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Colorectal cancer (CRC) is a major global health problem and one of the major

causes of cancer-related death worldwide. It is very important to understand

the pathogenesis of CRC for early diagnosis, prevention strategies and

identification of new therapeutic targets. Intercellular adhesion molecule-1

(ICAM-1, CD54) displays an important role in the the pathogenesis of CRC. It is a

cell surface glycoprotein of the immunoglobulin (Ig) superfamily and plays an

essential role in cell-cell, cell-extracellular matrix interaction, cell signaling and

immune process. It is also expressed by tumor cells and modulates their

functions, including apoptosis, cell motility, invasion and angiogenesis. The

interaction between ICAM-1 and its ligand may facilitate adhesion of tumor

cells to the vascular endothelium and subsequently in the promotion of

metastasis. ICAM-1 expression determines malignant potential of cancer. In

this review, we will discuss the expression, function, prognosis, tumorigenesis,

polymorphisms and therapeutic implications of ICAM-1 in CRC.
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Introduction

Colorectal cancer (CRC) with a particularly high prevalence

in China is a major health problem and one of the major causes

of cancer-related death worldwide (1, 2). In recent years, both

the morbidity and mortality of CRC have increased (1), thus it is

very important to understand the pathogenesis of CRC for early

diagnosis, prevention strategies and identification of new

therapeutic targets. Some studies have focused on the

identification of biomarkers in CRC, taking cell adhesion

molecules (CAMs) as their subject.

CAMs refer to those cell surface structures that allow cells to

adhere to each other and the extracellular matrix. They are

critical regulators of cellular homeostasis and function, and play

crucial roles in tumorigenesis, progression and metastasis (3, 4).

Intercellular adhesion molecule-1(ICAM-1, CD54) is one of

CAMs, which displays an important role in the the

pathogenesis of CRC. In this review, we will discuss the

expression, function, prognosis, tumorigenesis, polymorphisms

and therapeutic implications of ICAM-1 in CRC.
ICAM-1 structure, expression
and function

ICAM-1, located on chromosome 19p13, is a cell surface

glycoprotein of the immunoglobulin (Ig) superfamily of CAMs,

and consists of 5 extracellular Ig-like domains, a transmembrane

domain and a short cytoplasmic tail (5). The Ig-like domains

mediate ICAM-1 interactions with its two major ligands,

macrophage-1 antigen (Mac-1, CD11b/CD18) and lymphocyte

function-associated antigen-1 (LFA-1, CD11a/CD18) (6).

ICAM-1 is expressed in various cell types (epithelial cells,

keratinocytes, fibroblasts and immune cells) and plays an

essential role in cell-cell, cell-extracellular matrix interaction,

cell signaling and immune process (7, 8). It serves as a biosensor

to transducer outside-in-signaling via association of its

cytoplasmic domain with the actin cytoskeleton following

ligand engagement of the extracellular domain. Upon ligation,

ICAM-1 undergoes dimerization and clustering through

homotypic binding between Ig domains (7, 8).

Epithelial cells (ECs) of normal human colon do not express

ICAM-1, but it can be expressed subsequent to malignant

transformation. It has also been shown that ICAM-1 is related

to the mesothelial adhesion, malignant potential, occurrence and

progression of CRC (9–12). The interaction between ICAM-1

and its ligand may facilitate adhesion of tumor cells to the

vascular endothelium and promote metastasis subsequently. The

patients with increased ICAM-1 expression have more advanced

stage, as it promotes the tumor growth (11, 13). Its expression

was also associated with the cell differentiation of CRC. Higher

ICAM-1 expression was found in better differentiated CRC cells
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compared to lower ICAM-1 expression in poorly differentiated

CRC cells, which demonstrated that ICAM-1 promoted CRC

differentiation and retarded metastais (14). ICAM-1 may play an

important role in the immune response. The increased ICAM-1

expression might reflect the elevated immunity against tumor

cells and ICAM-1 renders tumor cells more sensitive to

lymphocyte-mediated lysis (15).
The prognostic significance of
ICAM-1 expression in CRC

The prognostic significance of ICAM-1 expression remains

controversial in CRC. ICAM-1 plays a dual role in CRC, and its

impact depends on whether this protein is expressed in a

membrane-bound or a soluble form (16–20). In CRC, the

increased expression of membrane-bound ICAM-1 was

associated with the favorable prognosis (16, 21). Maeda K

et al. reported a better prognosis for CRC patients with

membrane-bound ICAM1-positive (16). Tachimori A et al.

also reported that an increased membrane-bound ICAM-1

expression inhibited the tumour growth and was correlated

with a favorable prognosis in CRC (22). Leqi Zhou et al. and

Mlecnik B et al. reported that a high expression of ICAM-1 was

relevant to a prolonged survival (21, 23).

