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Background: Stomach adenocarcinoma (STAD) arises from the mutations of

stomach cells and has poor overall survival. Chemotherapy is commonly

indicated for patients with stomach cancer following surgical resection. The

most prevalent alteration that affects cancer growth is N6-methyladenosine

methylation (m6A), although the possible function of m6A in STAD prognosis is

not recognized.

Method: The research measured predictive FRGs in BLCA samples from the

TCGA and GEO datasets. Data on the stemness indices (mRNAsi), gene

mutations, copy number variations (CNV), tumor mutation burden (TMB), and

corresponding clinical characteristics were obtained from TCGA and GEO.

STAD from TCGA and GEO at 24 m6A was investigated. Lasso regression was

used to construct the prediction model to assess the m6A prognostic signals in

STAD. In addition, the correlation between m6a and immune infiltration in

STAD patients was discussed using GSVA and ssGSEA analysis. Based on these

genes, GO and KEGG analyses were performed to identify key biological

functions and key pathways.

Result: A significant relationship was discovered between numerous m6A

clusters and the tumor immune microenvironment, as well as three m6A

alteration patterns with different clinical outcomes. Furthermore, GSVA and

ssGSEA showed that m6A clusters were significantly associated with immune

infi l trat ion in the STAD. The low-m6Ascore group had a lower

immunotherapeutic response than the high-m6Ascore group. ICIs therapy

was more effective in the group with a higher m6Ascore. Three writers (VIRMA,

ZC3H13, and METTL3) showed significantly lower expression, whereas five
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authors (METTL14, METTL16, WTAP, RBM15, and RBM15B) showed

considerably higher expression. Three readers (YTHDC2, YTHDF2, and

LRPPRC) had higher levels of expression, whereas eleven readers (YTHDC1,

YTHDF1, YTHDF3, HNRNPC, FMR1, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3,

and RBMX) had lower levels. As can be observed, the various types of m6

encoders have varied ramifications for STAD control.

Conclusion: STAD occurrence and progression are linked to m6A-genes.

Corresponding prognostic models help forecast the prognosis of STAD

patients. m6A-genes and associated immune cell infiltration in the tumor

microenvironment (TME) may serve as potential therapeutic targets in STAD,

which requires further trials. In addition, the m6a-related gene signature

offers a viable alternative to predict bladder cancer, and these m6A-genes

show a prospective research area for STAD targeted treatment in the future.
KEYWORDS
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Introduction

Gastric cancer (GC) is the fifth most frequent cancer and

the third major cause of cancer-related deaths globally.

Stomach adenocarcinoma (STAD) is the most frequent

histologic form of GC with rapid progression, and malignant

GC accounts for 95 percent of all gastric tumors. Research has

discovered that Helicobacter pylori infection is responsible for

90% of STAD cases (1). Many researchers have proposed that

STAD could also be triggered by autoimmunity, bacteria, and

their metabolites (2). STAD is now considered a collection of

uncommon illnesses that risk human health (3), underlining

the timely intervention of STAD (4). Chemotherapy is an

important part of tumor treatment, but their cytotoxicity and

potential adverse effects after long-term use will pose

considerable issues for patients. Recurring usage of

chemotherapy drugs is associated with tumor cell resistance,

thereby compromising the curative impact (5). Moreover, the

lack of precise biomarkers for early tumor diagnosis and

restricted preclinical models result in unsatisfactory STAD

therapeutic outcomes (6, 7). Therefore, there is a pressing
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need to identify novel and reliable biomarkers for the early

identification and diagnosis of STAD.

