation of drug-resistant cancer stem cells, and immunosuppressive metabolism. The bottom panel shows the five solutions proposed to
overcome cancer drug resistance, namely: early detection during cancer initiation, monitoring of clinical drug response, novel anticancer drug
and target metabolism, immunotherapy, and the potential of spatial metabolomics in overcoming cancer drug resistance.
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For instance, in cisplatin-resistant NSCLC cells, glutamine is

mainly used for nucleotide biosynthesis (100). In methotrexate-

resistant hematopoietic malignant cell types (Burkitt’s

lymphoma cells, and chronic myeloid leukemia cells),

depletion of formimidoyltransferase cyclodeaminase and

histidine ammonia lyase favored therapy resistance by

decreasing the histidine catabolism that consumed the cellular

pool of tetrahydrofolate and by increasing the nucleotide

synthesis under methotrexate treatment (101). In addition,

dietary methionine restriction was reported to produce

therapeutic responses in patient-derived xenograft models of

5-fluorouracil-resistant RAS-driven colorectal cancer. Under

dietary methionine restriction, cancer cells increased the

production of methionine from homocysteine to consume the

intracellular 5,10-methylene-tetrahydrofolate, thereby affecting

the folate cycle-related metabolites and nucleotide biosynthesis

(102). Several anticancer drugs rely on increased oxidative stress
Frontiers in Oncology 08
to mediate cell death. Alternatively, the resistant cancer cells

adapt amino acid metabolism to generate the critical

metabolites, such as nicotinamide adenine dinucleotide

phosphate (NADPH) and reduced glutathione (GSH), to

balance cellular redox homeostasis and overcome reactive

oxygen species (ROS)-induced cell death. Glutamine-mediated

NADPH production was found to be pivotal for maintaining the

cellular redox balance in gemcitabine-resistant pancreatic cancer

cells (103). Similarly, increased glutamine utilisation supported

the survival of sorafenib-resistant hepatocellular carcinoma

(HCC) cells by increasing the NADPH and GSH levels (104).

In another study, aspartate provided the metabolic precursors

for NADPH generation and decreased the induction of

mitochondrial ROS in response to gemcitabine-induced

apoptosis (105).

Amino acid metabolism drives the alteration of epigenetics,

which supports the survival of drug-resistant cancer cells
FIGURE 4

Metabolic mechanisms illustrated within a drug-resistant cancer cell. The drug-resistant cancer cell increases the glucose uptake and represses
the tricarboxylic acid (TCA) activation in order to satisfy the energy needs; this leads to the accumulation of lactate and an increase in the fatty
acid absorption, which can be oxidated to generate biosynthetic precursors. Amino acid metabolic reprogramming maintains tumor progression
and supports the survival of drug-resistant cancer cells. Inside of the drug-resistant cell, the drug may be inactivated by decomposition to form
biosynthetic precursors or by its transportation to the extracellular environment. The right panels illustrate the Warburg effect, the lipid droplets
and fatty acid synthesis, and the amino acid metabolic pathway.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1054233
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1054233
(Figure 4). Cellular DNA or histone-methylated modification is

determined by the activities of methyltransferases and

demethylases. S-adenosylmethionine (SAM; derived from

methionine) is the dominant methyl donor for these enzymes.

A decrease in methionine metabolism and low levels of SAM and

S-adenosylhomocysteine resulting in DNA hypomethylation

with overall genome were observed in paclitaxel- or taxane-

resistant triple-negative breast cancer (TNBC) cells (106).

Furthermore, a significant increase in alpha-ketoglutarate, a

tumor metabolite, supported the activities of histone lysine

demethylases and favored the emergence of dedifferentiated

BRAF inhibitor-resistant subpopulations (107).

