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Pancreatic cancer is a lethal malignancy with a 5-year survival rate of about 10%

in the United States, and it is becoming an increasingly prominent cause of

cancer death. Among pancreatic cancer patients, pancreatic ductal

adenocarcinoma (PDAC) accounts for more than 90% of all cases and has a

very poor prognosis with an average survival of only 1 year in about 18% of all

tumor stages. In the past years, there has been an increasing interest in cancer-

associated fibroblasts (CAFs) and their roles in PDAC. Recent data reveals that

CAFs in PDAC are heterogeneous and various CAF subtypes have been

demonstrated to promote tumor development while others hinder cancer

proliferation. Furthermore, CAFs and other stromal populations can be

potentially used as novel prognostic markers in cancer. In the present study,

in order to evaluate the prognostic value of CAFs in PDAC, CAF infiltration rate

was evaluated in 4 PDAC datasets of TCGA, GEO, and ArrayExpress databases

and differentially expressed genes (DEGs) between CAF-high and CAF-low

patients were identified. Subsequently, a CAF-based gene expression signature

was developed and studied for its association with overall survival (OS).

Additionally, functional enrichment analysis, somatic alteration analysis, and

prognostic risk model construction was conducted on the identified DEGs.

Finally, oncoPredict algorithm was implemented to assess drug sensitivity

prediction between high- and low-risk cohorts. Our results revealed that

CAF risk-high patients have a worse survival rate and increased CAF

infiltration is a poor prognostic indicator in pancreatic cancer. Functional

enrichment analysis also revealed that “extracellular matrix organization” and

“vasculature development” were the top enriched pathways among the

identified DEGs. We also developed a panel of 12 genes, which in additional

to its prognostic value, could predict higher chemotherapy resistance rate. This

CAF-based panel can be potentially utilized alone or in conjunction with other
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clinical parameters to make early predictions and prognosticate

responsiveness to treatment in PDAC patients. Indeed, it is necessary to

conduct extensive prospective investigations to confirm the clinical utility of

these findings.
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Introduction

Pancreatic cancer is the third main cause of cancer-related

mortality in both male and females (1). Only in 2022, an

approximate of 62210 cases are estimated to be diagnosed in

the United States with this cancer of which 49830 are anticipated

to die (1). Smoking (2), obesity (3), diabetes (4), alcohol

consumption (5), and Helicobacter pylori infection (6) are the

major risk factors linked to this malignancy. Pancreatic ductal

adenocarcinoma (PDAC) and pancreatic neuroendocrine

neoplasm (PanNEN) are the two primary histological subtypes

of pancreatic cancer of which the former accounts for 90% of all

pancreatic cancer cases, whereas PanNEN accounts for only 3–

5% of all cases (7). Surgical resection, chemotherapy, and

radiotherapy are the major conventional therapeutic

approaches; however, surgical excision is the only current

therapy that can be potentially curative in comparison to other

clinical approaches (8). Nonetheless, patients diagnosed with

PDAC, show poor survival rates mainly due to their advanced

stage at diagnosis, local relapse, and distant metastasis (9). Thus,

obtaining adequate knowledge on the cellular and molecular

alterations associated with therapeutic response and clinical

prognosis is a prerequisite to an efficient treatment for

this disease.

The “ecological niche” of cancer cells, the so-called tumor

microenvironment (TME), is believed to be among the major

drivers of tumor growth, metastasis, and drug resistance (10–

12). The TME is comprised of various cellular components like

fibroblasts, endothelial cells, immune cells, adipocytes and

neuroendocrine cells as well as extracellular elements such as

extracellular matrix (ECM) and tumor-stimulating molecules

(e.g., cytokines, chemokines, etc.) (13). Among the different cell

populations within the TME, cancer-associated fibroblasts

(CAFs) have gained more interest due to their multiple pivotal

roles in cancer progression, invasion and metastasis, crosstalk

with other immune cells, and ECM remodeling (14). Such

conspicuous characteristics have turned CAFs into promising

sources of prognostic biomarkers as well as attractive candidates

for targeted therapy (15). In this regard, the molecular
02
alterations associated with CAFs have been suggested to reflect

an informative image of the tumor status, growth and response

to therapy and may therefore, be potentially used for optimizing

clinical decisions as well as finding novel diagnostic and

prognostic biomarkers (16–18). For instance, Ono et al.

