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The field of cancer neoantigen investigation has developed swiftly in the past

decade. Predicting novel and true neoantigens derived from large multi-omics

data became difficult but critical challenges. The rise of Artificial Intelligence

(AI) or Machine Learning (ML) in biomedicine application has brought benefits

to strengthen the current computational pipeline for neoantigen prediction. ML

algorithms offer powerful tools to recognize themultidimensional nature of the

omics data and therefore extract the key neoantigen features enabling a

successful discovery of new neoantigens. The present review aims to outline

the significant technology progress of machine learning approaches, especially

the newly deep learning tools and pipelines, that were recently applied in

neoantigen prediction. In this review article, we summarize the current state-

of-the-art tools developed to predict neoantigens. The standard workflow

includes calling genetic variants in paired tumor and blood samples, and rating

the binding affinity between mutated peptide, MHC (I and II) and T cell receptor

(TCR), followed by characterizing the immunogenicity of tumor epitopes. More

specifically, we highlight the outstanding feature extraction tools and multi-

layer neural network architectures in typical ML models. It is noted that more

integrated neoantigen-predicting pipelines are constructed with hybrid or

combined ML algorithms instead of conventional machine learning models.

In addition, the trends and challenges in further optimizing and integrating the

existing pipelines are discussed.
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1 Introduction

In recent years, neoantigen-based immunotherapy has

received widespread attention. Neoantigens are abnormal

proteins produced by cancer cells through non-synonymous

mutations, which specifically bind to MHC molecules and

present to the surface of cancer cells or antigen presenting

cells. The presented neoantigens are recognized by T cells and

the activated T cells would attack and eliminate cancer cells.

Tumor neoantigens have become an ideal target for

immunotherapy because they will not cause central immune

tolerance or autoimmune diseases (1). Rapid and accurate

neoantigen identification plays a crucial role in effective

individualized cancer immunotherapy. The traditional method

for identifying neoantigens, using cDNA library screening, is

labor intensive, costly, and cannot effectively identify all tumor

antigens. The advent of next-generation sequencing (NGS)

technology and bioinformatics make it possible to rapidly

identify tumor-specific mutations on a large scale and screen

neoantigens. Most current neoantigen prediction methods focus

on peptide processing and presentation predicting peptides,

which can be presented to the surface of tumor cells. However,

additional in vitro experiments are needed to verify whether

these predicted peptides are immunogenic or not. Finally, only a

few verified neoantigens can elicit a T-cell response. Thus, there

is a need for mature, accurate, and systematic pipelines that can

predict meaningful immunogenic neoantigens.

AI is the capacity of a machine to study and identify

characteristics from input data, and can use learned

information to make decisions on new data (2). AI mainly

consists of conventional ML and deep learning. The main

principle of AI is to input large structured or unstructured

data, which is then trained by an AI system and produce

outputs the prediction of new targets. Due to the

characteristics of large amounts of input data and deep

training layers, AI has shown the advantage of high accuracy

in several biomedical fields. For example, Lee et al. (3) developed

an artificially intelligent tactile ferroelectric skin (ATFES), which

can perceive and learn various tactile information at the same

time. This study showed a credible and multiplex batch of

essential synaptic functions were confirmed based on ATFES,

including the excellent cycling stability during 10 000

continuous electrical input pulses and low variability (3.18%).

The accuracy of this test is higher than 99% even after

considering 10% noise. AI is also showing promising trends in

the application of genome analysis, such as evaluating

fragmentation patterns of cell-free DNA across the genome

using ML (4), predicting splicing from the primary sequence

using deep learning algorithms (5), identifying sequence context

features predictive of transcription factor binding using deep

neural networks (6), and variant calling using a Bayesian model
Frontiers in Oncology 02
(7). AI can also improve approaches for protein studies, such as

prediction of multi-level peptide-protein interaction using deep

learning algorithms (8) , and the establ ishment of

immunoinformatic tool using ML to predict tumor T-cell

antigens (9).

This review offers first introduces the overall workflow for

neoantigen prediction and the application of machine learning

tools in each steps of this workflow. We restricted our scope to

the feature extraction algorithms by which the large-scale input

datasets are processed, recognized and transited into neoantigen

features. Then we detailed the integrated pipelines that either

implemented by ML tools or an end-to-end deep learning

model. The former ones usually are developed to focus on

extracting peptide-MHC (pMHC) binding affinity as key

features while the latter ones tend to include immunogenicity

characterization as additional layer of feature to train the model.

The final section addresses concern the possible problems and

predicts the development trends of ML-based application in

this field.
2 Data source for model training
and testing

Currently, most in silico algorithms in neoantigen prediction

are based on ML and the performance is highly dependent on

the training data. As shown in Table S1, the typical data source

used for construction of ML-based somatic mutation callers are

summarized. Validated Mass Spectrum (MS)-derived MHC-

binding sequences, such as from Immune Epitope Database

(IEDB database), are the most common data used to train

models that predict novel neoantigen with peptide-MHC

binding feature. The reason is that the single measured

binding data is merely indicative of binding event (10).

Moreover, single peptide detected from MS are not necessarily

neoantigens, as some detected peptides may also be expressed in

normal cells, which may be subject to central tolerance. Known

TCR-peptide pairs sequences or TCR-peptide pairs sequences

with certain HLA alleles or sequences were employed to establish

ML-based approaches to predict the interaction of TCR and

peptide or pMHC. Another example of common data in

neoantigen predictor training is experimentally tested

immunogenic epitopes and nonimmunogenic epitopes with

wild type and mutant specificity. It is believed ML is powerful

to solve the increasingly complex data required to identify new

neoantigen. These datasets will be divided proportionally into

training data and test data or be split into a K number of folds

(K-fold cross validation) where each fold is used as a training or

testing set at some point (11).

From the Table S1, the available training data is limited

(mostly from IEDB), which may lead to potential sampling
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biases and may lead to poor predicting performance. There is

also a notable imbalance issue as the positive case is extremely

less than negative data, which leads to the biases on classifier

trained on these data. Some solutions are proposed to alleviate

these situations. For example, data simulation and simulated

datasets may address the imbalance issue (12). The synthetic

minority over-sampling technique was developed (SMOTE) (13)

and employed (14) to reduce the imbalance impact by over-

sampling approach. Overall, the data validity of IEDB is decent

as it has been opened and maintained to public for many years

and thus has been validated and confirmed by numerous

independent studies. Currently, there is relatively few

neoantigens data derived from limited tumor types and biased

ethnicity groups. Therefore, additional database or resource built

at a pan-cancer and multi-ethnic (mainly from western country)

setting is greatly expected and will benefit this field. In addition,

it would be beneficial to collect data or construct some datasets

collecting epitopes from species (15) covers MHC molecules

from non-human primates. The biases of established methods

due to the biases in the data would be improve by using single

data (including single cancer type, ethnic, and specie) and

increasing the amount of corresponding data in the future. On

top of improving the diversity and validity of the data source, the

model training and testing would also be improved via novel,

advanced and integrated machine learning algorithms. For

instance, long short-term memory neural network architecture

that has been used for handling problem of peptide length (16).

In addition, in vitro validation experiments need to be improved

to avoid data omission issues.
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3 Feature extraction algorithms in
neoantigen prediction

The goal of neoantigen prediction is to identify

immunogenic epitopes that binding to MHC molecules to

elicit T cells immune responses. Previous neoantigen

prediction methods mainly considered the binding affinity of

peptide-MHC, which require a large number of in vitro or in

vivo validation experiments to test the immunogenicity of the

predicted candidate neoantigens and only few validated peptides

were immunogenic. The most of current neoantigen prediction

methods not only consider peptide-MHC binding affinity but

also the immunogenicity by incorporating the immunogenicity

related features into the filters or AI models in the workflow of

neoantigen recognition (Figure 1).

The typical feature extraction algorithms are mainly used in

the five steps of neoantigen prediction including somatic

mutation calling, MHC typing, assessment of peptide-HLA

binding affinity, TCR-pMHC binding prediction and

prediction of the immunogenicity of candidate neoantigens.

And the algorithms used in the most of these steps are

commonly based on AI model to obtain the high prediction

accuracy. The current general neoantigen prediction workflow

involves multiple steps. Matched normal-tumor WGS/WES data

were analyzed to identify tumor somatic mutations.

Corresponding tumor RNA-seq data were used to select

candidate neoantigens according to gene expression levels. Not

all mutations cause new epitopes to be recognized by the

immune system due to HLA limitations (17). Therefore, HLA
FIGURE 1

A typical multi-layer neural network architecture showing the feature extraction and prediction procedures for neoantigen predicting. Tumor
(tissue) and normal (PBMC) samples are processed by NGS-based genomic profiling (WES/WGS etc.) and undergo bioinformatic analysis to
produce input data for machine learning training. The key features (tumor abundance etc.) extracted from the input data are fed to a typical
neural network (deep learning) model and filters to output a predicting score (or a predicted value) for the class (positive or negative for
neoantigen) the input data belongs to. The colored circles represent the input data collected from tumor components (pink, T1 to Tn) and
normal cells or immune receptors (purple or sapphire, N1 to Nn), as well as the feature variables (yellow, F1 to Fn) extracted from the omics data
input. The gray arrows that connect the circles shows how all the neurons are interconnected and stacked together to constitute a layer, and
the multiple layers piled next to each other to construct the neural network model. Figure was created with BioRender.com.
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typing needed to be considered when predicting potential

neoantigens. A patient’s HLA alleles can be determined by

DNA and RNA sequencing data or PCR techniques (18).