Amino acids play an important part in the complex crosstalk

of the tumor microenvironment and the regulation of tumor-

induced immunosuppression, thus leading to cancer drug

resistance. Cancer cells have a specific mechanism to educate

the neighboring stromal cells to adapt their metabolism. In

pancreatic ductal adenocarcinoma, cancer cells were reported

to promote pyrimidine synthesis by the tumor-associated

macrophages (TAMs), leading to an increase in the production

of deoxycytidine by macrophages, which directly competes with

gemcitabine and hinders its efficiency as a treatment drug for

cancer cells (108). In addition, the melanoma was reported to

weaken immunotherapy by releasing Wnt5a, which induced

indoleamine 2,3-dioxygenase 1 activity in dendritic cells and

reduced the efficacy of programmed cell death protein 1 (PD-1)

blockade therapy (109). Furthermore, glutamine metabolism in

cancer cells affects the recruitment of myeloid-derived

suppressor ce l l s (MDSCs , an immunosuppress ive

environmental factor) and decreases inflammatory TAMs,

leading to checkpoint blockade-resistant tumors to be

immunosuppressive (110).

CSCs pose a major challenge in cancer therapy owing to

their intrinsic characteristic of decreased response to drug

treatment. Amino acid metabolism promotes the escape of

CSCs from drug treatment. For example, amino acid

metabolism fuels oxidative phosphorylation (OXPHOS) to

prevent chemotherapy toxicity in leukemia stem cells (111).

Early studies revealed that methionine metabolism regulates

the maintenance and differentiation of human pluripotent

stem cells (112). Similarly, methionine metabolism may

enhance the stemness of CSCs, which could result in poor

outcomes following clinical treatment. Methionine restriction

may reduce the CD44high/CD24low CSCs population in TNBC

cell l ines, leading to the inhibit ion of methionine

adenosyltransferase 2A, which is responsible for SAM

biosynthesis in CSCs (113). Likewise, methionine is a

metabolic dependency of tumor-initiating cells (also called

CSCs), which are derived from resected primary NSCLCs

that exhibit increased methionine cycle metabolites, thus

becoming addicted to exogenous methionine (114). These

findings indicate that amino acid metabolism can shape the
Frontiers in Oncology 09
tumor environment of CSCs and lead to the aggressiveness for

drug-resistant cancer cells.
3.3 Altered lipid metabolism

Lipid metabolic alterations frequently occur in malignant

tumors, and thus, understanding the mechanisms that maintain

lipid homeostasis in drug-resistant cancer cells may reveal the

metabolic characteristics that could be applied in the clinical

setting. Cancer-associated lipid metabolic alterations, which

includes increased lipogenesis, lipid catabolism and enhanced

lipid storage from lipid droplets, can drive tumor resistance to

drug treatment (Figure 4).De novo lipid biosynthesis drives tumor

resistance. Compared to normal cells, cancer cells tend to increase

lipogenesis rather than depending on dietary lipids or using lipids

synthesised from liver cells. Aberrant de novo fatty acid

biosynthesis provides a continuous supply of resources for

membrane synthesis, energy consumption, and signaling to

cancer cells. Fatty acid biosynthesis depends on a series of

enzymes, including but not limited to: ATP-citrate lyase

(ACLY), Acetyl-CoA carboxylase (ACC), and fatty acid synthase

(FASN). ACLY was reported to be upregulated in BRAF-mutation

melanoma and promotedmitochondrial biogenesis and OXPHOS

to support tumor growth and resistance to vemurafenib (115).

ACC is the rate-limiting enzyme of the fatty acid biosynthetic

process; dysfunction of ACC in head and neck squamous cell

carcinoma allowed cancer cells to convert glycolysis to lipogenesis,

thus resulting in resistance to cetuximab (116). Increased

expression and activity of FASN, another rate-limiting enzyme

in lipogenesis, were reported to increase the tolerance of cancer

cells to chemotherapeutic drugs, such as gemcitabine in pancreatic

cancer (117) and cisplatin in ovarian cancer (118). Moreover, high

levels of FASN were found to be inversely correlated with survival

prognosis (119).

Fatty acid uptake and consumption promote therapy

resistance. Fatty acid can enter the cancer cell via lipid

transporters and fuel its oxidation in the mitochondrial to

produce energy for cell survival. In HER2+ breast cancer cells,

lapatinib-resistant cells increased the expression of the fatty acid

transporter, CD36, to absorb abundant exogenous fatty acid and

lipids, reshaping the metabolic programs that allow cancer cell

survive during nutrient starvation (120). In ovarian cancer,

resistant cells could be resensitised to cisplatin by lipid

deprivation, thus exhibiting the role of exogenous lipids and

cholesterol uptake in drug-resistance (121).