discovered that the increased expression of CAF-podoplanin

in patients with stage I lung squamous cell carcinoma is a poor

prognostic predictor. In another study, Takai et al. showed that

targeting CAFs via Pirfenidone, could decrease cell viability and

collagen production of triple-negative breast cancer cells (19,

20). Such findings emphasize the important role of CAFs as

cancer-promoting entities as well as sources for the discovery of

biomarkers that could prognosticate the clinical outcome.

However, the prognostic and predictive value of CAF-

associated biomarkers has not been investigated in PDAC

patients, so far. Herein, bioinformatics methodologies are

increasingly applied to discover associations between such

early molecular-level changes and clinical manifestations.

Using high-throughput sequencing data, the underlying

pathological mechanisms of heterogeneous diseases like cancer

may be uncovered and turned into a more informative measure

by comparing the expression networks of various genes in

different disease status and/or groups of patients.

In the present study, we employed the data on differentially

expressed genes (DEGs) and CAF infiltration from three

different databases including Gene Expression Omnibus

(GEO), Cancer Genome Atlas (TCGA), and ArrayExpress to

study the prognostic potential of CAF-associated signatures in

PDAC patients. Subsequently, differential gene expression

analysis was performed to elucidate the CAF-associated hub-

genes and construct the stromal/CAF risk score through CAF-

associated gene profile and CAF infiltration. We also conducted

pathway enrichment analysis by Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) databases

in order to identify the main molecular pathways associated with

the CAF-related DEGs. The correlation between the identified

gene profile and overall survival (OS) as well as responsiveness to

chemotherapeutic agents was evaluated using univariate COX

regression analysis.
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Material and methods

Data collection and preprocessing

The gene expression data and clinical information of PDAC

patients were downloaded from the TCGA database (https://tcga-

data.nci.nih.gov/tcga/) using the UCSC Xena portal (https://

xenabrowser.net/hub/). The RSEM normalization and log2(x+1)

transformation were implemented to reach gene-level

transcription values. GEO2R package was used to download

normalized expression profiles and the clinical data of

GSE57495 and GSE57495 from the GEO database. Ultimately,

microarray gene expression data for ArrayExpress was acquired

through the accession number E-MTAB-6134. Notably, the mean

expression was calculated if a single gene had multiple probes.

Genes without expression levels were removed from the analysis.

The details of clinical characteristics are presented in Table 1. A

schematic illustration of the study design has been provided in

Supplementary Figure 1.
Assessment of CAF infiltration

Microenvironment Cell Populations-counter (MCP-

counter) algorithm supplied by the “immunedeconv” package

(https://github.com/omnideconv/immunedeconv) was used to
Frontiers in Oncology 03
estimate the CAF infiltration score of the patients from the

collected datasets. MCP-counter, developed by Becht et al., is a

bioinformatics tool to quantify tumor-infiltrating fibroblasts,

endothelial cells, and immune cells that relies on a strict and

reliable collection of marker genes in solid tumors (21).
Differentially expressed gene analysis

The samples were divided into two groups based on the CAF

infiltration scores calculated by the aforementioned algorithm.

After determining the CAF infiltration score, the patients were

dichotomized as per the calculated score and labeled as “high” and

“low”. Subsequently, the “limma” package of R software was used

to identify the DEGs of normalized gene expression data between

patients with high and low CAF scores. The overlapping DEGs

among the four datasets were identified by the Venn diagram,

illustrated by Venndiagram package of R. Expression changes

with |LogFC| > 0.5 and adjusted p < 0.05 were deemed significant.
CAF-based prognostic model
construction and validation

The TCGA-PAAD cohort was selected to construct and

train a CAF risk model while other cohorts from the GSE57495,
TABLE 1 Clinical characteristics of the cohorts included in this study.