Next, mutated peptide sequences and patient’s HLA alleles

were analyzed using informatics tools or an AI model to

predict HLA-peptide binding affinity. This was done to further

rank candidate neoantigens as those that may present on a

tumor cell surface by MHC class I or antigen-presenting cells by

MHC class II. However, the predicted candidate neoantigens

may not elicit immune responses from T cells. Therefore, TCR-

pMHC binding and the immunogenicity related features need to

be considered for identifying true immunogenic neoantigens.
3.1 Variant calling

Somatic mutations that generate neoantigens mainly include

single nucleotide variants (SNVs), small insertions and deletions

(indels) (19), gene fusions (20), intron retentions (21), exon-

exon junctions (22), splice variants (23), noncoding regions (24),

and human endogenous retroviruses (25). In recent years,

researchers proved that peptides deriving from unannotated

open reading frames (nuORFs) identified by Ribo-Seq can be

presented to the tumor cell surface by MHC I as extra sources of

tumor neoantigens (26).

3.1.1 SNV
Currently, neoantigens derived from SNVs are still the most

common source studied and validated by many independent

studies. However, only a small percentage of predicted

neoantigens are identified as immunogenic peptides due to the

significant similarity to the normal one. Compared with SNV-

derived neoantigens, neoantigens derived from non-SNV

variants are more immunogenic due to non-SNV variants’

high potential to change protein sequences (27). However,

limited tools are available to identify non-SNV variants and

the low accuracy of these tools preclude non-SNV variant

derived neoantigen prediction.

The basic workflow of somatic variant calling includes

several steps: 1) bam files undergo mapping, alignment and

cleaning; 2) variant calling in reads from WES/WGS or targeted

sequencing of the paired tumor and normal samples; 3) somatic

variant filtering including removal of germline variants; 4) copy

number and structural variant calling may require additional

sources and tools. Notably, it is a challenging as somatic

mutations always present at low frequency which made them

difficult to detect (28). Usually, matched tumor and normal

samples are used for somatic variant calling. It is essential to use

high purity samples to perform DNA sequencing. High levels of

normal DNA “contamination” in tumor sample and tumor

DNA “contamination” in normal para-cancerous tissue sample

sometimes decreases the sensitivity of somatic variant calling

(29). Compared to para-cancerous tissue, the PBMCs were
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frequently used by researchers as “blank” or “baseline” sample

due to the low tumor DNA “contamination”. Therefore, it is best

to use matched tumor and normal adjacent samples for somatic

variants calling to minimize the false-positive. However, it is not

always feasible for researchers to obtain paired human samples.

Identification of somatic variants from tumor-only DNA

sequencing would increase the challenging of germline

variants filtering which is also dependent on the individual’s

ancestry (30). It should to be noted that to correct for genetic

ancestry related germline false positives in absence of matched

normal. Halperin et al. (31) developed a Bayesian tumor-only

somatic variant caller (LumosVar) that employs the allelic

frequency difference between somatic and germline mutations

in tumor samples to call somatic variant, which seems greatly

reduce false positives and avoid bias introduced by variants from

genetic ancestry. However, the sensitivity of LumosVar heavily

relies on a number of factors including the purity of tumor

samples and enough sequencing depth. At present, such

methods are still relatively rare and require further development.

The tumor heterogeneity makes it more difficult to develop a

solid caller. The incorporation of ML into the mutation

identification has been proved to improve variant calling

performance. Numbers of machine learning-based variant

callers (Table S2) have been developed to identify genetic

variations. Each tool has a certain scope of application.

Among these tools, DeepVariant (32), a machine learning-

based variant caller, developed by the Google Brain team, aims

to identify genetic variation in sequencing data by constructing

an image classification model using deep neural networks. It is

the first to apply neural networks to the detection of biological

sequence variants. In short, it encodes the aligned read and

reference data as an image for each candidate mutation site.

Then, a trained CNN image recognition model based on a

tensorflow deep learning framework was used to compute the

genotype likelihoods for each site to find genetic variants from

high-throughput sequencing data to perform genotyping. The

PrecisionFDA Truth Challenge had reported that the

DeepVariant was the most accurate variant caller compared

with other existing variant callers, with 99.96% (SNVs) and

99.40% (short indels) of F-score values. And Supernat et al.

compared the DeepVariant tool to the commonly used GATK

4.0 and SpeedSeq (33), finding that DeepVariant outperforms

GATK, a golden standard pipeline. However, the open source

DeepVariant takes a very long time, almost twice as long as

GATK, which largely limits its applications. Accordingly, Huang

et al. (34) shows a DeepVariant-on-Spark optimizes resource

distribution, and reduces the time needed to process the

DeepVariant pipeline.

Cerebro, developed by Wood et al. (12), is a machine

learning-based somatic mutation discovery approach. Cerebro

employs a random forest that evaluates a large set of decision

trees to produce a confidence score for every candidate

mutation. Normal peripheral blood DNA sample was used to
frontiersin.org
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train the model. Somatic mutations that mutant allele fractions

arrange from 1.5 to 100% and a real-world representative source

were used as a training data. Compared with the existing

methods (sensitivity: 90 to 99%, positive predictive value: 34 to

92%) in recognizing experimentally validated variants, Cerebro

(sensitivity: 97%, positive predictive value: 98%) has better

performance. And this method is totally automated without

the need for expert to supervise sequence data. However,

Cerebro is unsustainable for widespread NGS analyses.

NeuSomatic is a tool that uses a deep convolutional neural

network for somatic variant calling (35). Nine convolutional

layers are constructed in the network architecture. NeuSomatic

uses a new input matrice that include alignment information to

train the model, which allows feature extraction directly from

the raw sequencing data. On the final layer, two softmax

classifiers and one regressor were used to predict the mutation.

The accuracy of the method on real data show that NeuSomatic

performs better than NeuSomatic-S due to the fact that the

former integrates the outputs and intermediate results of other

detection methods into the input, while NeuSomatic-S only

uses the raw sequencing data as the input. In terms of

run time, the NeuSomatic is 3.5 times longer than the

NeuSomatic-S. In addition, the tool is written in PyTorch,

supports GPUs, and takes only 156 core-CPU hours to

train the data (30X) compared to the 1000 CPU core-hours

required by DeepVariant. NeuSomatic performs significantly

better than the state-of-the-art variant calling algorithms,

specifically, for identifying samples in low tumor purities and

allelic frequencies.

Although there are many somatic variant callers, no one is

perfect, and accuracy may be low when using a single tool to

identify a variant. Thus, using multiple variants callers

simultaneously to determine potential tumor somatic

mutations could potentially increase the accuracy of the calling

(36). After identifying the variants, the commonly used

annotators, such as Variant Effect Predictor (VEP) (37),

ANNOVAR (38) and snpEff (39) are used to annotate them to

help us determine the effect of nucleotide changes on the

sequence of the coding protein. ANNOVAR is designed for

annotation of gene-based coding change, especially variants in

classic databases such as dbSNP/1000 Genome Project etc. VEP

is an open tool that used for annotation of variants in both

coding and non-coding genomic regions. In contrast to

ANNOVAR which only provides gene-level annotations, VEP

offers transcript-level annotations as well as mutations in species

in addition to human. The unique feature of SnpEff and the

derivative tool SnpSift is they use optimized algorithm to

efficiently tackle variant annotation problems including

annotation process standardization, protein change calculation

and loss of function evaluation (40). Nevertheless, once the

mutated amino acid sequences are successfully annotated, the

next step would be to evaluate their binding affinity with MHC

class I/II (41).
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3.1.2 Alternative variation sources
In addition to SNVs and small indels as traditional variant

source for novel neoantigen identification, other variation types,

such as gene fusions (20), alternative splicing variants and so on,

were confirmed to trigger immune cell responses. Notably, the

accuracy of somatic variant callers for non-SNVs mutations was

not low. For instance, the fusion genes lead to chimeric proteins

that were highly immunogenic due to their unique structure.

STAR-Fusion (42), recommended by National Cancer Institute,

is a software for fusion identification based on STAR alignment

results. Fusion-Bloom (43), employs the recent advance in de

novo transcriptome assembly and assembly-based structural

mutation identification methods to identify fusions. Compared

with the other fusion identification tools, Fusion-Bloom showed

an improved sensitivity and specificity in identify real fusion

variants. Haas et al. (44) assessed the performance of 23 gene

fusion callers and demonstrated STAR-SEQR, STAR-Fusion,

and Arriba have the best performance in identifying novel

gene fusions from cancer transcriptomes. Due to the lack of

exposure in prior studies, neoantigen candidates derived from

fusion and other uncommon variation source are perhaps more

immunogenic and make better targets for immunotherapy.
3.2 HLA typing

The important function of MHC class I molecules is to

participate in the process of antigen presentation to CD8+

cytolytic T cells. MHC class II molecules mainly present

processed exogenous antigen fragments to CD4+ T cells

during the initial stage of immune response. MHC class I

molecules have a peptide-binding groove where the two ends

are closed, limiting the size of their ligands to about 8-

11aminoacids (45). The antigen binding sites mainly target the

backbone of antigen peptides with relatively conserved amino

acid sequences, which facilitate the binding of the variable amino

acid side chains in the free state on the antigen peptide and the

TCR. Contrary to MHC class I, class II molecules have open

binding groove that allows them to bind longer peptides,

typically 12-20 amino acid residues in length (46). The

complex open binding groove brings about difficultly in

evaluating binding affinity between antigens and MHC class II.

Predicting HLA typing is essential for identifying

neoantigens. Different MHC haplotypes have different binding

affinity with peptides, so it is crucial to accurately genotype the

patient’s HLA alleles before peptides-MHC binding affinity

prediction. Polymerase chain reaction-sequencing based typing

(PCR-SBT) is the gold standard for HLA genotyping (47).