Lipid droplets play an essential role in cancer cells and are

increased when sensing cellular stress induced by anticancer

treatment (Figure 4), associated with tumor aggressiveness and

therapy resistance. A recent study demonstrated that hypoxia

drives lipid droplet formation via exogenous lipid droplet uptake

and facilitates its accumulation in clear cell renal carcinoma and
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colorectal cancer cells (122). HIF1 was reported to regulate the

expression of AGPAT2 (encoding an enzyme involved in the

triacylglycerol biosynthetic pathway) in HCC and cervical

adenocarcinoma cells. AGPAT2 induction was necessary for

hypoxia-dependent lipid droplet accumulation, which correlated

with etoposide resistance. Furthermore, AGPAT2 knockdown

reduced the lipid droplet content and reverted the resistance to

therapy in cervical adenocarcinoma cells (123). Additionally,

lipid droplets are known to accumulate in breast cancer cells that

are resistant to tamoxifen, although the mechanism involved in

this accumulation is largely unknown.
3.4 Altered drug metabolism

Drug-resistant cancer cells acquire a set of unique metabolic

mechanisms to fight against chemotherapeutic agents. Enzymes

are the major factors that determine the concentration of

therapeutic drugs inside and outside cells. Enzymes utilise drug

metabolism to resist drug treatment via two methods: one is drug

degradation of enzymes (such as via oxidation, reduction, and

hydrolysis) to reduce the activation of prodrugs; the other is the

conversion of the drugs into intermediate metabolites for

macromolecule synthesis (Figure 4). Detoxification by

cytochrome P450 is an example of drug degradation by

enzymes; drug resistance with increased activity of cytochrome

P450 resulting in the docetaxel inactivation has been reported in

breast cancer (124). In another study, increased glutathione

production mediated by glutathione transferases was found to

be critical for the resistance of cancer cells to platinum-based

anticancer drugs, such as cisplatin (125).
3.5 Generation of drug-resistant cancer
stem cells

Chemotherapeutic agents can impair a large number of tumor

cells. These agents can be transported or removed from drug-

resistant CSCs via various mechanisms following drug stimulation

or selective pressure. For instance, the ATP-binding cassette

(ABC) and drug transporters (such as P-glycoprotein) have

been reported to be overexpressed in mitoxantrone-resistant

cells; they act to remove chemotherapeutic agents (126).

Extruding a variety of compounds from cells, the ABC

transporter presents an obstacle in treating chemotherapy-

resistant cancers (Figure 4). CSCs share the following

characteristics associated with normal stem cells: being

quiescent for a long time and self-renewing, resistance to drugs

through the up-regulation of drug efflux transporters, low

metabolic activity, and resistance to apoptosis with enhanced

activity of DNA repair enzymes (126, 127). Thus, CSCs can
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remain stable during patient recovery owing to these stemness-

like characteristics. Alternatively, they can metastasise to distant

organs, leading to cancer recurrence. Therefore, it is of great value

to identify and eliminate these small populations of cancer cells to

overcome drug resistance. Metabolomics, especially spatial

metabolomics, might aid in detecting the precise location of CSCs.
3.6 Immunosuppressive metabolism

Immune checkpoint therapy using, for example, two FDA-

approved drugs (nivolumab and pembrolizumab), represents new

forms of cancer therapy. Immune functions are related to tumor

cell metabolism; for example, gain-of-function mutations in

isocitrate dehydrogenase (IDH) resulted in the production of D-

2-hydroxyglutarate, an oncometabolite that altered T-cell

metabolism to impair CD8+ T cytotoxicity and interferon-

gamma signaling in patients with IDH1 mutant gliomas (128).