TCGA GSE57495 GSE78229 E.MTAB.6134

Sex

Male 96 (73.1%) 33 (52.4%) not available 166 (57.6%)

Female 80 (26.9%) 30 (47.6%) not available 122 (42.4%)

Age

Median 65 68 not available not available

Range 35-88 24-86 not available not available

TNM Stage

I 21 13 4 12

II 145 50 45 39

III 4 – – 273

IV 4 – – –

not available 2 – – –

Grade

G1 30 not available 2 110

G2 94 not available 24 130

G3 48 not available 21 48

G4 2 not available 1 –

Gx 2 not available 1 –

Follow up

Alive 84 21 14 107

Death 92 42 35 182

Median OS 15.4 21.1 14.2 20.8
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GSE78229, and E-MTAB-6134 datasets were used for validation.

We evaluated potential genes in two steps to construct a

predictive risk score model: first we conducted univariate cox

analysis using the “glmnet” package and 12 genes were identified

with a p value < 0.05 in four datasets. Secondly, Cox

proportional hazards model was constructed. Finally, the

“survminer” package of R was utilized to evaluate survival

analysis. Kaplan-Meier survival analysis was performed

between the low- and high-risk groups.
Somatic alteration analysis

The mutational profile of the TCGA-PAAD patients were

obtained using the UCSC Xena portal. The maftools R package

was used to identify and display the top 20 highest mutational

frequencies in the both low- and high-CAF-risk cohorts. The

Chi-squared analysis was implemented to test the associations

between clinical data and the altered genes.
Functional enrichment analysis

The Hallmark gene sets from MSigDB were utilized for

GSEA, which was carried out using the clusterProfiler package,

while single sample GSEA (ssGSEA) was carried out using the

GSVA method. The implemented cutoff criterion for the gene

sets was FDR < 0.05.
Chemotherapy response prediction

Aiming at improving personalized treatment, the

oncoPredict package of R was used to predict drug sensitivity

against -5-FU, gemcitabine, and Oxaliplatin. Accordingly, drug

sensitivity values (measured by ACU, the area under the

concentration–response curve) were estimated followed by a

comparison of the values between the high- and low-risk groups.

High AUC means low sensitivity.
Results

Higher CAF infiltration is associated with
poor survival in PDAC patients

Microarray data analysis have been shown to provide gene

expression signatures of activated fibroblasts (22). Such

signatures have been used to identify particular CAF

characteristics in different malignancies including breast

cancer, lung cancer, etc (23). Studies in breast cancer have

revealed that fibroblast characteristics may, at least partially,

impact therapeutic responses (24). As a result, several
Frontiers in Oncology 04
methodologies have been used to show promising solid

evidence, suggesting that CAFs might be utilized for

prognostication. Thus, we aimed to investigate whether TME

infiltration of CAFs could serve as a prognostic indicator for

pancreatic cancer patients. Accordingly, by using MCP-counter,

the infiltration CAF scores were estimated in all the studied

datasets of PDAC patients. In this context, Kaplan–Meier plots

demonstrated that higher CAF infiltration scores were highly

associated with poor OS of PDAC patients in all the studied

datasets (Figure 1).
Identification of differentially
expressed genes

To obtain DEGs between the high- and low-risk PDAC

patients, we analyzed all datasets (TCGA-PAAD, GSE57495,

GSE78229, and E-MTAB-6134) through the Limma package of

R. Adjusted p. value of less than 0.05 and LogFC > 0.5 were the

cutoff criteria for the TCGA-PAAD, GSE78229, and E-MTAB-6134

datasets while a raw p value of less than 0.05 was set for the

GSE57495 due to the smaller number of candidates after p value

adjustment (Figures 2A–D). Following the aforementioned criteria,

we identified 2883, 735, 656 and 338 upregulated genes in TCGA-

PAAD, GSE57495, GSE78229, and E-MTAB-6134, respectively.