However, there are a large number of alleles in HLA, and the

polymorphisms of alleles are outside the analysis region, or the

alleles are heterozygous, which may lead to ambiguous

genotyping results. With the advancements in NGS

technology, it is possible to perform HLA allele typing in
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silico, which provides an economical and efficient approach.

Studies have reported that certain HLA class I typing tools can

achieve up to 99% accuracy compared with the gold standard

method. The existing available computational tools are shown in

Table S3, Optitype, Polysolver, seq2HLA, and PHLAT are widely

employed algorithms to call MHC I alleles or II alleles using

DNA or RNA sequencing data. Polysolver is currently one of the

recognized standard tools for working with low-coverage WES

data. Many studies indicate that Optitype, with high specificity

and selectivity, is the most accurate tool to genotype HLA class I

alleles using WES data or RNA-seq data (48). PHLAT performs

best when predicting both Class I and II allele genotypes, and

seq2HLA is the best choice to deal with RNA-seq data (49).
3.3 Peptide-MHC binding prediction

3.3.1 Peptide-MHC I binding prediction
Peptide-MHC binding is an important feature source to

screen neoantigens that can be used for clinical immunotherapy.

The tools (Table S4) used for the prediction of peptide-MHC

binding affinity have been developed. Different strategies have

been used to construct the tools. Initially, tools were mainly

based on linear regression and stabilized matrix approaches

including Pickpocket. A linear contribution to the peptide-

MHC binding affinity by each of amino acid was considerate

in Linear regression. Currently, the state-of-the-art prediction

methods mainly rely on machine learning algorithms. The

machine learning can identify the nonlinear connection of the

peptide sequence and MHC molecules via the network layers. In

addition, machine learning-based prediction tools use a large

amount of data from binding affinity data or/and mass

spectrometry (MS) peptidome data to train models and have

higher accuracy than linear regression-based tools.

NetMHC (50) is an allele-specific epitope prediction tool

employing an artificial neural network to predict peptide-MHC

binding affinity. This method needs to divide the training data

according to alleles. Therefore, it is difficult to accurately predict

the alleles with insufficient training data. In addition, viral

peptides and most frequent HLA-alleles (such as HLA-

A∗02:01) are used as training data for constructing this tool,

which introduce the bias of selection of viral-like peptides and

tumor antigens that preferred presented by frequent HLA

molecules. Recently, the version of this tool has been upgraded

to NetMHC 4.0 (51), which now includes additional alleles. It

should be noted that most HLA molecules are preferred to bind

9 mers of peptide. NetMHCpan 4.0 (15), the newest version of

the pan-specific tool based on artificial neural networks, is

trained on a combination of more than 180,000 quantitative

binding affinity data and mass spectrometry peptidome data,

showing the highest accuracy in predicting peptide-MHC

binding affinity (52). O’Donnell et al. presents an allele-specific

neural networks-based MHC I binding predictor, MHCflurry
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(53). The software employs a new architecture and peptide

encoding strategy. MHCflurry exceeds NetMHC 4.0 and

NetMHCpan 3.0 when trained on binding affinity data. The

newest MHCflurry 2.0 (54) includes two experimental

predictors, an “antigen processing” predictor and a

“presentation” predictor. An “antigen processing” predictor

tries to model MHC allele-independent factors such as

proteasomal cleavage. A “presentation” predictor combines

processing predictions with binding affinity predictions to

generate a presentation score. However, they only used MS

datasets of MHC class I to train and evaluate their methods.

The accuracy scores may be inflated by modeling assay biases

through the AP predictor.

Hu et al. (55) proposed an interpretable pan-specific

peptide-MHC I binding affinity prediction model, ACME. The

model combines a deep convolutional neural network with an

attention module. First, ACME performs initial feature

extraction of the encoded peptide and MHC pseudo-sequences

through a convolutional layer, and then maps the extracted

features to the convolutional module and the attention module.

After that, the outputs of these two modules are combined for

the final prediction. Extensive tests showed that ACME (SRCC:

0.569) outperformed other methods, including NetMHCpan 2.8

(SRCC: 0.512), NetMHCpan 3.0 (SRCC: 0.522) and

NetMHCpan 4.0 (SRCC: 0.521). However, the contribution of

the attention module is limited. Besides, they only employed

limited experimental data to evaluate the different methods.

IConMHC (56) is a pan-allele method with a CNNmodel for the

prediction of peptide-MHC binding affinity. Unlike other

methods, iConMHC studies physical and chemical interaction

properties (such as contact potentials and distances) of pairwise

amino acids from the peptide and MHC molecule. Before

putting the input data into the iConMHC model, each pair of

peptide and MHC were processed into a 3D matrix that acts as

the input data. The dimension of the 3D matrix is 48 × 9 × 19,

where the width and height of each slice represents the length of

peptide (9 amino acid long) and MHC (48 amino acid long),

respectively, and each of the 19 slices (depth) represents amino

acid interaction of peptide and MHC. In the iConMHC model,

two convolutional layers were used to train data. The first layer

includes 32 filters with a 3 × 1 max pooling layer behind it, and

the second layer includes 64 filters with a 2 × 1 max pooling layer

behind it. ReLu activation function is used in two layers. The

second layer connected to a layer that connects the output

neuron. The iConMHC model captures features from the

interaction information making peptide-MHC binding

prediction. The benchmarking result showed that iConMHC

performs better than most of the pan-allele models but has a

similar SRCC score to netMHC3.4. Anthem, developed by Mei

et al. (57), has a novel two-layer prediction structure. The first

layer uses five scoring functions commonly used in peptide and

HLA-I binding prediction to synthetically code the amino acids

sequence of each peptide and extract features of amino acid
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sequences. In the second layer, a machine learning model,

aggregating one-dependence estimators (AODE) trained by

features obtained from the first layer, is used for binding

prediction. Anthem has been proven to outperform

NetMHCpan 4.1 and MixMHCpred 2.0.2 using independent

datasets. And Anthem has the best AUC value on 12 HLA I

allotypes for all peptide lengths. However, compared with other

tools, the AUC values of Anthem were the lowest when

predicting certain HLA-I types including HLA-A∗02:17, HLA-

A∗02:50, and HLA-A∗24:06 for 9-mer peptides.

Due to the multiple polymorphism of HLA alleles and the

lack of experimental data of binding affinity for many HLA

alleles, it is to date still very difficult to develop a model for each

allele (58). Therefore, at present, the binding affinity threshold of

existing predictors is specified to all HLA-alleles. For example,

the threshold for strong binder of all peptides-HLA is specified

as 0.5 (%rank) and for weak binder is 2 (%rank) as described in

NetMHCpan and other similar tools from NetMHC family. In

contrast to common HLA alleles, which have been studied tested

extensively in training prediction algorithms, the HLA alleles

with low allele frequency is limited by the resource of training

data, which may result potential bias in prediction algorithms.

Therefore, it’s necessary to specify an optimal threshold for each

type of HLA-allele to improve the prediction accuracy of

peptide-HLA binding affinity. In addition, it is notable that

peptide-MHC binding prediction algorithms seem to have low

prediction ability for peptides containing certain amino acids.

For instance, it is common that protein cysteine can be oxidized

and disulfide bonds can be formed between cysteine residues

under oxidizing settings, which potentially interfere the binding

of cysteine-containing peptides to HLA molecules (59). This is

the reason why certain amino acids sometimes are under-

represented in training data, which eventually introduce bias

for peptides containing cysteine. Studies have showed that

bioinformatic (60) or chemical method (61) can be used to

partially correct for the loss of cysteine-containing peptides.

Therefore, it is very necessary to adopt appropriate strategy to

improve the accuracy of prediction algorithms for peptides

containing under-represented amino acids like cysteine.

Faced with a large number of such prediction tools,

researchers need to choose the optimal tools for their own

research. However, prediction performance differs depending

on the MHC type and peptide length. Therefore, it is necessary

to evaluate the existing peptide-MHC binding prediction

algorithms to help people to choose the best tool or tools for

their studies. Bonsack et al. (18) evaluated the prediction

performance of 13 peptide-MHC binding predictors. They

found that artificial neural networks-based pan-specific

methods showed the highest prediction accuracy in general.

Similarly, Paul et al. evaluated the performance of 17 available

Peptide-MHC binding predictors (62). The results showed that

neural network-based NetMHCPan-4.0 and MHCFlurry have

the best performance. Mei et al. (63) recently performed a
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comprehensive review and performance evaluation of 15 tools

for peptide-HLA I binding prediction. The results showed that

MixMHCpred 2.0.1 has the best performance to predict peptide-

HLA binding, while NetMHCpan 4.0 outperforms the other

machine learning-based methods, and NetMHCcons 1.1 surpass

consensus-based tools. Overall, methods that based on ML

models including NetMHCpan 4.0, MHCflurry, and so on

performing the better performance on binding affinity

prediction compared with other methods. As machine

learning-based methods continue to be developed, more

methods should be evaluated to provide researchers with

better options.

3.3.2 Peptide-MHC II binding prediction
It has been reported that neoantigens presented by MHC II

have a crucial function in anti-tumor response (10). However,

compared with peptide-MHC I binding predictors, algorithms

for predicting peptide-MHC II are fewer and the prediction

accuracy of currently peptide-MHC II binding predictors is still

low. Unlike MHC I, the peptide length recognized by MHC II is

highly variable. The reason is that the binding groove of MHC II

is open at two ends, allowing the bonded peptides up to 30

amino acids (10). This structure characteristic of MHC II and

little available training data are main causes in making accurate

peptide-MHC II binding predictions difficult. In recent years,

with the production of related data, some methods have been

developed to predict peptide-MHC II binding, such as

NetMHCII (64), TEPITOPEpan (65), NetMHCIIpan (66), and

RANKPEP (67). NetMHCII and NetMHCIIpan, ANN-based

methods, have been demonstrated to have higher performance

in predicting peptide-MHC II binding than other tools (68, 69).