There are 172 identified forms of RNA alterations, and the

most common chemical modifications are m6A, m1A, and m5C.

m6A is one of the most prevalent eukaryotic mRNA

modifications (8). The m6A modification involves the

methylation of adenosine’s sixth nitrogen atom, with

Sadenosylmethionine, a cellular methyltransferase substrate,

functioning as the methyl donor (9). Epigenetic regulation of

cell development and differentiation has been linked to m6A and

post-translational histone changes (10). m6A was the most

prevalent internal epistemic RNA modification, and it was

implicated with several biological functions such as RNA

splicing, export, and translation (11, 12). M6A regulators, such

as methyltransferases complex (“writers”), signal transducers

(“readers”), and demethylases (“erasers”), control the m6A

alterations (13). Different levels of m6A are associated with

tumor stem cell self-renewal, cancer cell proliferation, and

chemotherapy sensitivity in numerous studies (14, 15). Tumor

stem cell self-renewal is stimulated by aberrant m6A, which

contributes to tumor growth (16). Thus, a novel anticancer

method based on restoring RNA methylation equilibrium in

tumor cells was created (17, 18).

Numerous studies have shown that m6A regulators play an

important role in tumor immune microenvironment control.

FTO has a comparable antitumor effect on melanoma as a factor

in anti-PD-1 resistance. The researchers expected that

combining FTO inhibitors with anti-PD-1 inhibition would

aid in the reduction of treatment resistance in melanoma

patients. m6A alteration, as a reversible epigenetic change,

should be addressed in the context of tumor therapy.
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Materials and methods

We used the approaches proposed by Zi-Xuan Wu, et al.

2021 (19).
Datasets and PRGs

The TCGA was used to collect STAD gene and clinical data

(20). 375 STADs and 32 normal data were registered in the TCGA

on September 6, 2022. The GEO was searched for mRNA

expression on September 6, 2022. Series: GSE84437. Platform:

GPL6947-13512. The GEO was used to maintain 433 STAD cases

(21) (Table 1). 24 m6A regulators were identified (22) (Table S1).
DEGs and mutation rates

Perl matched and sorted transcription data to acquire exact

mRNA data. The IDs were converted into gene names.

FDR<0.05 and |log2FC|≥1 were utilized to assess a substantial

change in m6a-genes expression. The relevance of differentially

expressed m6a-genes was investigated (DEGs). Data on the

simple nucleotide variation (SNP) and copy number variations

(CNV) were obtained from TCGA. The R maftools package was

used to evaluate and visualize the SNP mutation. The SNP2APA

database was created to investigate the impact of SNPs and give

OS across various cancer types. The EDGs and GEO data were

subsequently merged from TCGA and matched to obtain m6a-

genes. We examined this database for particular SNPs with

predictive significance in STAD and investigated the

connection between these SNPs and critical m6A-genes.
Frontiers in Oncology 03
Tumor m6a classification based on
the DEGs

Cluster analysis was performed using the Limma and

ConsensusClusterPlus package, and the prognosis-related m6a-

genes were separated into three clusters: clusters A, B and C.

Survminer was used to study the survivability of m6a-genes, and

survival was used to evaluate the predictive utility of m6a-genes.

The limma was utilized to discover changes in particular genes

between subtypes and tissue types.
GSEA analysis and cluster DEGs

GSEA was done in GEO and TCGA groups to compare the

median level of three clusters’ expression to explore the biological

signaling route. NES, gene ratio, and P-value were used to identify

KEGG pathways with significant enrichment data. The enriched

values (ssGSEA) of immune cells in both the 3 cohorts and the

PCA methods were investigated. To test whether or not the

prognosis model successfully divided patients into three groups.

To assess a substantial change in m6a-genes expression,

FDR<0.001 and |log2FC|≥1 were utilized. The relevance of

differentially expressed m6a-genes was Cluster DEGs.
GO and KEGG analysis

Using GO and KEGG, the biological function and pathways

linked with the DEGs were investigated. BP, MF, and CC

regulated by differentially expressed m6a-genes were explored

using R.
TABLE 1 Patient clinical features.