Ultimately, as shown in Figure 2E, 125 overlapping genes among all

four datasets were selected for further overrepresented gene

analysis. A gene set involved in “Extracellular matrix

reorganization” was found to have the highest relevance to the

identified dysregulated genes (Figure 2F).
The CAF-based prognostic signature is
associated with OS in PDAC patients

To construct a CAF-based prognostic risk model, the

TCGA-PAAD cohort was selected as the training cohort and

the remaining three datasets were used for validation. By

conducting univariate Cox regression analysis on the 331

identified up-regulated genes in the training dataset, 12 genes

correlating with OS in all four datasets including ADAMTS12,

CHST11, DCBLD2, FN1, FRMD6, KRT17, LOXL2, MMP14,

NRP2, PPFIBP1, TGFB1 , and VCL were filtered out

(Figure 3A). A cox model was constructed based TCGA-

PAAD dataset with the following formula: 0.172 *

ADAMTS12 + (-0.0870) * CHST11 + 0.127 * DCBLD2 +

-0.202 * FN1 + 0.0581 * FRMD6 + 0.266 * KRT17 + (-0.089) *

LOXL2 + (-0.196) * MMP14 + (-0.0935) * NRP2 + 0.238 *

PPFIBP1 + 0.287 * TGFBI + 0.220 * VCL. The patients were then

stratified into high- and low-risk groups based on the median

risk score. The expressions between worse and better survival

group across four datasets are shown in Figure 3B. The CAF-

based prognostic risk model was significantly correlated with OS
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in the TCGA-PAAD dataset (Figure 3C). The constructed risk

model was also found to be significantly correlated with OS in

other validation datasets (Figures 4A–C). Further correlation

analysis revealed that our risk score is significantly associated

with the CAF score calculated by MCP_Counter (Figures 4D–

G). In addition, Area under the curve (AUC) analysis showed

our risk model had AUC values of 0.744, 0.724, 0.761, and 0.617

in the TCGA, GSE57595, GSE78229, and E-MTAB-6134

datasets for predicting 5 years survival (Supplementary

Table 1), respectively. Based on the decision curve analysis

(DCA) analysis, we found that our model showed a higher net

benefit in TCGA, E-MTAB-6134 and GSE57495 cohorts in

terms of 3- and 5-year survivals.
The CAF-based signature is associated
with certain gene mutations and clinical
characteristics in PDAC patients

To evaluate the difference in gene mutations between the

high- and low-risk cohorts in the TCGA-PAAD database, simple

nucleotide variation data were obtained from the GDC

database7 and analyzed with the “maftools” package of R.

Figure 5 represents a summary of the gene mutations in the

two studied cohorts. As shown in Figure 5A, KRAS, TP53,

SMAD4, and CDKN2A were the genes with the highest

mutation frequencies between the high- and low-risk groups

(percentage differences were: 21%, 11%, 6%, and 5%,

respectively). Chi square test revealed that the frequency of

KRAS mutation in the low-risk group (73 of 85) was

significantly higher than that of the high-risk group (54 of 83)

(P = 0.00212). Furthermore, in the TCGA-PAAD database, the

high-risk groups were shown to have higher numbers of patients

with new tumor events, while the low-risk cohorts had better

treatment success rates (Figures 5B, C). With regard to the

clinical and pathological characteristics, data from the E-MTAB-

6134 cohort revealed that the number of patients with “pure
Frontiers in Oncology 05
basal-like” subtype (Figure 5D), which has been shown to have

the worst prognosis, was higher in the high-risk groups (25),

which also showed higher frequencies of KRAS mutations

(hypergeometric test; P = 0.052). Moreover, the “stroma-

activated” subtype, another dominant subtype identified in our

high-risk cohort, has been shown to have lower immune cell

infiltration rate and higher fibroblast/endothelial abundance in

its TME (26). On the other hand, the low-risk patients showed

the “immune classical” subtype, which has been shown to have

higher expression levels of CTLA4, sensitizing them to

immunotherapy medications (27). Finally, the number of

patients with the “pure classical” subtype was higher in the

low-risk groups, which has been previously reported to have the

best survival rates (28).
Functional enrichment analysis
reveals top molecular pathways in
high-risk PDAC patients based on
the CAF-based score