The newest version of NetMHCIIpan is NetMHCIIpan-4.0,

which utilizes ANN algorithm to predict peptide-MHC II

binding. NetMHCIIpan-4.0 is trained on over 500,000 binding

affinity data and eluted ligand mass spectrometry data (70).

Compared to the older versions, NetMHCIIpan-4.0 has

significantly improved predictive performance, underlining the

necessity of expanding training data.

Degoot et al. (58) presented a trans-allelic prediction model

to predict the interaction of peptide-MHC II. This model was

trained using a dataset including quantitative binding data that

was employed to develop NetMHCIIpan-3.0 (71). This method

provided a reasonable physical explanation for the interaction of

peptide and MHC II, which is a notable advantage of this

method compared with existing data-driven methods. This

model has comparable performance to the intra-allele model

on average for prediction of HLA-DP (0.930 vs. 0.928), HLA-

DQ (0.830 vs. 0.857), and HLA-DR (0.780 vs. 0.771).

MHCnuggets as a long short-term memory (LSTM) deep

neural network was recently built by Shao et al. (16) to predict

binding affinity of peptide-MHC I or II. This neural network

model was trained via binding affinity data for selective MHC II

allele. Each neural network was composed of four layers
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including an input sequence layer, a LSTM layer with 64 hidden

units, a fully connected layer with 64 hidden units, and an output

layer of a single sigmoid unit. Compared to methods that

combination of binding affinity data and mass spectrometry

data, MHCnuggets showed a comparable prediction ability. For

example, they employed a five-fold cross validation to evaluated

the performance of MHCnuggets and NetMHCIIpan-3.2 as well

as NetMHCII-2.3. The overall auROC for all 27 class II alleles

was 0.849 for MHCnuggets, which was comparable to that of the

NetMHCIIpan-3.2 (0.861) and NetMHCII-2.3 (0.861).

However, this method is limited to analyze missense mutations.

DeepSeqPanII, a LSTM-CNN model with attention

mechanism for prediction of peptide-HLA II binding, was

developed by Liu et al. in 2022 year (72). The network

structure is built by peptide sequence encoders, HLA a and b
encoders, a context extractor, and a binding affinity predictor.

The encoded HLA a and b chains, and a peptide were as input

sample, which were put into LSTM block that outputted two

kinds of hidden tensors. Then the two tensors were fed into the

attention block. Three weighted outputs got from the attention

blocks were combined with channel axis going into the

convolutional network that outputs a 1D vector. Finally, it was

put into a fully connected network to predict binding affinity of

peptide-MHC II. Comparison with other existing peptide-

HLAII binding predictors. DeepSeqPanII and NetMHCIIpan-

3.1 have the best performance, however, the accuracy of

DeepSeqPanII was still lower than NetMHCIIpan-3.1.

More predictors for calculating binding affinity of peptide-

MHC II including MARIA and MixMHC2pred have been

described by Moore et al. in review (73). At present, the

accuracy of predictors for identification of peptide-MHC II

binding affinity is significantly lower than that of peptide-

MHC I. Hence, the most important things are to increase the

training data of peptide-MHC II binding data and select

appropriate ML model to learning the training data to

improve the prediction accuracy of peptide-MHC II

binding predictors.
3.4 TCR-pMHC binding prediction

A large number of candidates neoantigens can be obtained

by predicting the binding affinity of peptide-MHC. However,

whether all of these candidate neoantigens elicit an immune

response from T cells requires additional in vitro experimental

validations. With the ever-growing amount of available TCR-

pMHC specificity data, methods used to predict the interaction

between TCR and pMHC complexes have been developed in

recent years. For instance, Springer et al. developed a TCR-

peptide binding predictor, ERGO (pEptide tcR matchinG

predictiOn), by combing large-scale TCR-peptide dictionaries

with deep learning methods (74). ERGO studied a model for the

whole set of peptides using a deep learning algorithm called long
Frontiers in Oncology 08
short-term memory. The CDR3 and peptides were encoded and

used as input data to train a neural network. The output of 1

represented the TCR and peptide bind and 0 was otherwise.

ERGO showed similar performance to state-of-the-art methods

when using a set of standard tests. However, the MHC was not

included in the model, which may influence the accuracy of

the predictor.

NetTCR-2.0, a sequence-based method, used a CNNmodel to

train paired TCRa and b sequence data for peptide-TCR binding

prediction (75). The peptide, the CDR3a, and/or CDR3b
sequences were used as inputs in the neural network and the

BLOSUM50 matrix was used for encoding the amino acids. The

encoded sequences were processed by a 1D convolutional layer

and a max-pooling layer. Then, the extracted features were

concatenated into a model constructed by dense layers. The

output result was the binding probability of a peptide-TCR pair.

The sigmoid function was used as the activation function in the

network. Compared to other methods using an independent

paired TCR dataset, NetTCR-2.0 perform the best, with a high

specificity (identifying 79% of the positive TCR at a false-positive

rate of 2%). NetTCR-2.0 is limited to analyzing HLA-A*02:01 and

9-mer peptides. However, it is an important step forward due to

the consideration of not only TCRb sequence data, but also TCRa
sequence data.

Lu et al. (76) developed a transfer learning-based pMHC-

TCR binding prediction network, pMTnet, to predict the TCR

binding specificities of neoantigens presented by MHC I. The

training and prediction of pMTnet is based on the sequence of

mutually recognized antigens during T-cell-tumor cell binding,

the MHC sequence and the TCR sequence. pMTnet applies

transfer-learning to complete the training of the deep learning

model. The AUC reached a high accuracy of 0.827 when using

an independence testing dataset to evaluate the performance of

pMTnet. pMTnet shows a significant improvement in prediction

accuracy compared to other prediction models including TCRex,

TCRGP, and netTCR. One potential problem in this study is that

the existing biased representation of certain antigens and

corresponding pairing TCRs in their training dataset.

Above all, the quality and quantity of training data are the

key factors for AI-based model, which significantly influence the

prediction accuracy of TCR-pMHC binding. The peptide

characteristics and other information such as TCR sequencing

coverage also helps to improve prediction accuracy. As more

data are released, especially CDR3a sequence information, it will

no longer be a challenge to accurately predict peptide and

TCR interactions.
3.5 Prediction of the immunogenicity of
candidate neoantigens

It is still unclear how epitopes elicit T cell immune responses.

However, several studies found that epitope sequence-based
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features play important roles in T cell epitope immune response,

elicited by epitope. These features include the molecular size of

peptides (77), sequence similarity (78), hydrophobicity of amino

acids at TCR contact residues (79), polarity of amino acids (80),

entropy of peptides (81), and amino acid pairwise contact

potentials (82), in addition to peptide-MHC binding affinity.

AI or scoring systems are commonly used to treat the peptide

sequencing-based features (we will introduce detailed

information in section 4.2). Hence, a reasonable integration of

features into the neoantigen identification pipeline would

improve prediction accuracy.
4 Integrated machine
learning-based pipelines for
neoantigen prediction

A combination of machine learning algorithms helps to

integrate end-to-end machine learning-based pipelines and

enable the omics data to be processed and transformed into

neoantigen prediction. In addition to using the assessment of

peptide-MHC and peptide-TCR binding affinity to predict

neoantigens, integrated pipelines with improved accuracy were

also developed by researchers to recognize immunogenicity of

the mutated peptides (Figure 2). Here, we focus on two strategies

(i): Neoantigen prediction pipelines utilizing ML filters to

extract peptide-HLA binding affinity as key feature (ii),

Neoantigen prediction pipelines utilizing immunogenicity

related features as input to train ML models for prediction of

immunogenic neoantigens.
4.1 Prediction of neoantigens based on
ML filter and other features

In fact, only about 2% of the neoantigens predicted by

binding affinity were validated as immunogenic and able to

elicit T cell immune responses in in vitro experiments (83). The

lower prediction accuracy increases the amount of time spent

and the total number of validation experiments. Moreover, most

laboratories can only perform a limited number of validation

experiments due to lack of funds. These challenges greatly limit

the study and application of neoantigens in immunotherapy. In

addition to binding affinity, other features, such as peptide

cleavage information, binding affinity of peptides to TAP

molecules and binding stability of peptides and MHC

molecules are also involved in the process of neoantigen

presentation, affecting the accuracy of the prediction. Thus,

researchers added these potential factors into pipelines to

improve the accuracy of neoantigen identification.

As shown in Table 1, we summarized recently developed

neoantigen prediction pipelines based on peptide-MHC binding
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affinity and filters. Most pipelines are open source and do not

require users to be skilled in bioinformatics, which is very

convenient for researchers and clinicians. The pipelines in

Table 1 are complementary. For example, Epitoolkit (84) is a

web-based platform for vaccine design, which offers

immunoinformatics tools to predict neoantigens that could be

used in vaccine development. Epitoolkit utilizes ANN-based

NetMHC to calculate the peptide-MHC I binding scores. The

pipeline incorporates proteasomal cleavage site predictions to

filter mutated peptides. However, the quality of mutations from

the aspect of the depth and coverage of sequencing data and the

expression abundance of neoantigens were not consider, which

would result in a false positive prediction. pVACseq (85), a

pipeline based on step-by-step analysis of the filtering strategy

for identifying and prioritizing neoantigens from DNA-seq and

RNA-Seq data, uses ANN-based NetMHC v3.4 for prediction of

MHC I restricted epitopes. And the pipeline employs

information about sequence coverage, allele variation

frequency, and gene expression to prioritize neoantigens.