The favorable prognosis may be attributed to two

mechanisms: one is that ICAM-1 may play an important role

in the immunosurveillance and enhances lymphocyte-mediated

cytotoxicity (15, 24–26). T cells are important for killing tumor

cells and the increased ICAM-1 expression on CD8+ T cells

activates the antitumor function of CD8+ T cells. ICAM-1

expressed by tumor cells may lead to T cell-specific

recognition and enhanced T cell adhesion (27). Tachimori

et al. showed that more lymphocytes adhered to CRC cells

when ICAM-1 expression was upregulated (22). The other

potential mechanism is that ICAM-1 may play an important

role in the tumor microenvironment (TME). Upregulation of

ICAM-1 in CRC cells could increase cytotoxic lymphocytes

(CTLs) infiltration and the expression of cytolytic immune

effector molecules in the TME, which is associated with

favorable prognosis in CRC (4, 28–30). Increased CTLs was

observed in the TME of ICAM-1 positive CRC compared to that

of ICAM-1 negative CRC (13). Fisher et al. showed that ICAM-1

blockade decreased CTLs infiltration in the TME (31). The

increased ICAM-1 expression on other cells in the TME also

enhances the tumor infiltration and function of CTLs (23,

32, 33).

However, in some reports, the ICAM-1 expression was

correlated with a worse prognosis (34, 35). For instance,

Ionescu C et al. reported overexpression of ICAM-1 was

correlated with lower overall survial (OS) (34). There is no

clear explanation for the apparently contrary roles of ICAM-1,
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suggesting that the function of ICAM-1 is context dependent

and modulated by the action of other membrane receptors.
Factors regulating ICAM-1
expression

Several studies have focused on the factors regulating ICAM-

1 expression, and the mechanisms seem to be multiple. Figure 1

demonstrates the potential mechanisms of ICAM-1 expression

in CRC.
Cytokines

A variety of cytokines may regulate ICAM-1 expression,

such as TNFa, IFNg and IL-1b (36, 37). The regulatory

mechanism is mainly involved in activating signal pathways

through the binding on the ICAM-1 promoter.
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Tumor necrosis factor

TNF-a can regulate ICAM‐1 expression, which results in

enhanced lymphocytic infiltration and tumor apoptosis (36).

TNF-a response element is important in regulating ICAM-1

expression. This response element possesses an NF-kB binding

site and NF-kB plays a significant role in TNF-a induced ICAM-

1 expression (38).
Interferon-g

IFNg can also induce ICAM-1 expression and STAT-1

(signal transduction and activator of transcription) protein is

upregulated during IFN-g response (39). The IFN-g response

element (IRE) plays a important role in ICAM-1 expression (40).

Upon IFN-g stimulation, IRE forms a binding complex (IRE-

BC) with nuclear proteins, which is required for induction of

ICAM-1 expression.
FIGURE 1

IL-6, Interleukin-6; IFN-g, Interferon- g; TNF-a, Tumor necrosis factor- a; SDF-1, Stromal cell derived factor-1; IL-b, Interleukin- b; MGP, Matrix
gla protein; SphK1, Sphingosine kinase-1; JAK, Janus kinase; STAT3, Signal transducer and activator of transcription 3; STAT1, Signal transducer
and activator of transcription 1; NFkB, NFkB pathway; JNK:c-Jun N-terminal kinase pathway; ERK, Extracellular signal-regulated kinase pathway;
FAK, Focal adhesion kinase pathway; Rho/Rock, Rho/Rho-associated kinase pathway; ICAM-1, Intercellular adhesion molecule-1.
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Interleukin-6

IL-6 is a T-cell-derived cytokine that induces maturation of

B cells. IL-6 plays a critical role in metastasis of cancer cells by

modulating ICAM-1 expression (40). CRC patients exhibited

high level of IL-6 and IL-6 induces ICAM-1 expression via IL-6

receptor. JAK-STAT3 pathway and the AP-1 binding site of

ICAM-1 are involved in IL-6 mediated ICAM-1 expression (41).
IL-1b

IL-1b has been reported to induce ICAM-1 expression and is

involved in multiple immune and inflammatory responses (42).