Following the identification of the DEGs, Gene Set

Enrichment Analysis (GSEA) on hallmarks gene sets from

MSigDB was used to determine the top dysregulated biological

pathways and/or functional genes in the patients with high CAF-

infiltration (Supplementary Figure 2). The results revealed

significant gene set expression differences between the high-

and low-risk groups of patients (Figure 6A). Our results showed

21 hallmark gene sets of which “epithelial mesenchymal

transition” (EMT) and “pancreas beta cells” had the highest

enrichment scores. To further validate the findings, a single

sample GSEA (ssGSEA) analysis was also conducted, in which

an EMT and beta cell signature enrichment score was allocated

to each sample. Our results revealed that the CAF risk score was

strongly correlated with the hallmark EMT (Figures 6B–E) and

pancreas beta cells (Figures 6F–I) in TCGA-PAAD, GSE57495,

GSE78229, and E-MTAB-6134 datasets. Furthermore, GO and
B C DA

FIGURE 1

Kaplan–Meier plots of PDAC patients dichotomized based on the infiltration CAF scores calculated using MCP_Counter. Based on the survival
analysis, higher CAF Infiltration is associated with worse overall survival in PDAC patients. (A–D), Represent TCGA-PAAD, GSE57495, GSE78229,
and E-MTAB-6134 respectively.
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B C D

E

F

A

FIGURE 2

Differential expression analysis. (A–D), Volcano plots representing differential expression analysis results among the high- and low-risk PDAC
patients in the studied datasets (TCGA-PAAD, GSE57495, GSE78229, and E-MTAB-6134 respectively). (E), Venn diagram shows 125 differentially-
expressed genes overlapping between all four datasets. (F), Overrepresented gene analysis reveals a gene set involved in “Extracellular matrix
reorganization” to have the highest relevance to the identified dysregulated genes.
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B

C

A

FIGURE 3

Construction of the CAF-based prognostic risk model. (A), Forest plot representing Hazard ratio of each single gene used to construct the risk
model. (B), The expressions between worse and better survival groups across four datasets. (C), Survival analysis reveals the association of the
constructed risk model with overall survival in the TCGA-PAAD dataset (P=0.0051). * 0.01 < p-value < 0.05; ** 0.001 < p-value ≤ 0.01; ***
0.0001 < p-value ≤ 0.001; **** p-value ≤ 0.0001.
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B C

D E

F G

A

FIGURE 4

CAF-based prognostic model validation and the association with CAF infiltration. (A-C), Kaplan–Meier plots representing the association of the
constructed risk model with overall survival in the validation datasets. (D-G), Scatter plots representing the correlation between the risk model
and the calculated CAF infiltration using MCP-Counter.
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KEGG pathway enrichment analysis were also conducted to

enrich the up-regulated genes. Based on the findings,

“extracellular matrix organization” and “vasculature

development” were among the top enriched pathways in the

high-risk patients of the studied cohorts. Taken together, the

significant differences in the EMT and the pancreatic beta cell

hallmark gene sets between the high- and low-risk groups of

patients may at least partially explain the correlation between a

high CAF risk score and poor OS.
The CAF-based signature can
predict sensitivity to the most
common chemotherapy
agents in PDAC treatment

We utilized the “oncoPredict” tool to estimate sensitivity to

frequently-used pancreatic cancer chemotherapy agents to better
Frontiers in Oncology 09
correlate the CAF-associated gene profiles with clinical practice.

Accordingly, drug sensitivity of patients in high- and low-risk

groups tomultiple chemotherapy agents including gemcitabine, 5-

fluorouraci, and oxaliplatin was predicted. Based on the findings,

the low-risk groups of patients in all the tested datasets showed

higher sensitivity to the aforementioned drugs (Figure 7).
Discussion

Despite the therapeutic advances, the prognosis of

pancreatic cancer remains poor (29), highlighting the

importance of identifying novel prognostic markers to

improve the clinical management of these patients.