Down-regulating the cellular metabolism can weaken the ability of

an immune system to inhibit tumor growth. In other words,

altering the metabolism might contribute to immune resistance in

drug-resistant tumors. In the tumor microenvironment, immune

cells are at a metabolic disadvantage owing to the limited

availability of carbon nutrients due to competition from the

tumor cells (129). Cisplatin-resistant cancer can undergo a

“second” metabolic switch that favors oxidative metabolism to

increase amino acid uptake (130). Consequently, the cytotoxic

effector T-cells are deprived of amino acids; being highly anabolic

requires a large number of amino acids needed for growth (131,

132). For instance, kynurenine, a product of tryptophan

catabolism, inhibits T cell activation (a cytolytic function) and

supports the differentiation of immunosuppressive regulatory T-

cell (131). Hypoxia-induced HIF1a can promote the expression of

programmed cell death-ligand 1 (PD-L1) in MDSCs and mediate

effective immunosuppressive activities in cancer-specific effector

T-cells (133). Similarly, the depletion of arginine by arginase in

MDSCs was found to be involved in immune resistance (134). The

metabolism of lipids and fatty acids was reported to be involved in

the immunosuppressive tumor microenvironment (135). PD-1

and PD-L1 are widely used in anti-tumor immune therapy. PD-1

is mainly expressed in activated T-cells, whereas PD-L1 is often

seen in cancer cells. The engagement of both PD-1 and PD-L1

suppresses the function of effector T-cells. Consistent with early

reports that cisplatin treatment can induce PD-L1 expression in

NSCLC, overexpression of PD-L1 has been associated with poor

outcomes in cancer patients (136). However, little is known about

the specific mechanisms involved in this process. Cisplatin-

resistant NSCLC can undergo an epithelial-mesenchymal

transition to enable invasion/metastasis and escape immune

checking by maintaining a higher level of PD-L1 (136).

Therefore, monotherapy with immune checkpoint inhibition is
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thought to be insufficient for the treatment of drug-resistant

cancers. It is necessary to identify and precisely locate tumor

cells and immune cells in the tumor microenvironment using

metabolomics technologies, especially spatial metabolomics. In

summary, alterations in metabolic products in drug-resistant

cancers can reshape the tumor microenvironment and modulate

immune function, thus representing an ideal direction for

developing therapeutics.
4 Progress and potential of
metabolomics in overcoming cancer
drug resistance

Changes in the metabolome are most closely related to the

drug-resistant phenotype (17). Five metabolic solutions to

overcome cancer drug resistance are discussed in the following

subsections (Figure 3, bottom panel): early detection during

cancer initiation, monitoring of clinical drug response, novel

anticancer drug and target metabolism, immunotherapy, and the

potential of spatial metabolomics in overcoming cancer

drug resistance.
4.1 Early detection during
cancer initiation

Chemoresistant cancers tend to display an aggressive clinical

outcome and early recurrence. During drug treatment, a small

subpopulation of cancer cells can remove the anticancer drug,

and thus the developing resistant cells become the dominant

population. Screening the subset of chemoresistant cancer cells

at an early stage might prove effective in inhibiting cancer drug

resistance. Metabolomics is a powerful tool that can unbiasedly

identify cancer biomarkers that drive cancer drug resistance.

Metabolites are stable in the serum; hence, it is possible to

establish a noninvasive method for the early detection of the

metabolic biomarkers of cancer. Conventional methods for the

detection of pancreatic cancer include the estimation of the serum

level of the carbohydrate antigen 19-9 (137). The potential role of

sarcosine in prostate cancer progression has been revealed by

profiling metabolites from a large cohort of clinical specimens

(138). Total choline levels are consistently up-regulated in

breast cancer and can be used to differentiate between cancer

and normal tissues (139). Prostate-specific antigen or the

prostatic fluid levels can be used for the early detection of

prostatic cancer (140). The first urine metabolomics screening

test for colon cancer, called Polyp, which uses a defined

diagnostic metabolomic profile to identify colonic adenomas,

was recently released (141).

Circulating tumor DNA (ctDNA) tests can be used for early

detection, including non-invasive dynamic detection of cancer
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and monitoring of clonal evolution (142). It can be utilised for

selecting the subsets of cancer patients, especially the high-risk

populations. The ctDNA and metabolites detection can be

coupled with a flexible therapeutic method to prevent relapse.

However, clinical screening studies based on larger cohorts are

required to confirm the efficacy of metabolites and

ctDNA screening.
4.2 Monitoring of clinical drug response

Routine approaches to assess drug resistance during

chemotherapy treatment have been used; for example, seven

metabolites (hypotaurine, uridine, dodecanoylcarnitine, choline

dimethylglycine, niacinamide, and L-palmitoylcarnitine) have

been identified to be associated with chemoresponses (143). In

one study, the metabolic profiles of patient-derived tumor

xenografts revealed metabolic biomarkers that were associated

with the resistance to five anticancer drugs (41).