TCGA GEO

Variable Number of samples Variable Number of samples

Gender Gender

Male/Female 285/158 Male/Female 296/137

Age at diagnosis Age at diagnosis

≤65/>65/NA 197/241/5 ≤65/>65 283/150

Grade Grade

G1/G2/G3/G4/NA Unknown G1/G2/G3/G4/NA Unknown

Stage Stage

I/II/III/IV/NA 59/130/183/44/27 I/II/III/IV/NA Unknown

T T

T1/T2/T3/T4/NA 23/93/198/119/10 T1/T2/T3/T4 11/38/92/292

M M

M0/M1/NA 391/30/22 M0/M1/NA Unknown

N N

N0/N1/N2/N3/NA 132/119/85/88/19 N0/N1/N2/N3 80/188/132/33
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Prognostic signature and cluster

Every STAD patient’s risk score was evaluated. Lasso

regression was associated with prognostic genes. These

prognostic genes were subjected to cluster analysis to assess

their respective expression in different clusters. Accordingly, the

m6a-genes associated with prognosis were obtained after

matching. M6a-DEGs were classified under two categories:

low- or high-risk. Survival curves for the 2 categories were

evaluated. To confirm the impact of clinical variables on this

model, a nurse independent prediction analysis was performed.

Risk and clinical interaction studies were made available.
Prognostic m6a-genes and immune
cell infiltration

Tumor mutation load (TML) is a good predictor of

immunotherapy response that count the amount of mutations

per DNA megabase and detect alterations such as nucleotide

insertions, base substitutions, and deletions. MSI is a molecular

tumor characteristic that is distinguished by spontaneous

nucleotide loss or gain from short tandem repeat DNA

sequences. The association between m6a-genes Expression and

TMB and MSI was explored.
Results

The m6A regulator landscape

M6A regulator mRNA expression changed between STAD

and normal tissues (Figure 1A). The expression of each eraser

(FTO, ALKBH5) was considerably increased in STAD tissues.

Three writers (VIRMA, ZC3H13, and METTL3) revealed

noticeably reduced expressions, whereas five writers

(METTL14, METTL16, WTAP, RBM15, and RBM15B)

displayed conspicuously high expressions. Three readers

(YTHDC2, YTHDF2, and LRPPRC) were expressed at greater

levels, while ten readers (YTHDC1, YTHDF1, YTHDF3,

HNRNPC, FMR1, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3,

and RBMX) were expressed at lower levels. The CNVs of the 23

m6A regulators were then summarized in STAD (Figure 1B).

The results of the SNV analysis are shown as a circle graph

(Figure 1C; Table S2). The m6A regulatory network represents

an investigation into the expression correlation and prognostic

significance of the 24 m6A regulators in STAD patients

(Figure 1D; Table S3). To determine the hazard ratios (HRs)

and PFS for the m6A regulators, a univariate Cox regression

model was employed (Table S1). Consequently, ZC3H13, FTO,

IGFBP1, IGFBP2, and IGFBP3 were identified as risk factors,

whereas RBM15, HNRNPC, and HNRNPA2B1 were identified
Frontiers in Oncology 04
as protective factors. Furthermore, the frequency of m6A

regulator mutations was lower than 7% (Figure 1E), indicating

no relationship to tumor growth. Low expression of erasers, as

prognostic variables, revealed that a reduction in m6A

demethylation can inhibit the development of STAD.

Upregulation of three STAD readers (YTHDC2, YTHDF2, and

LRPPRC) is associated with poor prognosis. Table S2 contains a

complete study of RNA expression and CNV.
Mutation and expression correlation,
m6A survival analysis

ZC3H13 is the gene with the highest mutation rate

(Figure 1E), based on which grouping analysis was performed.

There was significant variability in four genes (HNRNPC,

YTHDC2, YTHDF3 and ZC3H13) (Figure 2A). In terms of

survival analysis, all these m6a-genes correlated with the

prognosis of STAD, suggesting a strong relationship between

m6a-genes on the progression of STAD and the survival status of

patients (Figure 2B).
Tumor classification and immune cells

When k was 3, intraorganizational links were strongest and

intergenerational connections were weakest (Figure 3A). The

PCA efficiently classified STAD’s individuals with various

dangers into three basic categories (Figure 3B). A heatmap

reflects both the m6a genes and clinical characteristics

(Figure 3C). M6a Clusters were employed in survival research

to investigate PRG predictive capacity, and Cluster C had a

greater survival rate (P=0.005; Figure 3D; Table S4). The

enriched values of immune cells in both 3 cohorts were

studied. The variability between the three groups was highly

significant except for two cells(CD56dim.natural.killer.cell and

Eosinophil) (Figure 3E). The functional enrichment of m6a-

genes was determined using GSEA (Figures 4A, B). These genes

were associated with RNA and Methylation.
Cluster variance analysis and differential
gene identification

To further analyse the differential expression of the m6a gene in

these clusters, a differential analysis (Figures 5A, B) was performed.