Nevertheless, the efforts to identify clinically reliable

prognostic indicators have not been very successful,

necessitating additional studies. Tumor heterogeneity, which is

believed to be the primary reason of therapy resistance (30),
B C

D E

A

FIGURE 5

Genetic and clinical association with CAF-based signature. (A), Represents the frequencies of mutated genes among the high- and low-risk
groups. (B-E), Represent treatment success, new tumor events, histopathological subtypes, and KRAS mutational status, respectively.
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results from both the tumor cells and their surrounding stromal

cells (31). Thus, in addition to the direct study of the tumor cells,

clarifying the mechanisms driving this heterogeneity and

genomic profiling of the stromal components, could have a
Frontiers in Oncology 10
significant impact on the prognosis of cancer patients and pave

the way to develop novel treatment approaches (32).

In PDAC, fibroblasts play a more pronounced role due to

their high abundance which comprise approximately 80% of the
B C D E

F G H I

A

FIGURE 6

Cancer hallmark gene set analysis. (A), EMT and “pancreas beta cell” gene sets were found to be the top dysregulated hallmark gene sets among
all the studied datasets. (B-I), Scatter plots representing the correlation of the CAF-associated risk model with ssGSEA enrichment scores for the
EMT (B-E) and “pancreas beta cell” gene set (F-I) as a further validation step. EMT, Epithelial-Mesenchymal Transition.
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tumor bulk and only 20% of the tumor mass involves malignant

epithelial cells (33). These fibroblasts mainly originate from

pancreatic stellate cells which, under physiologic conditions,

function as lipid droplet storages; however, in the cancerous

environment, they secrete tumor-stimulating factors and

produce ECM, leading to tumor growth, metastasis, and cell

survival. Moreover, pancreatic CAFs have been shown to possess

different characteristics based on their location within the tumor

mass. In this context, Ohlund et al. revealed that multiple

subgroups of CAFs with various localizations within the tumor

can be identified in PDAC. They specifically mentioned that a-
SMAhigh CAFs can be found in close proximity to the tumor

cells, whereas a-SMAlow CAFs are localized more distant to

these cells, releasing pro-inflammatory cytokines like IL-6 (34).

Consequently, due to this high abundance rate and conspicuous

heterogeneity of CAFs within the PDAC tumors, their profiling

might be helpful in predicting the future behavior of the tumor.

Of note, by collecting data from 9356 patients of 32 cancer

subtypes from a TCGA pan-cancer cohort, it was shown that the

CAF index can outperform other parameters like EMT score in

terms of prognosticating survival outcomes (35). Nevertheless,

there is currently little evidence available on the prognostic

significance of CAF infiltration in patients with PDAC. In

order to investigate this hypothesis, CAF infiltration score was

estimated in four different datasets from the TCGA, GEO, and

ArrayExpress databases. Results from the MCP-counter method

revealed that higher CAF infiltration score is associated with OS,

indicating a role for CAFs in the progression of PDAC. The

constructed CAF-based prognostic risk model also showed that

the CAF risk-high groups manifest shorter survival, indicating

the fact that CAFs may serve as an independent prognostic
Frontiers in Oncology 11
marker in PDAC patients. In agreement with these findings, it

has been previously shown that higher percentage of stromal

infiltration or elevated expression of a-SMA in histological

investigations can be a marker of poor clinical outcome in

PDAC patients (36). Similarly, with regard to other cancers,

Dourado et al. also demonstrated that higher infiltration of CAFs

in TME is correlated with worse prognosis in oral squamous cell

carcinoma patients (37).

Subsequently, to obtain a CAF-related gene expression

signature, genes differentially expressed between the CAF risk-

high and -low groups of patients were identified, followed by

functional enrichment analysis. Functional enrichment analysis

of the 125 identified overlapping DEGs among four different

datasets revealed that most of these genes are enriched in

“extracellular matrix organization” and “vasculature

development” pathways. Supporting these findings, CAFs have

been shown to act as a sine qua non of ECM remodeling (38).