FRED 2 uses the parameters that Epitoolkit and pVACseq

employs, including cleavage prediction, mutation coverage,

mutated allele frequency and mutated gene expression plus

transporter associated with antigen processing (TAP)

prediction to identify neoantigens. Additionally, an advantage

of FRED 2 (86) is that there are many available tools for users to

choose at each step of neoantigen prediction including

prediction of peptide-MHC binding by AI-based NetMHC,

NetMHCpan, NetMHC II, and NetMHCpan II, which avoids

modifying their data format and uses the most suitable tool to

meet the overall design. Vaxrank (93) is a pipeline for predicting

neoantigen from tumor variances, RNA data, and HLA type.

ANN-based NetMHCpan was used to predict peptide-MHC

affinity. Vaxrank employs a scoring system that combines

ExpressionScore (gene expression) and TotalBindingScore

(peptide-MHC affinity) to generate RankingScore for predicted

mutant peptides ranking, which makes the results more likely to

be the most promising neoantigens.

These above-mentioned pipelines take into account the

factors affecting antigen presentation and do not consider

whether the presented antigen has the potential to elicit a T

cell immune response. The advent of TIminer has led to a

change in the way people think about developing neoantigen

prediction. TIminer is a user-friendly computing framework that

can perform different tumor immune genome analyses (88). In

this pipeline, gene expression, immune infiltrates, and

immunophenoscore are used to filter neoantigens. TIminer

uses ANN-based NetMHCpan in the pipeline. TIminer is the

first approach to introduce integrative immunogenomic analyses

into neoantigen prediction, which increases the predicted

number of neoantigens that can elicit an immune response.

Kirchmair and Finotello (103) show us the usage of TIminer in

identifying cancer neoantigens using public NGS data. It should

to be noted that TIminer is limited to predict SNVs-derived
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neoantigens. Mupexi (92) is a program that identifies and

prioritizes immunogenic peptides deriving from SNVs and

indels using WES/WGS and RNA-Seq data. For the ranking of

neoantigens, Mupexi uses a priority score that takes into account
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factors including the level of affinity between the mutant and the

normal peptide, the allele frequency and gene expression level of

the mutant. ANN-based NetMHCpan was also used for peptide-

MHC binding calculation. Compared with pVACseq, MuPeXI
B

A

FIGURE 2

A proposed neoantigen-predicting workflow implemented with machine learning (ML) models targeting individual characteristics. A group of verified
neoantigen data is split into two datasets for Training + Development and Testing respectively. (A) Upper dotted line box: Model Training and
Development. 1) individual features of the training data with known class (positive or negative for neoantigen) are either produced from NGS profiling
directly or indirectly as additional rounds of analysis may apply to generate the variables; 2) as indicated by dashed arrow lines, these feature variables
act as input in three ML models (colored boxes) targeting three characteristics: peptide-MHC binding (model a, sapphire), TCR-pMHC binding (model b,
yellow) and Immunogenicity (model c, pink); 3) as indicated by the arrow lines, each model learns from its own input data and generate a prediction or
together produces an integrated prediction; 4) ML model compare its prediction against the true class of the training data and learn from this training,
following by optimization aiming for a better prediction. (B) Lower dotted line box: Independent Validation and Testing. After the predictive models
trained and developed, a candidate neoantigen will undergo NGS-based genomic profiling and generated input data, followed by processing in the
three trained models (a-c, colored clouds) and eventually provide the predictions. Figure was created with BioRender.com.
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TABLE 1 Neoantigen prediction pipelines extracting peptide-HLA binding affinity as key feature.

Pipeline
Data input
(Neoantigen

source)

Filtering Strategy and Machine Learning Tool Affinity
type

EpiToolkit (84)
(2015)

WGS/WES/RNA-seq
(SNVs, indels)

(1) Peptide-MHC binding affinity (Tool: NetMHC [ANNs*]. Input: peptide sequence and HLA type)
(2) Proteasomal cleavage (Tool: PCM and NetChop [neural network]. Input: peptide sequence)

MHC I

pVAC-Seq (85)
(2016)

WES/RNA-seq(SNVs,
indels)

(1) Peptide-MHC binding affinity (Tool: NetMHC v3.4 [ANNs]. Input: peptide sequence and HLA
type)
(2) Sequence coverage
(3) Allele variation frequency (Tool: bam-readcount. Input: Tumor-DNA and RNA and normal-
DNA)
(4) Gene expression (Tool: Cufflinks. Input: RNA-seq reads)

MHC I

FRED 2 (86)
(2016)

WES/RNA-seq
(SNVs, indels)

(1) Proteasomal cleavage (Tool: ProteaSMM (C/S20), PCM, NetChop [neural network], and Ginodi.
Input: peptide sequence)
(2) Mutation coverage
(3) Mutated allele frequency
(4) Mutated gene expression
(5) TAP transport efficiency (Tool: SVMTAP [SVM], SMMTAP, and Additive matrix method. Input:
peptide sequence, HLA type, and peptide length)
(6) Peptide-MHC binding affinity (Tool: NetMHC, NetMHCpan, NetMHC II, NetMHC II pan
[ANNs]. Input: peptide sequence and HLA type)

MHC I
and MHC
II

CloudNeo (87)
(2017)

Vcf file (for mutations)
and bam file (for HLA
typing)
(SNVs)

Peptide-MHC binding affinity (Tool: NetMHCpan [ANNs]. Input: peptide sequence and HLA type) MHC I

Tlminer (88)
(2017)

RNA-seq
(SNVs)

(1) Gene expression (Tool: Kallisto. Input: RNA-seq reads)
(2) Peptide-MHC binding affinity (Tool:
NetMHCpan [ANNs]. Input: peptide sequence
and HLA type)

MHC I

TSNAD (89)
(2017)

WES/RNA-seq
(SNVs, indels)

Peptide-MHC binding affinity (Tool: NetMHCpan [ANNs]. Input: peptide sequence and HLA type) MHC I

INTEGRATENeo
(90)
(2017)

WGS/RNA-seq
(Gene fusions)

Peptide-MHC binding affinity (Tool: NetMHC4 [ANNs]. Input: peptide sequence and HLA type) MHC I
and MHC
II

NeoantigenR (91)
(2017)

DNA/RNA-seq
(SNVs, indels, splicing
variants)

Peptide-MHC binding affinity (Tool: NetMHC [ANNs]. Input: peptide sequence and HLA type) MHC I

MuPeXI (92) WES
(SNVs, indels)

(1) Peptide-MHC binding affinity (Tool: NetMHCpan 3.0. Input: peptide sequence and HLA type)
(2) Gene expression
(3) The number of mismatches between the mutant and normal peptides.
(4) Mutant allele frequency
(5) Normal exact match penalty

MHC I

Vaxrank (93)
(2018)

RNA-seq
(SNVs, indels)

(1) Peptide-MHC binding affinity (Tool: NetMHCpan [ANNs]. Input: peptide sequence and HLA
type)
(2) Gene expression

MHC I

ScanNeo (94)
(2019)

RNA-seq
(indels)

(1) Peptide-MHC binding affinity (Tool: NetMHC [ANNs], NetMHCpan [ANNs]. Input: peptide
sequence and HLA type)
(2) Fold change between WT and MT alleles
(3) Variant allele frequency (Tool: VEP. Input: identified indel)

MHC I

NeoPredPipe (95)
(2019)

Somatic variant calls
(SNVs, indels)

(1) Peptide-MHC binding affinity (Tool: NetMHCpan [ANNs]. Input: peptide sequence and HLA
type)
(2) Neoantigen recognition potentials (the amplitude of the ratio of the relative probabilities of
binding for the wild-type and mutant epitopes to the MHC-class I molecules, and a measure of
similarity to pathogenic peptides)

MHC I

(Continued)
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offers more information and prioritizes the neoantigens, guiding

the user to select the neoantigens that elicit a T cell response.

However, the priority scoring system was constructed using few

data, which results in uncertainty about its true utility. In

addition, MHC types, somatic mutations and gene expression

levels were required to be offered by the user, which is

inconvenient. NeoPredPipe (95), a high-throughput pipeline

for neoantigen prediction which incorporates ANN-based

NetMHCpan into i t s p ipe l ine , a l so cons iders the

immunogenicity of neoantigens. In this workflow, the

possibility of the neoantigen being recognized by the TCR is

evaluated, which makes it more likely that the predicted

neoantigens elicit an immune response. However, the immune

response induced by contact between neoantigens and TCR is

influenced by a variety of factors that are not yet well

understood. Therefore, neoantigen prediction based on the

probability of recognition of neoantigens by TCR needs to

continue to be mined and the prediction accuracy still needs

to be improved. ASNEO established by Zhang et al. (100) to

identify alternative splicing (AS) neoantigens using RNA-seq
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data also employed scoring schema. The pipeline uses

NetMHCpan-4.0 to filter the mutated peptides. After a series

of filtering steps, an immune score schema was introduced to

evaluate the immunogenicity of identified neoantigens with

features including the %rank of mutant and normal peptide-

MHC affinity, the number of mismatches between the mutant

peptide and normal peptide, the peptide cleavage probability,

TAP transport efficiency, hydrophobicity score and T cell

recognition score. The percentage of neoantigens validated is

0.49%, which is similar to other studies. However, the pipeline

does not take matched normal gene expression data

into account.

Although the accuracy of these pipelines has been improved

to some extent by incorporating ML-based tools, there is still

huge room for improvement in predicting tumor neoantigens.