New technologies allow for the monitoring of the extent of

drug resistance at an early chemotherapeutic stage from a spatial

or single-cell dimension in their native microenvironment. An

analytical approach that combines single-cell metabolomics with

machine learning models has been developed to address

chemotherapy-induced drug resistance challenges (50). These

models can rapidly and accurately predict the different degrees

of drug resistance within a single live cell, which can be

potentially employed to assess chemotherapeutic efficacy in the

clinic (50). Spatial metabolomics technologies can be used to

monitor the drug resistance appearance in situ. Resected NSCLC

tissue specimens obtained after neoadjuvant chemotherapy were

subjected to high-resolution mass spectrometry, and the data

generated was used to develop an approach for evaluating the

response to neoadjuvant chemotherapy in patients with NSCLC

(30). Specific lipid and metabolic profiles of R-CHOP-resistant

DLBCL have been generated to obtain information about the

analyte composition and molecular distributions of therapy-

resistant and sensitive areas. The spatial metabolomics

techniques helped monitor metabolic changes by identifying

the decrease in ATP and the increase in adenosine

monophosphate in the R-CHOP-resistant DLBCL (27).
4.3 Novel anticancer drug and
target metabolism

Chemotherapy remains a major approach to cancer

treatment. Traditional chemotherapeutic drugs used in cancer

treatment include, but are not limited to: (i) alkylating agents

that target the DNA, causing either single-strand breaks or

crosslinking of DNA to prevent the cell from proliferating; (ii)

antimetabolites that disrupt DNA synthesis and cell division by

inhibiting the formation of normal nucleotides or by direct
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interaction with DNA, thereby preventing the extension of DNA

strands; and (iii) enzyme inhibitors that affect DNA replication

and the cell cycle. As a folic analog, the antimetabolite (5-

fluorouracil) is a chemotherapy drug that inhibits thymidylate

synthase and decreases the thymidine triphosphate level for

DNA replication. These traditional chemotherapy drugs are

non-specific to tumors and may inhibit the proliferation of

normal cells, causing severe side-effects, such as drug

resistance. Targeting cancer metabolism pathways involved in

tumor development and metastasis is increasingly becoming

feasible for cancer therapy. Metabolic reprogramming is one of

the hallmarks of cancer cells; altered metabolic pathways (such

as glycolysis, amino acids metabolism, fatty acid synthesis, and

glutamine metabolism) support the rapid proliferation of cells.

Furthermore, these dysregulated metabolic features are also

linked to therapeutic resistance in cancers (144).

Metabolites in cancer are linked to the activation of proto-

oncogenes and the inactivation of tumor suppressor genes.

Upstream regulators of metabolic pathways (such as HIF,

PI3K, AKT, mTOR, and AMPK) are important targets for

anticancer drugs. Targeting HIF prevents the metabolic shift

or adaptation of tumor cells to hypoxia. Anticancer agents (such

as PX-478) that reduce the HIF-a level have demonstrated

potent anti-tumor effects (144). Rapamycin, an inhibitor of

mTORC1, was reported to enhance the anti-tumor effect of

cisplatin in alpha-fetoprotein-induced gastric cancer (145).

Targeting glucose metabolism is considered as one of the

most important anticancer strategies for energetic limitation, as

highlighted by targeting enzymes that are involved in the

transport and breakdown of glucose. Inhibitors of glucose

transporters (such as Phloretin and Ritonavir) have

demonstrated anticancer effects by reducing the uptake of

glucose and slowing down glycolysis rate (145). These agents,

alone or in combination with chemotherapy, have demonstrated

in vitro activities against cancers (such as colon cancer, leukemia,

lung cancer, breast cancer, and multiple myeloma). Pyruvate

kinase catalyses the conversion of phosphoenolpyruvate and

adenosine diphosphate into pyruvate and ATP, respectively; it

was reported to be associated with tumor growth and cisplatin

resistance (145).
4.4 Immunotherapy

Learned from conventional chemotherapy, efforts have been

shifted towards actionable strategies to combat therapeutic

resistance to immunotherapy, through converting tumors from

being immunologically “cold” into “hot”. This can be achieved

by enhancing endogenous T-cell function (146), expanding

tumor-infiltrating lymphocytes ex vivo (147), or administrating

antigen-specific engineered T-cells (148, 149).
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Combination strategies are favored to overcome drug