IL-1b also activates NF-kB pathway, ERK pathway and JNK

pathway for ICAM-1 expression.
Resistin

Resistin is an adipose tissue-secreted form and could also be

expressed in peripheral blood mononuclear cells, macrophages,

and bone marrow cells (43). Resistin exerts its biological effects

by binding to Toll-like receptor 4 (TLR4) and NF-kB can be

activated by TLR4 which leads to ICAM-1 expression (44, 45).
Transcription factors

The expression of ICAM-1 may be regulated by a few

transcription factors, such as stromal cell derived factor-1

(SDF-1), Leptin, C/EBPb (36).
SDF-1

Abnormal expression of SDF-1 has been detected in CRC

and ICAM-1 expression was up-regulated by SDF-1 (46).

MAPKs pathway may be involved in the SDF-1-mediated

expression of ICAM-1 (47). By MAPKs pathways, SDF-1

activates NF-kB and C/EBPb to bind to the promoter of

ICAM-1, thus leading to ICAM-1 up-regulation in CRC

cells (46).
Leptin

Leptin can induce ICAM-1 expression and the Rho/ROCK

(Rho-associated coiled-coil-forming protein kinase, ROCK)

pathway may be involved in the leptin-mediated expression of

ICAM-1 (48). Z Dong et al. revealed that leptin can induce

ICAM-1 expression by the Rho/ROCK pathway (49).
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Sphingosine kinase 1

SphK1 is an oncogene and is associated with angiogenesis,

anti-apoptosis and survival of tumor cells (50). The SphK1

expression is enhanced in CRC and enhanced the ICAM-

1expression by regulating the FAK pathway in CRC cells (51,

52). The ICAM-1 expression is upregulated with the

overexpression of SphK1 and downregulated with the

suppression of SphK1 in CRC cells.
Matrix Gla protein

MGP is a secreted, calcium-binding matrix protein.

Overexpressed MGP could be found in CRC, and it may be

associated with tumor progression and invasion. Li X et al.

revealed that MGP expression increased in CRC and MGP

promoted the phosphorylation of NF-kB by upregulating

intracellular free calcium concentrations, activating the

expression of ICAM-1 (53).
MicroRNAs

MicroRNAs (miRNAs) also play an important role in

regulating the ICAM-1 expression in CRC. Recent studies

indicate that ICAM-1 is a direct target of miRNAs, and these

miRNAs bind to the untranslated region (UTR) of ICAM-1 and

regulate ICAM-1 expression. Mir-221 binded to 3’UTR of

ICAM-1 mRNA which resulted in transcription suppression of

IFN-g induced ICAM-1 expression (54). In addition, miR-222

and miR-339 have also been shown to bind 3’UTR of ICAM-1

promoter to suppress the ICAM-1 expression and promoted

resistance of cancer cells to CTLs (55, 56). MiR-130 was induced

by TNFa and lead to the increased ICAM-1 expression (57).

MiR-141 binded to the 3’UTR of ICAM-1 directly and inhibited

TNF-a induced ICAM-1 expression in ECs (58). Some miRNAs

modulate ICAM-1 expression through down-regulating SphK1

expression in CRC cells, such as miR-613, miR-659-3p, miR-

101. These miRNAs targeted SphK1 and downregulated ICAM-

1 expression (59–62). SphK1 was an important target of miR-

101, and miR-101 down-regulated SphK1 to inhibit ICAM-1

expression in CRC cells (62).
Genetic variations

Genetic variations in the ICAM-1 gene can regulate the

protein expression in various diseases. ICAM-1 rs5498 may

affect the expression of ICAM-1 in CRC patients. Wang MY

et al. reported that ICAM-1 rs5498 may affect the level of

sICAM-1 (63). The level of sICAM-1 at ICAM-1 5498 allele
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locus in K individuals was higher than that at non-K allele.