The potential strategies include: 1) increase the quality of

training data and enlarge the quantity of the data to ensure

the data was collected from subjects from an unbiased ancestry

and ethnicity background; 2) selectively use validated data with

good validity and variety, covering a board range of cancer types
TABLE 1 Continued

Pipeline
Data input
(Neoantigen

source)

Filtering Strategy and Machine Learning Tool Affinity
type

Neoepiscope (96)
(2019)

DNA-seq
(SNVs, indels)

Peptide-MHC binding affinity (Tool: MHCflurry [neural network], NetMHCpan [ANNs]. Input:
peptide sequence and HLA type)

MHC I
and MHC
II

pVACtools (97)
(2020)

Somatic variant calls
(SNVs, indels, gene
fusions)

(1) Rank of binding affinity (Tool: MHCflurry [neural network], NetMHC [ANNs], NetMHCpan
[ANNs], NetMHCIIpan [ANNs]. Input: peptide sequence and HLA type)
(2) Rank of fold change between mutant and wild-type alleles (WT/MT binding affinity).
(3) Rank of mutant allele expression (rank of gene expression * rank of mutant allele RNA variant
allele fraction)
(4) Rank of DNA variant allele fraction (Tool: VEP. Input: variants)

MHC I
and MHC
II

neoANT-HILL
(98)
(2020)

WGS/WES/RNA-seq
(SNVs, indels)

(1) Gene expression (Tool: Kallisto. Input: RNA-seq reads)
(2) Peptide-MHC binding affinity (Tool: MHCflurry [neural network], NetMHC [ANNs],
NetMHCpan [ANNs], NetMHCIIpan [ANNs]. Input: peptide sequence and HLA type)

MHC I

NeoFuse (99)
(2020)

RNA-seq
(Gene fusions)

(1) Gene expression (Tool: STAR and featureCounts. Input: RNA-seq reads)
(2) Peptide-MHC binding affinity (Tool: MHCflurry [neural network]. Input: peptide sequence and
HLA type)

MHC I

ASNEO (100)
(2020)

RNA-seq
(Alternative splicing)

(1) Peptide-MHC binding affinity (Tool: NetMHCpan-4.0 [ANNs], Input: peptide sequence and
HLA type)
(2) The number of mismatches between the mutant peptide and normal peptide
(3) The combined score of binding affinity, proteasomal
C terminal cleavage and TAP transport efficiency of
candidate neoantigen (Tool: NetCTLpan, Input: peptide sequence and HLA type)
(4) Hydrophobicity score (machine-learning model, Input: peptide hydrophobicity information)
(5) T cell recognition score

MHC I

VENUS (101)
(2021)

WES and RNA
sequencing data
(SNVs and indels)

(1) Allele frequency of the mutations
(2) Abundance of the transcripts carrying the mutation
(3) Peptide-MHC binding affinity (the consensus method of the IEDB 2.17 software).

MHC I

NeoSplice (102)
(2022)

RNA-seq
(Alternative splicing)

Peptide-MHC binding affinity (Tool: NetMHCpan-4.0 [ANNs], NetMHCIIpan-3.2 [ANNs]. Input:
peptide sequence and HLA type)

MHC I
and MHC
II

*ANN, artificial neural network.
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and features for algorithm training; 3) employ advanced

hardware and choose the right algorithm to learning the key

features of neoantigen out of the big data required for

neoantigen. Furthermore, most of the prediction pipelines are

developed for SNVs and small indels derived neoantigens.

Considering that neoantigens derived from other mutation

types are more likely to elicit immune responses, we should

pay more attention to studying the prediction pipelines of gene

fusions, intron retentions and splice variant derived neoantigens.
4.2 ML-based neoantigen prediction
utilizing immunogenic features

It should be noted that not all peptides presented by MHC

molecule can induce T cell anti-tumor responses. Some features

that used in scoring system have been proved to improve the

accuracy of immunogenic neoantigen prediction. Other features,

such as tumor abundance, peptide-MHC binding stability,

polarity of amino acids, molecular size of peptides, entropy of

peptides, and amino acid pairwise contact potentials also

contribute to the immunogenicity of epitopes. In recent years,

researchers integrated optimal potential immunogenic features

with peptide-MHC binding and utilizing AI techniques to

increase the accuracy of immunogenic neoantigen prediction.

In this section, we summarize the recent new findings in the

development of AI-based immunogenic neoantigen

prediction pipelines.

As shown in Table 2, Neopepsee (104) is a first machine

learning based neoantigen identification pipeline using NGS

data. The machine learning classifiers used in immunogenic

neoantigen prediction include support vector machine, random

forest, locally weighted naive Bayes, and Gaussian naive Bayes.

These models are constructed using the scores of 9

immunogenicity features covering IC50 of peptide-MHC I

binding affinity, %rank of peptide-MHC I binding affinity,

combined score, immunogenicity score, hydrophobicity score,

polarity and charged score, differential agretopicity index (DAI),

amino acid pairwise contact potentials (AAPPs), and similarity

score to known peptides. The machine learning classifier is used

to reduce the false positive rate that generate using only peptide-

MHC binding affinity. The specificity is enhanced compared to

conventional methods. Independent experimental data is

employed to test the Neopepsee, which ascertain improved

performance in melanoma and chronic lymphocytic leukemia.

The Neopepsee improved classification power (0.48–0.56 of f-

score) compared to conventional criteria (0.41–0.45 of f-score).

Smith et al. (105) developed a gradient boosting machine

learning-based algorithm to predict the immunogenicity of

predicted peptide in neoantigen prediction pipeline. The

neoantigen related peptide intrinsic biochemical characteristics

including valine at position 1, valine at the last position, small

amino acids at the last position, and so on (Table 2) were used to
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construct a gradient boosting model. The algorithm was then

tested in two mouse tumor models and showed that the

algorithm could predict antigens with potential therapeutic

value. However, the mouse models only include two HLA

types, which may miss the effect of HLA on immunogenicity.

The pTuneos (14) is a computational framework for

prioritizing and selecting neoantigens from NGS data, which

consists of four steps: (i) Data preprocessing. Sequencing quality

control, alignment, quantification of the abundance of gene

isoforms, variant calling, and HLA typing were performed in

this step. (ii) Identification of candidate neoantigens. A list of

candidates neoantigens was obtained by predicting the binding

affinity of peptides-MHC. (iii) Training random forest model

based on five non-redundant features related to the presentation

and recognition of neoantigens (Table 2). The model initially

screen neoantigens that can be presented by MHC I and

recognized by TCRs. (iv) Neoantigen prioritization. A refined

immunogenicity scoring schema used to evaluate the true

immunogenicity of the identified neoantigens. The pTuneos

was then verified effective using TIL infiltrating data sets,

TCGA data sets, and Tumor immune checkpoint inhibitor

treatment data sets. For evaluation of runtime, pTuneos was

20 times faster than Neopepsee and comparable to MuPeXI and

pVAC-Seq. pTuneos obtained a higher performance than

MuPeXI and Neopepsee when using naturally processed and

presented neopeptides data. It is well known that the accuracy of

machine learning models relies heavily on large amounts of data.

However, the positive data (84 positive peptides) in training data

and the testing dataset (21 peptides) were very few, which would

affect the accuracy of the model. In addition, the immunogenic

features used in this model were also few, which wouldn’t fully

reflect immunogenicity.

INeo-Epp (106), a tool used to predict human immunogenic

antigens and neoantigens, introduces HLA supertypes to

improve the prediction accuracy of antigens presented by

HLA. INeo-Epp combines the physical and chemical

properties of amino acids of peptide, peptide structure

characteristics, peptide entropy and peptide-MHC affinity %

rank screening out 24 epitope immunogenicity related features

and using supervised learning algorithm-random forest to

predict the immunogenicity of epitopes. On this basis, a

differential agretopicity index was added into features to

identify neoantigens and the five-fold cross-validation showed

good performance in predicting neoantigens. This method may

increase the amount of true neoantigens that elicits an antitumor

response. For future studies, the tool needs more data to perform

an external verification of increased reliability.

Tang et al. (108) developed TruNeo, an integrated

computational pipeline based on the deep learning model

combined with scoring system, by taking into account the six

main features that affect the prediction of neoantigens: peptide-

MHC binding affinity, proteasome cleavage, antigen transporter

transport efficiency, expression abundance, tumor heterogeneity,
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TABLE 2 Pipelines with ML models extracting binding affinity and immunogenicity feature.