resistance (150). A typical method to enhance the efficacy

using combination therapy involves blocking the antibodies

against two key immune checkpoints, cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4) and PD-1, thereby resulting in

higher response rates to the treatment and improvements in the

survival of patients with metastatic melanoma (151). Blocking

the CTLA-4 may facilitate the conversion of the tumor

microenvironment from being “cold” into “hot” (152). Each

checkpoint inhibitor exerts both overlapping and unique effects

on tumor-specific T-cells (146). Numerous strategies that

combine immune modulators of the tumor microenvironment

and immune checkpoint inhibitors are currently under clinical

trials (153).

Molecular-targeted therapy can be used either in

conjunction with immunotherapy or to help alter the tumor

microenvironment in order to mimic the therapeutic effect of

immunotherapy. The most illustrative is the melanoma with

oncogenic BRAF. BRAF-targeted therapy alone provides limited

durable disease control (154) but creates favorable effects in the

tumor microenvironment; these effects include increased

antigen and HLA expression, increased T-cell infiltrate,

reduced immunosuppressive cytokines, and improved T-cell

function (155). Therefore, molecular-targeted therapy may aid

in converting the microenvironment from “cold” into “hot”,

likely via a phenomenon called “adaptive resistance” (155).

Based on insights into the T-cell and overall immune function,

the strategies that enhance the response to immunotherapy

include metabolic reprogramming of T-cells (156, 157) and

the modulation of gut microbiome metabolites (158, 159).
4.5 Potential of spatial metabolomics in
overcoming cancer drug resistance

Over the last decade, MSI has been increasingly applied to

investigate the spatial distribution of biomolecules in tissue

sections. The potential for the clinicopathologic analysis of

cancer can reveal the distribution of hundreds of molecules in

a single measurement, without prior derivatisation. Alterations

in the metabolic processes are one of the most outstanding

characteristics of tumor tissues. The study of spatial

metabolomics has helped explore the etiology, properties,

subtypes, and vulnerabilities of various cancers. LC-MS has

contributed significantly to understanding the key mediators

of cancer metabolic pathways, such as the carnitine system.

However, the lack of spatial information about metabolites

prevents from further exploring the heterogeneity of the

cancer tissues and discovering the alteration in the tumor

microenvironment. The use of MSI techniques has offered new

insights into the tumor-associated metabolic reprogramming,
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with the applications of spatial metabolomics in cancer research

described in the next subsection.
4.6 Application of spatial metabolomics
in cancer drug resistance

Spatial metabolomics can be carried out to overcome drug

resistance. Early detection to identify the metabolic changes in

the tumors during the preliminary stage in situ and classifying

the subtype of tumors by spatial metabolomics with high

confidence will help in drug selection and in avoiding the

occurrence of chemoresistance. Uncovering the complexity of

the tumor microenvironment may help in guiding the

immunotherapy methods. Spatial metabolomics can provide

an unbiased estimate of the changes in metabolites in situ

between cancer and normal cells, and between cancer and

drug-resistant cancer cells for precise medicine. In this section,

we discuss the recent studies on spatial metabolomics in two

types of cancers (lung cancer and DLBCL, which represent a

solid tumor and a blood tumor, respectively).

4.6.1 Lung cancer (NSCLC)
Lung cancer is the second most common cancer worldwide

and the leading cause of cancer-related deaths worldwide (42).

The majority of lung cancers are NSCLCs, which comprise many

subtypes, such as adenocarcinoma (ADC) and squamous cell

carcinoma (SqCC). All of these subtypes contribute to the

heterogeneity of the tumor. The identification and monitoring

of the diverse changes in lung cancer are essential to overcome

the progression into malignancy and resistance. Recently,

MALDI-MSI-based metabolomics was successfully applied to

reveal differences between NSCLCs and normal lung regions

based on a lipid analysis (160). Furthermore, MALDI-MSI was

used to confirm differences between NSCLC subtypes (161). The

classification of SqCC and ADC via histology-guided MALDI-

MSI was performed based on the metabolites, and rare IDH-

mutated NSCLC was screened by evaluating the levels of the

oncometabolites (161). Data generated from resected NSCLC

tissue specimens were used to evaluate the response to

neoadjuvant chemotherapy in patients (30). In summary,

spatial metabolic profiles collected by MALDI-MSI have been

used to classify tissues within the tumor microenvironment,

categorise highly similar cancer subtypes, and monitor the

response to chemotherapy.
4.6.2 DLBCL
DLBCL is the most common subtype of non-Hodgkin