When k was 3, intraorganizational links were strongest and

intergenerational connections were weakest (Figure 5C). DEGs

were employed in survival research to investigate Cluster DEGs’

predictive potential, and Cluster B had a greater survival rate

(P=0.004; Figure 5D). A heatmap reflects both the Cluster DEGs

and clinical characteristics (Figure 5E).
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GO and KEGG analysis

GO analysis revealed 707 core targets. The MF mainly

involves signaling transcription coregulator activity

(GO:0003712), ATPase activity (GO:0016887), catalytic activity,

and acting on RNA (GO:0140098). The CC mainly involves the

mitochondrial inner membrane (GO:0005743), mitochondrial

matrix (GO:0005759), nuclear envelope (GO:0005635). The BP

mainly involves the regulation of cellular amide metabolic process

(GO:0034248), LncRNA metabolic process (GO:0034660),

organelle fission (GO:0048285). Furthermore, KEGG analysis

was used to identify the primary signaling pathways, which

indicated that Cluster DEGs were mostly engaged in the
Frontiers in Oncology 05
Amyotrophic lateral sclerosis (hsa05014), Spliceosome

(hsa03040), Cell cycle (hsa04110) (Figure 6; Tables S5, 6).
m6A score construction

We created the m6Ascore, a set of scoring methods for

assessing the m6A modification pattern of individual STAD

patients, in response to the demand for more reliable and clear

models for immunotherapy prediction based on these

phenotype-related genes. Although survival analysis indicated

two distinct prognoses, the cluster of m6A regulators and CEGs

were separated into three groups. As a consequence, CEG PCA
A B

D

E

C

FIGURE 1

Landscape of genetic and expression variation. (A) The expression of m6A regulators. (B) The CNV variation frequency. (C) CNV Analysis (M6a
shows a significant association with CNV in STAD). (D) The interaction between m6A regulators (The m6A regulatory network is a study of the
expression correlation and prognostic importance of the 24 m6A regulators in STAD patients). (E) Waterfall plot of TMB (the frequency of m6A
regulator mutations was lower than 7%). (*P < 0.05; **P < 0.01; ***P < 0.001).
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was used to distinguish between high and low m6Ascores. The

high-m6Ascore group had a better prognosis than the low-

m6Ascore group based on the results of the Kaplan-Meier

survival analysis (Figure 7A). The relationships between m6A

regulator clusters, immunological clusters, gene clusters, and

m6Ascore groups were studied. It is evident that the

relationships between the different m6a and gene clusters are

intricate and their correspondence with survival states is not
Frontiers in Oncology 06
one-to-one. Cluster B has a higher probability of survival state

(Figure 7B). In addition, as seen in the figure, multiple m6A-

genes in STAD were significantly correlated with T and B cells,

suggesting that m6A-genes affect immune cells and thus the

development of STAD (Figure 7C). The greatest m6Ascore was

found in m6A regulators cluster B, whereas the lowest m6Ascore

was found in m6A regulators cluster A. (Figure 7D). Gene

cluster C had the highest m6Ascore (Figure 7E).
A

B

FIGURE 2

Mutation and expression correlation. (A) Mutation and expression (There was considerable variation in four genes (HNRNPC, YTHDC2, YTHDF3,
and ZC3H13). (B) m6A survival analysis (All of these m6a-genes were associated with STAD prognosis.).
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A B