Pipelines Machine Learning Algorithm (and
Scoring System) Key Features Data Input for each

Feature

Neopepsee (104)
(2018)

(1) Gaussian naive Bayes
(2) Locally weighted naive Bayes
(3) Random forest
(4) Support vector machine

(1) IC50

(2) Rank
(3) Combined score
(4) Immunogenicity score
(5) Hydrophobicity
(6) Polarity and charged score
(7) Differential agretopicity index
(8) Amino acid pairwise contact potentials
(9) Similarity

(1-2) Peptide sequence and HLA
type
(3-9) Peptide sequence

Machine-learning
algorithm (105)
(2019)

Gradient boosting model (1) Valine at position 1
(2) Valine at the last position
(3) Small amino acids at the last position
(4) Basic amino acids of the reference sequence
at the mutated position
(5) Changes in the mutated position to a small
amino acid
(6) Lysine at relative site 1
(7) Presence of valine within the first 3 positions

Peptide sequence

pTuneos (14)
(2019)

Random forest and scoring system (1) Mutant pMHC affinity % rank
(2) Normal pMHC affinity % rank
(3) Sequence similarity between normal and
mutant peptides
(4) Peptide hydrophobicity score
(5) T cell recognition probability of the pMHC
complex

(1-2) Peptide sequence and HLA
type
(3-5) Peptide sequence

INeo-Epp (106)
(2020)

Random forest (1) The characteristics of 21 amino acids
(2) Frequency score for immunogenic peptide
(3) Peptide entropy
(4) Rank (%) score
(5) Differential agretopicity index

(1-3,5) Peptide sequence
(4) Peptide sequence and HLA
type

DeepAntigen (107)
(2020)

Deep sparse learning The 3D genome-related 2693 features DNA and RNA-seq reads

TruNeo (108)
(2020)

Deep learning and scoring system (1) MHC binding
(2) Proteasomal cleavage efficiency
(3) TAP transport efficiency
(4) Variant allele frequency
(5) Expression abundance
(6) Type of neoantigen

(1,3) Peptide sequence and HLA
type
(2) Peptide sequence
(4) Mutate gene
(5) RNA-seq reads
(6) Mutate gene and affinity

DeepImmuno-CNN
(109)
(2021)

Convolutional neural network Amino acid physicochemical features Peptide sequence

Machine-learning
algorithm (110)
(2021)

Random forest (1) Gene expression decile
(2) Mutation present in RNA-seq
(3) Mutant MHCflurry1.6 percentile rank
(4) MHCflurry1.6 wild-type:mutant rank
(5) C-term NetChop-3.1 score mutant
(6) 20S NetChop-3.1 score mutant
(7) NetMHCstabpan-1.0 prediction mutant
(8) IEDB immunogenicity score mutant
(9) TAP binding score mutant
(10) T-cell contact residues hydrophobicity
(11) T-cell contact
(12) MHCflurry1.6 mutant processing score
(13) MHCflurry1.6 mutant presentation score
(14) Exome VAF decile

(1, 2) RNA-seq reads
(3, 4, 7, 9, 12, 13) Peptide
sequence and HLA type
(5, 6, 8, 10, 11) Peptide sequence
(14) WGS reads
F
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clonality and HLA LOH (loss of heterozygosity). This was done to

best identify high confidence neoantigens with immunogenicity.

The predictive performance of TruNeo and MHCflurry was

compared using published literature and real patient data.

TruNeo showed 52.63% of recall rate, which was 2.5 times

higher than that obtained by MHCflurry (21.05%) using the

published data. Furthermore, the positive rate of TruNeo (50%)

was 2.5 times higher than MHCflurry (20%) (the lung cancer

patient data). Both results showed that TruNeo exhibited more

valuable predictive results than MHCflurry. However, only one

real patient in a validation experiment is used for comparison

between tools.

DeepImmuno-CNN (109), based on CNN, uses AAindex1

PCA encoding strategy to encode each amino acid sequence,

overcoming the sparsity problems of one-hot encoding.

Compared with DeepHLApan and IEDB, two commonly used

immunogenicity identification approaches, the DeepImmuno

has a better performance in predicting immunogenic

neoantigens. DeepImmuno-CNN predicted 29 out of 35 (83%)

immunogenic neoantigens, which was higher than IEDB (63%)

and DeepHLApan (34%) using the tumor neoantigen dataset.

Additionally, the DeepImmuno could help find residues that are

vital for antigen recognition. It is noteworthy that the TCR

sequence played an important role in the epitope recognition.

However, this study and even most of studies not include the

feature because of the shortage of the matched TCR sequencing

data. In addition, this study only considerate the peptide

sequence characteristics, which would bring bias to predict

immunogenic neoantigens.

Due to the diversity and heterogeneity of T-cell immune

responses, it is proposed that additional features can provide

more precise information to accurately train a neoantigen-

predicting model. It is believed that a systematic combination

of multiple parameters would enhance the accuracy of

established predictors. In addition to the features mentioned

above, other features were proven to be associated with immune

response, including the clonality of the neoantigen (111), CCR5

and CXCL13 expression (112, 113) and so on. These additional

neoantigen parameters should be considered in training a

complex model to strengthen the current neoantigen

prediction algorithms.
4.3 Choice of the ML algorithms

As summarized in Table 2, the ML models employed in

neoantigen-predicting pipelines are built by a verity types of ML

algorithms, ranging from traditionalML algorithms (random forest,

support vector machine etc.) to deep learning algorithms (such as

convolutional neural network). Elaborately, the difference between

deep learning algorithms and traditional ML or statistical analysis is

that a deep learning technique learn the input data incrementally
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through multi-layered architecture. It is also named neural network

because they aremodeled after the human brain, allowing data to be

processed between nodes in highly connected ways. The traditional

approaches, including traditional machine learning and statistical

modeling identify neoantigens through genomic NGS profiling,

bioinformatics and mass spectrometry that always describe the

classes of neoantigen with the sequencing variables and epitope/

MHC binding affinity through a linear relationship. In contrast, the

complexity and non-linear setting of the deep-learning callers

determined that deep learning algorithms understand and fit

better in terms of the non-linear association between NGS

variables and neoantigen immunogenicity.

Deep learning become a more popular options mostly

because several key advantages it displayed as comparing to

traditional approaches. Firstly, compared to the old school

bioinformatics algorithms, deep learning-based method could

improve the degrees of feature extraction in neoantigen

prediction, as neural networks outperform matrix-based

methods in predicting peptide binding affinity. They are able

to deal with less common peptides in variable lengths and

structures and take into account the nonadditive effects, which

may arise, e.g., when two amino acids compete for the same site

in the peptide-binding groove of the MHC heterodimer (114).

Secondly, deep learning-based method could improve the

efficiency in identifying neoantigens. Deep learning algorithm

is highly self-programming, which means that there is no need

for manual supervision of the whole process, which therefore

saves time and labor costs and therefore reduces human errors

(115). Most importantly, the development of deep learning

algorithms is accelerated and supported intensively by the

modern computational tools and community. For instance, the

3D models of proteins that AlphaFold generates are far more

accurate than before and thus would provide additional layer of

information in an improved deep learning model representing a

piece of information of neoantigen from an undercover angle

(116). Merative, formerly IBM Watson Health, is an artificial

intelligence assistant decision system providing sophisticated

analyses to help identify the mutations responsible for cancer

by combining cognitive computing and cloud computing with

other advanced genomic sequencing technology (117). This type

of tools is better defining the true mutation and the key variant

information in oncogenic peptide, therefore is beneficial for

neoantigen identification and model training.

Although the promise of deep learning algorisms is

considerable, a long-standing concern about deep learning

models is often referred to the “black boxes” issue with deep

learning algorithms because they are so complex that human

inc luding the researchers who bui l t them cannot

straightforwardly interpret how the predictions were made.

Lack of interpretability in deep learning-based models does

not help researchers to understand the underlying scientific

associations between neoantigen immunogenicity with the
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immunogenic mutations. One of the potential solutions is to

build an explainable deep learning approach through techniques

replacing deep learning black-box models with simpler

interpretable models that can explain the features and models

to human (118, 119). A following question, once an explainable

deep learning model is available, is how to achieve an

explainability for different types of predictors, considering the

tradeoff between the predicting accuracy and transparency

associated with scientific understanding, and to develop and

deploy trustworthy deep learning-based approaches that meet

healthcare objectives.
5 Discussion

The advances of AI in biomedicine promote the accuracy of

neoantigen prediction in silico, which is reflected in the

improvement of the accuracy of AI-based methods as

compared to other strategies-based methods (Table S5). With

the popularization of large-scale genome and transcriptome

sequencing, as well as the development of single-cell

sequencing technology, more and more data are generated in

biomedicine. Employing AI to train existing cancer clinical data,

including tissue slice images, sequencing data, clinical data, etc.,

makes it possible to find deep underlying commonalities in the

big data, which help us understand the unique characteristics of

different cancer cells. For example, Reiman et al. (120) used

neural network models to accurately characterize the tumor

immune microenvironment of solid tumors in the large

intestine, breast, lung, and pancreas by integrating RNA-Seq

and imaging data, which is crucial for determining the patient’s

response to cancer immunotherapy. AIDeveloper, a deep

learning software, was developed by Kräter et al. (121) to

classify image without the required for programming. In

addition, combination of AI and microfluidics can bring

convenience for biotechnology study. Almost all aspects of

biomedical fields, including but not limited to diagnosis,

personalized medicine, and treatment of oncology would be

benefited from this combination (122). For example, clinical

decision-makings such as patient screening for immunotherapy

and the prediction of response to treatment, were improved

significantly by advanced AI technique (123, 124). Through the

AI analysis of genome mutations, transcriptomes and other data,

we can understand why differences develop among different

individuals. This will provide a reference for future treatment

methods. The application of AI to genomics, transcriptomics

and proteomics makes it the greatest asset in neoantigen

prediction. For example, AI can be used for mutation

identification, proteasomal cleavage site predictions and TAP

transport efficiency predictions during neoantigen processing

and presentation, assessment of peptide-MHC binding affinity,

and prediction of the immunogenicity of neoantigens.
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Compared with bioinformatic tools, the number of predicted

effective neoantigens using AI model has increased dramatically,

which has greatly boosted immunotherapy (Table S5).