lymphoma. Although many patients are cured with standard

chemoimmunotherapy, up to 40% of DLBCL patients have

refractory disease or develop relapse following R-CHOP or

similar regimens, warranting the development of novel, more
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effective therapeutic strategies for these patients (162). To

understand the molecular mechanisms underlying relapsed

DLBCL, Florian et al. studied differences in the lipid and

metabolic compositions of nontreated and R-CHOP-resistant

tumors using a combination of in vivo DLBCL xenograft models

and MSI (27). In another study, Anthony et al. used imaging

mass cytometry on 33 cases of DLBCL to characterise the tumor

and immune cel l archi tecture and corre late i t to

clinicopathological features, such as the cell of origin, gene

mutations, and responsiveness to chemotherapy (163).

Notably, the spatial metabolomic technology is performed only

in the lymph nodes in DLBCL due to its relatively stable position

within the tissue.

4.6.3 Other cancers
We also briefly review other findings from spatial

metabolomics in breast cancer, esophageal cancer, and

glioblastoma. Breast cancer is one of the most commonly

diagnosed cancers in women. It is one of the most highly

heterogeneous cancers because it consists of many different

types of malignancies originating from different cells or tissues.

Hence, several groups have used MSI to visualise the multiple

aspects of metabolic alterations in various types of breast cancer.

Two studies reported the use of DESI-MSI to detect metabolite

information and distinguish tumor tissues from normal tissues

(164, 165). Sun et al. examined alterations in energy consumption

using breast cancer tissues by investigating the spatial alterations

in carnitines, which are the key regulators and transporters

involved in fatty acid, carbohydrate, and lipid metabolisms with

MALDI-MSI (166). A surge in the incidence of esophageal cancer

has been observed over the past few decades, and the disease

continues to have a poor prognosis (167). In a recent study,

Abbassi-Ghadi et al. focused on spatially-resolved lipid analysis to

identify invasive esophageal adenocarcinoma at an early stage

from several premalignant tissues (117). In another study, airflow-

assisted desorption electrospray ionisation-MSI (AFADESI-MSI)

was used to acquire region-specific metabolites from 256

esophageal cancer tissues (28). Glioblastoma, a common type of

brain tumor, is one of the most fast-growing and aggressive

cancers; matrix-assisted Laser desorption/ionisation time of

flight-MSI (MALDI-TOF-MSI) has been used to compare

metabolites between normal tissues and different subtypes of

glioblastomas (168).
5 Outstanding challenges and future
perspectives of integrative spatial
omics approaches to dissect cancer
drug resistance

MSI technologies enable spatial metabolomics to measure the

metabolites in situ, but are limited by the sensitivity of the detection,
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annotation, quantification, and spatial resolution. This limitation

can be partially solved by combining spatial and bulkmetabolomics,

thus providing more comprehensive coverage of the metabolic

profiles. The critical technical issue in MALDI-MSI is how to deal

with image-abundant metabolites without loss of sensitivity while

maintaining a high spatial resolution. Some classes of lipids are

difficult to image with conventional MALDI-MSI (169). Thus, it is

necessary to improve the sensitivity and accuracy using advanced

computational bioinformatics systems.

Multi-omics (such as transcriptomics, proteomics, and

metabolomics) can be applied to unveil the tissue complexity,

heterogeneity, intracellular signaling, and disease progress

underlying the drug resistance. For example, the concordance

between gene expression and staining of the corresponding

proteins can be assessed in the same tissue regions to validate the

findings of spatial transcriptomics (170, 171). Furthermore, models

based on spatial transcriptomics data alone are not a direct

reflection of the metabolic activities. Hence, it is important to

incorporate the information from other spatially-resolved omics

techniques, such as metabolomics and proteomics (172).