D E

C

FIGURE 3

Tumor classification and Immune cells. (A) The consensus (When k was 3, intraorganizational ties were the greatest and intergenerational
relationships were the lowest). (B) PCA (The patients were separated into three groups based on their level of risk). (C) Heatmap. (D) Kaplan-
Meier OS curves (Cluster C had a greater survival rate). (E) Enriched values of immune cells (Except for CD56dim.natural.killer.cell and
Eosinophil, the variability across the three groups was extremely significant). (na P > 0.05; **P < 0.01; ***P < 0.001).
A

B

FIGURE 4

GSEA. (A) GO. (B) KEGG. These genes were associated with RNA and Methylation.
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TMB score construction

We also created the TMBscore, a set of scoring methods for

measuring the pattern of gene mutations in specific STAD

patients. The greater Tumor Burden Mutation was found in

low in m6Ascore.group (Figure 8A). Tumor Burden Mutation

is negatively correlated with m6Ascore. It can be seen that

m6Ascore is not a good predictor of gene mutations in STAD

patients (Figure 8B). To test the predictability of TMB, a

survival investigation was performed, and H-TMB had a

greater chance of survival (Figure 8C). However, there was

no difference in the survival analysis between TMB and

m6Ascore (Figure 8D). Furthermore, separate analyses were

carried out for high and low mutations based on the three

groups of mutated genes. The gene mutation status was shown

with a waterfall plot. The overall average mutation frequency of

DEGs in the prognostic model ranged from 20 to 55% and 10 to

44%, suggesting that STAD mutations might be associated with

the deregulation of critical genes (Figures 8E, F). The clinical

data were incorporated to predict survival for the grouping of

mutations. Mortality was higher and significantly different

when the m6ascore increased. In addition, according to the

risk assessment of survival, the survival rate was 51% in the low
Frontiers in Oncology 08
risk group compared to 41% in the high scoring risk group

(Figures 8G, H).
M6A regulation and immunotherapy

Immunotherapy is a significant advancement in cancer

treatment. The correlation of m6A modification with the

impact of tumor immunotherapy based on the association

between m6A alteration and immune cell infiltration in STAD

was evaluated. There was no difference in tumor staging between

T1-T2, while the difference between T3-4 was significant

(Figures 9A, B). Anti-PD-1/L1 immunotherapy provided

substantial therapeutic benefits and clinical response in

individuals with two m6Ascore compared. Furthermore,

patients with a low m6Ascore had considerably higher CD274

expression, indicating a possible successful response to anti-PD-

1/L1 immunotherapy (Figure 9C). Significant difference in the

analysis of immunotherapy results when ctla4 is positive and

pd1 is negative or ctla4 is negative and pd1 is positive

(Figures 9D–G). MSI demonstrates that m6Ascore expression

is highest in MSS at both high and low risk groups (Figures 9H,

I). The tumor composed of a complicated TME. New data
A B

D E

C

FIGURE 5

Cluster variance analysis and DEGs. (A) VNN (Correlation of differential expression of m6a gene among the three clusters). (B) Boxplot. (C) The
consensus (When k was 3, intraorganizational links were strongest and intergenerational connections were weakest). (D) Kaplan-Meier OS
curves (Cluster B had a greater survival rate). (E) Heatmap.
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demonstrates its crucial involvement in tumor development,

immune escape, and immunotherapy response. We found

several various tumor immune phenotypes in this study by

parsing the TME landscape heterogeneity and complexity,

which will also increase the capacity of the results of this

investigation to advise and forecast immunotherapy reactivity.
Discussion

The clinical management of STAD is a serious clinical

concern due to rapid disease progression and poor prognosis.

The level of precision medicine for STAD is hampered by a lack of

effective tumor-killing initiators and selective tumor-targeting

therapeutic medicines (23). A recent study found that

alterations of the mechanism of programmed tumor cell death

may potentiate the targeted therapeutic impact of STAD (24).

Thus, early identification and diagnosis of the illness are essential.
Frontiers in Oncology 09
m6A is the most common internal alteration of mRNAs in all

higher eukaryotes, and it is methodically regulated by a slew of

‘writers,’ ‘erasers,’ and ‘readers.’ (15) The alteration of m6A affects

cancer processing. m6A controls cellular proliferation and

maturation, both of which are linked to cancer genesis (13).