They produce various ECM proteins, primarily fibrous collagens

(types I, III, and V) and fibronectin. Additionally, they alter the

ECM by cleaving its constituent proteins with matrix

metalloproteinases (MMPs) and crosslinking collagen with

enzymes from the lysyl oxidase (LOX) family. This constituent

modification of ECM promotes migration and metastasis of

cancer cells. Furthermore, CAFs can enhance the “stiffness” of

TME, which is linked to chemoresistance and reduced chance of

survival in di fferent malignancies (39) . Regarding

neovascularization, it has documented that both cancer cells

and stromal cells affect vasculature development. In fact, CAFs

directly enhance tumor angiogenesis through producing pro-

angiogenic factors like vascular endothelial growth factor A

(VEGFA), fibroblast growth factor 2 (FGF2), CXCL12, and
FIGURE 7

CAF-based signature is associated with chemotherapy response. The drug sensitivity of the high- and low-risk patients to three chemotherapy agents
oxaliplatin, 5-fluorouracil and gemcitabine was predicted using AUCs generated by OncoPredict. Lower AUC values represent higher sensitivities.
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PDGFC (40–42). Beside their direct impacts, modification of

ECM proteins like fibronectin, osteopontin, periostin, and

collagens by CAFs can also result in vasculature development

in solid tumors (43). Additionally, GSEA was carried out to

analyze the biological processes and mechanisms through which

the CAF-related gene signature can be potentially linked to the

prognosis in the CAF risk-high cohorts. Our findings suggested

that EMT and hypoxia hallmarks were the most enriched

biological processes in the CAF risk-high patients.

Additionally, single sample GSEA revealed that the high CAF

risk score is correlated with EMT beta cell enrichment score.

CAFs have been shown to have the ability to induce EMT by

secreting cytokines like IL-6 in the TME (44). In accordance with

our results, Ino et al. documented that hypoxia-induced ARG2-

expressing CAFs were independent predictors of poor survival in

PDAC patients (45). Furthermore, under hypoxic conditions,

CAFs can increase motility of PDAC cells through the paracrine

signaling of Insulin-like Growth Factor 1 (IGF-1) and its

receptor (IGF1R) (46).

We also found that our CAF-based signature is correlated

with specific gene mutations as well as certain clinical

characteristics of PDAC patients in the studied datasets. Our

findings revealed that KRAS mutation is the top-ranked

mutation among all other genes in the CAF risk-high patients.

Interestingly, through the stromal cells, oncogenic KRAS

(KRASG12D) has been shown to control the signaling of tumor

cells. In this context, Tape et al. demonstrated that heterotypic

fibroblasts are engaged by tumor cell that carry the KRASG12D

mutation, which in turn triggers reciprocal signaling in the

malignant PDAC cells (47). Furthermore, tumor recurrence

rate was found to be higher in the CAF risk-high groups of

patients; while the CAF risk-low patients showed higher

treatment success, further supporting the prognostic value of

CAFs in PDAC. With regard to the pathological subtypes, the

CAF risk-high patients dominantly showed pure basal-like

subtype, while immune classical and pure classical were the

major subtypes in the CAF risk-low patients. Investigating the

prognostic relevance of pancreatic cancer subtypes has revealed

that the pure basal-like subtype has the poorest prognosis, with a

median OS time of 10.3 months, whereas the pure classical and

immune classical subtypes similarly show better a prognosis

(median OS values of 43.1 and 37.4 months, respectively) (48).

Of note, recurrence rate among pancreatic cancer patients

even after tumor resection at early stages is considerably high

(up to 70-80%) (49), which may be at least partially attributed to

the inefficacy of current chemotherapies. Accordingly, since we

showed that the CAF risk-high patients show higher recurrence

rates, we also aimed to investigate whether our CAF-based panel

is capable of prognosticating the patients’ response to the most

commonly-used chemotherapeutic agents in pancreatic cancer.