Wang QL et al. also reported patients with KK genotype showed

an increased ICAM-1 expression in CRC and ICAM-1

expression was higher in patients with KK genotype than that

with KE+EE genotypes (64). ICAM-1 5498 is a non-synonymous

mutation, which leads to the increased expression of ICAM-1

and affects the function of ICAM-1.
ICAM-1 expression and metastasis
in CRC

ICAM-1 expression may decrease CRC metastasis. In CRC,

the high expression of membrane-bound ICAM-1 was

associated with a lower incidence of liver and lymph node

metastases (14, 16, 17). The upregulation of ICAM-1 inhibited

tumor metastasis in CRC cell lines (22, 23). Mlecnik B et al.

reported upregulation of ICAM-1 in CRC cells lowered the

frequency of distant metastasis (23). The transfection of

ICAM-1 into CRC cells inhibited tumor metastasis (27).

Tachimori A et al. also demonstrated that liver metastases

decreased in CRC cells expressing ICAM-1 compared with

CRC cells not expressing ICAM-1 (65).
Mechanisms of ICAM-1 in
CRC metastasis

Metastasis of CRC is a complex process that is influenced by

a variety of factors. Among these factors, ICAM-1 plays a key

role, but the mechanisms of how ICAM-1 decreases metastasis

of CRC are not completely clear. One potential mechanism is

that ICAM-1 can activate the immune system to prevent

metastasis of CRC (13). ICAM-1 promotes recognition and

destruction of tumor cells by the immune cells (4). ICAM-1

increased lymphocytes recruitment, promoted lymphocytes to

attach to CRC cells and lymphocyte-mediated tumor lysis, which

may improve the immunosurveillance and restrict tumor

metastasis (20, 24). It can also sensitize metastatic tumor cells

to CTL-mediated killing and prevent tumor metastasis (66). A
Frontiers in Oncology 05
second mechanism may be that ICAM-1, as a morphogen,

enhances tumor cells attachment to the extracellular matrix by

promoting motility in the context of remodeling. Taglia L et al.

showed that ICAM-1 mediated tumor cells attachment to the

extracellular matrix and prevented tumour cells from detaching

from the primary tumor and thus retarded metastasis (16).

Thirdly, ST6GAL1 could mediate tumor metastasis by

regulating the stability of ICAM-1 (22). It might increase

ICAM-1 stability through sialylation and consequently inhibit

CRC metastasis (67, 68). Fourthly, the mechanism may be due to

GRP’s activation of the immune surveillance system (2, 69). FAK

phosphorylation mediates GRP’s activation of the immune

system and ICAM-1 is the downstream proteins of FAK

pathway (58–63, 66–72).
Soluble ICAM-1 in CRC

Apart from the membrane-bound ICAM-1 expressed on

CRC cells, there exists a soluble form of ICAM-1 (sICAM-1) in

serum. SICAM-1 was firstly identified in the serum of healthy

volunteers by Seth et al, and its level is elevated in malignancies

(73). Although the splice variant of sICAM-1 is truncated at the

transmembrane domain, it retains all five extracellular Ig-like

domains similarly to full-length ICAM-1 molecule, and its

ability is conserved. In agreement with the small size of the

transmembrane and cytoplasmic domains, sICAM-1 is only

slightly smaller in size than its membrane-bound form.

The mechanism of sICAM-1 production is unclear, but it

may be produced by proteolytic cleavage of membrane-bound

ICAM-1, and released from the local cancer cell and enter the

serum (73). Secondly, sICAM-1 is an inflammation-associated

marker and is therefore increased in patients with an

inflammatory TME. Thirdly, ICAM-1 rs5498 may have an

effect on the levels of sICAM-1. Bielinski SJ et al reported the

ICAM1 rs5498 G allele was associated with the level of sICAM-

1 (74).

The level of sICAM-1 was elevated in CRC patients and can

serve as a biomarker (Table 1) (15, 20, 75, 79, 80). The level of

sICAM-1 was positively correlated with the tumor size,
TABLE 1 Comparison of sICAM-1 levels between patients and controls.