Combining spatial metabolomics and single-cell metabolomics

might prove helpful in exploring the tumor heterogeneity and the

surrounding environment (70). The identity of cells (e.g., tumor

cells, immune cells, fibroblasts, and drug-resistant cells) can be

characterised by single-cell metabolomics, while the location

information can be resolved by spatial metabolomics.

Consequently, it becomes possible to study, in greater detail, how

tumor cells interact with adjacent cells or their surrounding cell

environments; additionally, it enables the identification of the cells

targeted by the drug treatment. However, the combination of spatial

metabolomics and single-cell metabolomics is challenging, both

technically and computationally. Advanced methods supporting

such integration are much needed to dissect cancer drug resistance;

we are on the agenda extending our previously established

approaches (173–179) to do so in the near future.

6 Conclusion

Metabolic reprogramming has been recognised as a hallmark of

cancer in promoting therapy resistance and many others. Targeting

metabolic alterations in cancer cells and host patients represents an

emerging therapeutic strategy for overcoming cancer drug

resistance, particularly at the advent of spatial metabolomics. This

review describes the latest progress in technologies and methods

currently available for (bulk, single-cell and/or spatial)

metabolomics, and discusses how these latest advances have

improved our understanding of the metabolic mechanisms

underlying tumor responses to anticancer drugs, along with the

potential of using metabolomics to overcome drug resistance and

the perspective on further developing integrative spatial omics

approaches to dissect cancer drug resistance.

More specifically, we have discussed the specific metabolic

programs and adaptations that exist in drug-resistant tumors,
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how these adaptations depend on both the drug and the origin of

the tumor, and how they contribute to drug resistance.

Accumulated evidence strongly suggests that combining many

first-line chemotherapeutic agents with metabolic drugs holds

great promise in increasing the drug efficacy. Moreover, a better

understanding of the altered metabolism in different drug-resistant

cancers and the distribution of metabolites and the tumor

microenvironment through spatial metabolomics is essential to

further improve the outcomes of cancer therapy. This additional

information will provide insights into the molecular mechanisms of

resistance, which will help in identifying novel metabolic targets that

can be used for combined treatment. Finally, this knowledgemay be

applied to identify the prognostic biomarkers for drug response,

which could drive current therapies by predicting the drug response

based on the metabolic state of the tumor, thereby contributing to

more effective personalised medicine.
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ABC ATP-binding cassette

ACC Acetyl-CoA carboxylase

ACLY ATP-citrate lyase

ADC Adenocarcinoma

AFADESI-
MSI

Airflow-assisted desorption electrospray ionisation mass
spectrometry imaging

ATP Adenosine triphosphate

CA19-9 Carbohydrate antigen 19-9

CSCs Cancer stem cells

ctDNA Circulating tumor DNA

CTLA-4 Cytotoxic T lymphocyte-associated antigen-4

DESI Desorption electrospray ionisation

DESI-MSI Desorption electrospray ionisation mass spectrometry
imaging

DLBCL Diffuse large B-cell lymphoma

FASN Fatty acid synthase

GLUTs Glucose transporters

GSH Glutathione

HCC Hepatocellular carcinoma

HSF1 Heat shock factor

IDH Isocitrate dehydrogenase

LC-MS Liquid chromatography-mass spectrometry

MALDI Matrix-assisted laser desorption/ionisation

MALDI-MS Matrix-assisted laser desorption/ ionisation mass
spectrometry

MALDI-MSI Matrix-assisted laser desorption/ionisation mass
spectrometry imaging

MALDI-
TOF-MSI

Matrix-assisted Laser desorption/ionisation time of flight
mass spectrometry

MDSCs Myeloid-derived suppressor cells

MSI Mass spectrometry imaging

NADPH Nicotinamide adenine dinucleotide phosphate

NMR Nuclear magnetic resonance

NSCLC Non-small cell lung cancer

OXPHOS Oxidative phosphorylation

PD-1 Programmed cell death 1

PD-L1 Programmed cell death-ligand 1

ROS Reactive oxygen species
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SAM S-adenosylmethionine

SIMS Secondary ion mass spectrometry

SqCC squamous cell carcinoma

TAMs Tumor-associated macrophages

TCA Tricarboxylic acid

TNBC Triple-negative breast cancer
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