Our findings revealed that patients with higher risk scores were

less sensitive to certain chemotherapy agents including

gemcitabine, 5-FU, and oxaliplatin. In support of these
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findings, Fang et al. demonstrated that pancreatic CAFs induce

gemcitabine resistance through the delivery of miR-106b to

cancerous cells through secreted exosomes (50). MiR-106b was

shown to exert its function by targeting TP53INP1, which is a

tumor suppressor and autophagy-inducer gene in tumor cells

(51). Zhang et al. also reported that higher IL-8 production by

PDAC CAFs is correlated with oxaliplatin resistance in these

patients. The underlying mechanism of this chemoresistance

was attributed to the upregulation of UPK1A-AS1 lncRNA via

IL-8 signaling, which in turn enhances DNA double-strand

break (DSB) repair by strengthening the binding between

Ku70 and Ku80 (52). Furthermore, it has been reported that

CAFs can induce 5-FU resistance in colorectal cancer through

cargo delivery of secreted exosomes (53). However, the role of

CAFs in inducing 5-FU resistance has not yet been investigated

warranting further investigations.

Finally, our CAF-based prognostic risk model revealed 12

genes which were associated with OS including ADAMTS12,

CHST11, DCBLD2, FN1, FRMD6, KRT17, LOXL2, MMP14,

NRP2, PPFIBP1, TGFB1, and VCL. Among these identified

genes ADAMST12 has been shown to be a poor prognostic

marker as well as a role player in invasion and metastasis of

PDAC (54). Moreover, Feng et al. also reported that patients

with higher expression of DCBLD2 have lower disease-free

survival (DFS) rates (55). Similarly, MMP14 was also revealed

to be a poor prognostic marker for PDAC patients (56). In

parallel with our findings in the pathway enrichment analysis, in

a pancreatic cancer related complementary EMT model, it was

shown that CHST11, a modifier of glycosaminoglycan sulfation

was significantly upregulated in the EMT model (57). Another

study also reported a 5-fold increase in the expression of this

gene in pancreatic tumor tissues compared to normal tissues

(58). Furthermore, among the identified dysregulated genes,

LOXL2 has well-established associations with cancer

invasiveness, metastasis and poor prognosis, which has been

also linked to EMT promotion (59–61). Pre-clinical and clinical

data on pancreatic cancer has shown that LOXL2 is correlated

with the invasiveness of pancreatic cancer and has the potential

to be used as an independent prognostic marker and therapeutic

target (59). The other identified genes have been also reported to

be involved in the progression of various malignancies through

involvement in different major regulatory pathways.

For instance, TGFB1, KRT17, and FRMD6 play critical roles in

the TGF-b-related phenotype, mTOR/S6k1, and the Hippo

signaling pathways, respectively (62–64). The prognostic

values of the other identified genes could be the subject of

future investigations.
Conclusion

Here we report for the first time that higher CAF infiltration

is a poor prognosis marker in pancreatic cancer and CAF risk-
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high patients show lower survival rate. Based on gene

enrichment data, “extracellular matrix organization” and

“vasculature development” pathways are the top pathways

associated the identified CAF-based gene signature. We further

showed that high-CAF-risk patients are less sensitive to

conventional chemotherapy drugs including gemcitabine, 5-

FU, and oxaliplatin and demonstrate higher new tumor events

in comparison to the low-CAF-risk groups of PDAC patients.

Finally, through prognostic risk model construction,

ADAMTS12, CHST11, DCBLD2, FN1, FRMD6, KRT17,

LOXL2, MMP14, NRP2, PPFIBP1, TGFB1, and VCL were

identified as potential prognostic markers in PDAC. These

findings emphasize the significance of tumor-extrinsic factors,

including the tumor stroma and resident CAFs, in determining

the course of tumor progression as well as their clinical

significance as indicators of prognosis and therapy

responsiveness. However, further clinical studies are warranted

to confirm the clinical usefulness of CAF-based gene signatures

in PDAC patients.
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