CRC
patients

median age
(years)

Gender
(male:female)

sICAM-1 levels in patients
(ng/mL)

controls sICAM-1 levels in controls
(ng/mL)

P
value

References

40 NR 20:20 366.1±114.1 24 306.4±98.2 0.037 (15)

63 70 33:30 285.0 51 203 NR (20)

56 57 32: 24 743.7±113.7* 25 345.7±49.8 P<0.001 (75)

297 67 185:112 266.5 40 242.7 NR (76)

138 64 89:49 160.9 ±109.9 40 76.1 ±15.6 <0.001; (77)

46 66 20:26 228.0±52.59 40 201.7±24.7 P<0.02 (78)
fr
NR: not reported, *Dukes C and D.
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advanced stage and metastasis in CRC patients (9, 14, 15, 20, 75,

79–82). Basouglu et al. found that the serum sICAM-1 level was

higher in CRC patients than that in the healthy controls and

patients with advanced stage had higher sICAM-1 levels than

those with a lower stage (81). Mantur et al. and Kang et al. also

observed that CRC patients with higher sICAM-1 level were at a

higher advanced stage (15, 75). The sICAM-1 level in patients

with distant metastases increased compared with patients

without metastases. High levels of sICAM-1 have been shown

to be associated with liver metastasis in CRC (14, 15, 18).

SICAM-1 levels decreased significantly after curative surgery

for CRC (15).

Previous studies demonstrated that patients with higher

sICAM-1 level revealed poor prognosis (14, 16, 23), while the

patients with lower sICAM-1 level displayed an improved OS

(83). Yamamoto Y et al. also reported high sICAM-1 level was

associated with shorter OS in CRC patients treated with

chemotherapy plus bevacizumab (84). Elevated sICAM-1 level

is associated with a decreased OS and serves as independent

prognostic biomarker, but the mechanisms are not completely

clear. SICAM-1 can bind to circulating CTLs, inhibit the

interaction between CTLs and tumour cells, and block

immune recognition of tumor cells (85). It can also block NK

cell-mediated toxicity and thus allow tumour cells to escape

immune destruction (76). Moreover, it can promote

angiogenesis and stimulate tumour cells growth (86). These

findings are possible explanations for the poor prognosis.
ICAM-1 single nucleotide
polymorphisms in CRC

SNPs are the most common type of DNA sequence and

analysis of ICAM-1 SNPs is important for studying the genetic

features of CRC. Previous studies have suggested that ICAM-1

SNPs are associated with the risk of CRC.
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ICAM-1 SNPs and CRC risk

Several studies have assessed the relationship between CRC risk

and ICAM-1 SNPs, but these results were controversial (Table 2).

Some studies showed that ICAM-1 SNPs were associated with an

increased CRC risk (5, 64, 87). George Theodoropoulos et al. firstly

reported that ICAM-1 rs5498 was associated with an increasing

CRC risk in CRC patients (87). Anbarasan C et al. and Wang QL

et al. also reported ICAM-1 rs5498 increased the risk of CRC (5,

64). But in ameta-analysis, the ICAM-1 rs5498 decreased the risk of

CRC in Caucasians (88). We found that ICAM-1 rs5498 was not

correlated with the risk of CRC in Chinese CRC patients, but

ICAM-1 rs5498 decreased the CRC risk in the subgroup of age≥61

(89). Ravindran Ankathil et al. found that ICAM-1 rs5498 did not

show significant association for CRC risk in Malaysian CRC

patients (90). In our previous study, ICAM-1 rs3093030

polymorphism did not influence CRC risk (89). For ICAM-1

rs179969 polymorphism, the frequencies of homozygous wild

type was significantly higher in controls compared to CRC

patients. The different findings may be due to different ethnicities,

regions, ages or the limited sample sizes. In the future, an analysis of

different SNPs may make it possible to describe the exact relations

between polymorphisms and CRC risk.
ICAM-1 SNPs and tumor differentiation
in CRC

ICAM-1 SNPs are correlated with differentiation of CRC.