Major neoantigen prediction methods mainly focus on

peptide-MHC binding affinity. However, most predicted

candidate neoantigens that presented by MHC molecules will

not provoke T cell immune responses. In order to solve this

problem, some immunogenic features are used as filters in the

workflow of neoantigen prediction and AI models are being

established for identifying the immunogenicity of epitopes that

using a set of immunogenicity related features. In 2018,

neopepsee was first developed to predict immunogenic

neoantigens using machine learning model. In the following

years, more and more methods based on machine learning

models have been developed to predict the immunogenicity of

neoantigens to improve the prediction accuracy. It is worth

emphasizing that the models are very important for the

prediction accuracy of neoantigens not only in the step of

predicting the immunogenicity but also in the most of

neoantigen prediction steps from the variant calling to the

prediction of TCR-pMHC binding. And the models used in

the steps of neoantigen prediction mainly including

conventional machine learning (such as random forest) and

deep learning including DNN, ANN, and CNN. Each model has

its own advantages in the corresponding application. For

example, Zhou et al. (14) choose the random forest (testing

AUC of 0.833) rather than eXtreme Gradient Boosting (testing

AUC of 0.654) in the study due to the high accuracy rate of

random forest. Generally, conventional machine learning

models require structured data, however, deep learning models

are better at working with unstructured data. Therefore, we can

see from the above-mentioned sections that deep learning

models are more applied to the development of methods that

use unstructured data as input including variant callers, peptide-

MHC binding predictors, TCR- pMHC binding predictors and

immunogenicity of peptide predictors. And conventional

machine learning models such as random forest are applied to

development of methods that use unstructured data as input

(Table 2). It is important to select an optimal model for our

study. Li et al. (109) performed an evaluation for 5 traditional

machine learning including K-Nearest Neighbors, Support

Vector Machine, ElasticNet, AdaBoost, and Random Forest

and 3 deep learning models including ResNet, CNN, and

GNN with prior validated data. Finally, the CNN model of the

best performance was selected to use in the study. Hence, it is a

necessary step to evaluate the available ML models and select

best one before conducting study.

It should be noted that the quantity and quality of features

and data are the most critical factors for machine learning

models. Currently, the immunogenicity related features of

neoantigens are not exactly sure. Researchers used different

features to training their models. However, there are several
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features that are considered to be related to the immunogenicity

of neoantigens. Peptide-MHC binding affinity was considered as

an excellent feature for prediction of immunogenicity.

Bjerregaard et al. found that compared to non-immunogenic

peptides, immunogenic neopeptide have a stronger binding

affinity on MHC molecule (78). In addition, combination with

the non-mutated peptide-MHC binding affinity can also

improve the accuracy of neoantigen prediction (125). Previous

studies have shown that the binding stability of the peptide-

MHC was an important feature for predict ion of

immunogenicity (126). However, Kos ̧aloğlu-Yalçın et al. (125)

indicated that compared to binding affinity prediction alone,

binding stability predictions alone and combination with

binding affinity predictions did not improve the prediction

accuracy of immunogenic neoepitope. Tumor Neoantigen

Selection Alliance (TESLA) showed that binding stability of

peptide-MHC was related with peptide immunogenicity (1).

And Gartner et al. (110) found that the stability scores of

positive short peptides were significantly higher than negative

short peptides and combination with binding stability score and

binding affinity score could improve the accuracy of neoepitope

prediction. Therefore, there was controversial on the

relationship between a binding stability of peptide-MHC and

immunogenicity. The tumor abundance, a key presentation-

related factor, was also deemed to be associated with

neoantigen immunogenicity by TESLA (1). It has been

reported that the DAI was a better feature for prediction of

immunogenic neoepitopes (127). However, Kos ̧aloğlu-Yalçın
found that DAI performed worse than only binding affinity

that predicted by NetMHCpan (125). Several studies indicated

that sequence similarity (78) and the hydrophobicity of amino

acids at TCR contact residues (79) were important features of

immunogenicity. Other important experimental features about

HLA molecules, peptides, and TCRs that can represent the

immune response relationship should be discovered to enable

better neoantigen prediction. Studies have shown that anti-

tumor responses were mediated by T cells that target cancer

cells by recognizing neoantigens presented on HLA molecules

(83, 128). Therefore, the interaction between TCRs and their

tumor epitopes is essential for the anti-tumor immune response

(129). Most T cells with tumor-specific TCRs showed an

exhausted state that reduction of function following prolonged

exposure to antigens (130). Similarly, it has been shown that

neoantigen-specific TILs were largely in a CD39+CD69+

differentiated state, which may lead to no response to TILs-

based adoptive T cell therapy (131). However, complete

responders of TILs-based adoptive T cell therapy retained a

CD39- subpopulation of stem cell-like neoantigen-specific TIL

cells. Together, incorporating T cell phenotype, such as T cell

dysfunctional and progenitor states would allow to effectively

predict immunogenic neoantigens for cancer immunotherapy.

Although there are likely difficult to incorporate these features,
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the future endeavors can address such challenge with the

advances in biotechnology and machine learning. Although

many features were found to be related with peptide

immunogenicity, correlation between features makes features

to be redundant, which would make the AI models to be fitted.

To overcome this, some ML models especially random forest

model was selected to select features due to the ability that

random forest model could find the correlations between

features, which provides unbiased method to select important

features for prediction of neoantigens (106, 110).

Learning from a large amount of data and identifying

patterns that we were not previously aware of is the biggest

advantage of ML. However, due to various reasons, such as

inconsistent business purposes or related to personal privacy

laws, some stakeholders are reluctant to exchange data with each

other. Insufficient data is one of the main reasons that the

effectiveness of AI may be limited, especially considering there

are currently only a small number of public databases available,

such as IEDB, TSNAdb v1.0, and CAD v1.0. The Immune

Epitope Database (IEDB) is a free resource funded by the

National Institute of Allergy and Infectious Diseases (NIAID)

(132). It documents experimental data on antibodies and T-cell

epitopes studied in human, non-human primate, and other

animal species in the context of infectious disease, allergy,

autoimmunity, and transplantation. IEDB is currently the

most used database to provide epitope data for development of

methods for neoantigen prediction. And IEDB also provide

neoantigen prediction tools for researchers. However, the most

of epitope data were from bacteria or viruses, which may lead to

bias for the human neoantigen prediction (133). TSNAdb v1.0

(134), a database of tumor neoantigens, collected somatic

mutation and HLA alleles information from TCGA and TCIA

databases for a total of 7748 tumor samples from 16 tumors.

Two software, NetMHCpan v2.8 and NetMHCpan v4.0,

respectively, were used to predict the binding affinity of the

mutated peptides and HLA. It should be noted that this

database does not include the experimental validated

neoantigen data. The Cancer Antigens Database (CAD v1.0) is

developed by Yu et al. (135) in 2022 year to provide a platform

for cancer antigen especially neoantigens related methods

development. In CAD v1.0, verified tumor antigens and

relevant peptide information were collected. However, the

neoantigen data may from many ethnicities, which also bring

bias for prediction of neoantigen. In addition, data imbalance

problem also influences the accuracy of the AI model though

there are some methods to reduce the impact bring by data

imbalance. For example, Zhou et al. (14) used 84 positive data

and 2107 negative data to train random forest model, which was

significantly imbalanced.

Although there are many obstacles on the neoantigen

prediction, the puzzle of neoantigen prediction will eventually

be solved with the ever-advancing sequencing technology, mass
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spectrometry technique, laboratory biotechnology and AI

models, more precise immunogenic features, and more

available data. In the future, more attention on the immunity

response induced through interaction of tumor and T cell. At

present, our understanding of the intrinsic tumor-specific

immune responses is restricted, which limited identification of

new immunogenic neoantigens. The properties of neoantigen-

specific T cells, such as T cell phenotypes, T cell dysfunctional

and progenitor states, are proven to impact anti-tumor response,

and thus are expected to serves as additional source of features

for neoantigen prediction. With the development of single cell

sequencing, the single cell mapping of neoantigen-reactive T

cells would allow data mining of new gene phenotype and

molecular characteristics of T cells (136). In addition to coding

region proteins, more studies are expected to focus on epitopes

that are not belong to encoding region given the influence of

these peptides to the anti-tumor immune response is largely

discovered. Compared with personalized neoantigens, shared

neoantigens are the best option but more difficult to identify.

The shared neoantigen is derived from a driver mutation in an

oncogene or other hotspot mutation in the genome. Study

showed that a proportion of patients with epithelial tumors

have antigen-specific T cell responses to TP53 hotspot mutations

(137). A major advantage of shared neoantigens is that they

were proven to be successfully applied to clinical care in short

time. Therefore, it is expected the predictive accuracy of shared

neoantigens would be greatly improved in the future.

Combination with the big data and AI to analyze the

characteristics of real neoantigens, thereby improving

predictive accuracy and better exploiting their role

in immunotherapy such as a neoantigen-based vaccine,

cel l therapy, a combination of vaccines and other

immunotherapies or traditional therapies.
6 Conclusion

AI-based platforms for neoantigen prediction have received

increasing attention in recent years. The introduction of AI

models solves problems that bioinformatics methods cannot,

such as assessing the ability of a predicted neoantigen to elicit an

immune response. Creating scores to refine predicted candidate

neoantigens improves the accuracy of neoantigen prediction

pipelines. In this manuscript, we described a neoantigen

identification workflow and pipeline. We highlighted AI-based

tools and models in the process from data processing to final

neoantigen determination. Although several computational and

experimental approaches are being used for research and clinical

trials, there is still an urgent need to further optimize these

methods and develop new accurate pipelines. The current

methods mainly focus on peptide-MHC binding affinity,
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which lead to few predicted candidate neoantigens that can

induce T cell response by in vitro or in vivo experiments. To

address this problem, efforts are now underway to develop new

AI-based algorithms to predict immunogenic neoantigens. Our

knowledge of the features of immunogenic neoantigens and the

mechanism of TCR recognition of tumor antigens has

considerable room for improvement. Despite the existing

challenges of neoantigen prediction, the future of neoantigen-

based immunotherapy is bright, largely due to advancements

in AI.
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