ICAM-1 rs5498 KK genotype in poorly differentiated patients

was significantly higher than that in well- or moderately-

differentiated patients, whereas ICAM-1 rs5498 KE+EE

genotype in poorly-differentiated patients was lower than that

in well- or moderately-differentiated patients. Wang QL also

found that ICAM-1 rs5498 is significantly associated with well

differentiation of CRC (64). Liu LB et al. reported ICAM-1
TABLE 2 The relationship between CRC risk and ICAM-1 SNPs.

ICAM-1 SNPs CRC patients Gender
(male:female)

median age
(years)

Controls CRC risk ethnicities References

rs5498 222 128:94 NR 200 increased Greek population (87)

rs5498 87 49:38 55.0 102 increased Chinese population (64)

rs5498 309 NR NR 302 decreased Caucasians (88)

rs3093030 1003 620:383 61.1 1303 no significant difference Chinese population (89)

rs5498

rs5498 280 140:140 53.2 280 no significant difference Malaysian population (90)

rs179969 increased

rs5498 195 102:93 6.1 188 decreased Chinese population (91)
fr
NR, not reported.
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rs5498 was associated with the degree of tumor differentiation in

the population of North China (91). The differentiation of CRC

that correlates with ICAM-1 rs5498 may be of different ICAM-1

expression. ICAM-1 SNPs and multidrug resistance in CRC

MDR is one of the important factors leading to the failure of

chemotherapy. Topo II and P-gp are MDR-associated protein

and expression of them had a vital significance in chemotherapy

for CRC. ICAM-1 rs5498 polymorphism was associated with

MDR in CRC in a Chinese population (91). The high expression

of Topo II and P-gp was observed in ICAM-1 rs5498 KK

genotype, indicating that ICAM-1 rs5498 KK genotype might

be associated with MDR in CRC (91).
Anti-Tumor Therapy Targeting
ICAM-1

Targeting ICAM-1 and its associated pathway might provide

a new insight for treatments of CRC. However, ICAM-1 plays

diverse roles in anti-tumor responses and immunity, therefore,

the targeting treatments of ICAM-1 may be difficult. Blocking of

ICAM-1 has been proven useful in rheumatoid arthritis (92), but

targeting ICAM-1 in tumors have shown disappointing results.

Chimeric antigen receptor (CAR)-T cell therapy has shown

remarkably effective in cancer treatment and ICAM-1 could be a

promising target for CAR-T cells. Wei H et al. demonstrated

ICAM1-specific CAR-T cells could recognize ICAM-1 expressing

breast cancer cells and inhibit tumor growth in vitro and in vivo

(93), which provided a reference for CAR-T cell therapy in CRC.

Further, CpG-ODN (oligodeoxynucleotides, ODN) vaccination

caused up-regulation of ICAM-1 on tumor-associated blood

vessel endothelia leading to tumor-infiltration of T cells and

tumor suppression in mouse model of pancreatic carcinoma (94).

Administer cytokines is the straight way to increase inflammatory

signals, but this could lead to severe adverse events, so delivery of

cytokines directly to the tumor site could reduce adverse events

(95). Angiogenic factors in the TME can decrease ICAM-1

expression, so targeting angiogenesis could also increase the

ICAM-1 expression (96). NF-kB pathway plays a central role in

ICAM-1 expression, so blocking NF-kB pathway can inhibit the

ICAM-1 expression. The acai polyphenolic extract inhibited the

ICAM-1 expression by targeting NF-kB pathway (97).

Flubendazole, the benzimidazole derivative used in the treatment

of parasitic disease, suppressed the growth of colon cells by down-

regulation of NF-kB and ICAM-1 (98). Perhaps, with a better

understanding of the various functions of ICAM-1 and how their

expression and function are regulated, the clinical value of ICAM-1

could be revisited for the improvement of therapeutic strategies.
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Conclusions and future perspectives

In this review, we provide the first comprehensive

description of the knowledge regarding ICAM-1 in CRC. The

pathogenesis of CRC involves various mechanisms, and ICAM-1

plays different roles. During cancer development, ICAM-1

mediates anti-tumor response including tumor antigen uptake,

activation of tumor-specific T cells, leukocyte trafficking into the

tumor site and tumor cell killing. ICAM-1 remains the

focus of continued investigations and may serve as a

promising prognostic biomarker, and a potential target for

emerging therapies.
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