Evidence shows that abnormal m6A methylation may promote

cancer development by upregulating oncogenes and suppressing

tumor suppressor genes and that m6A RNA methylation can be

altered by the expression of m6A regulators and the activity of

m6A enzymes, further impacting tumor progression (25). Based

on the interactions of m6A regulators in STAD, the tendencies of

m6A readers, writers, and erasers were determined. All erasers’

expression levels were reduced, whereas the majority of readers’

expression levels were considerably increased. This pattern shows

that STAD aided in the methylation of m6A RNA. Furthermore,

these variables control immune cell infiltration in STAD (26).

Two “writer” genes, METTL3 and METTL14, were shown to

have opposing expression patterns in cancers compared to
A

B

FIGURE 6

Enrichment analysis. (A): GO. (B): KEGG.
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normal indicating that METTL3 and METTL14 functioned as a

complex regulator in STAD. Furthermore, the link between

m6a-genes, immune cell infiltration and immune checkpoint

therapy was investigated. Recent studies have discovered a

relationship between RNA modifications mechanisms and

anticancer immunity (27). In the last decade, immune

checkpoint inhibitors (ICIs) have revolutionized cancer

treatment. In ICI-resistant cancers, activation of pyroptosis,

ferroptosis, and necroptosis resulted in synergistically

improved anticancer efficiency (28). However, there are few

studies on the impact of m6a on ICIs. Many patients are resistant

to immune checkpoint blockade (ICB) therapy, and multiple

pathologic processes are regulated by m6A in RNA (29).

According to Na Li’s findings, tumors are more susceptible to

cancer immunotherapy in the absence of the m6A demethylase

Alkbh5. The inhibitor of Alkbh5 has been shown to improve the

effectiveness of cancer immunotherapy (30). Anti-PD-1/L1

immunotherapy offers significant therapeutic benefits and

clinical response in persons with two m6Ascores assessed in

the present study. Furthermore, patients with a low m6Ascore

had significantly increased CD274 expression, indicating that
Frontiers in Oncology 10
anti-PD-1/L1 immunotherapy might be effective. According to a

recent study, METTL3 plays a critical role in several forms of

cancer. The abnormal m6A mutation in large intestine cancer

was shown to be induced by overexpression of METTL3, which

has been linked to tumor spread (31), and METTL3 was

downregulated in STAD tissues in this investigation.

Moreover, METTL3 has been shown to be oncogenic in the

majority of malignancies and to be a tumor suppressor in RCC,

bladder cancer, and glioblastoma stem cell (32). Diverse groups

have demonstrated that METTL3 has either oncogenic or

tumor-suppressive properties, which may be explained by

tumor heterogeneity and/or diverse model systems used in the

study, and further research is required to gain a

better understanding.

KEGG analysis found that the genes were primarily involved

in the mRNA surveillance pathway. The NMD mRNA

surveillance pathway downregulates aberrant E-cadherin

transcripts in gastric cancer cells and in CDH1 mutation

carriers. In GSVA, the hedgehog signaling pathway was the

most significantly enriched pathway. Smo and Gli1 genes are

components of the hedgehog signaling pathway, and their over-
A B

D EC

FIGURE 7

M6A Score Construction. (A) Survival (The high-m6Ascore group fared better than the low-m6Ascore group). (B) Ggalluvial plot. (C) Immune
cells and prognosis m6A-genes. (D) m6A regulators cluster (The highest m6Ascore was discovered in the m6A regulators cluster B, whereas the
lowest m6Ascore was discovered in the m6A regulators cluster A). (E) Gene cluster.
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expression may trigger STAD. The degree of expression is linked

to the stage and severity of STAD (33). Furthermore, studies

have shown that Hedgehog-interacting protein (HHIP) may

inhibit the growth and proliferation of STAD cell lines by

blocking Hedgehog signal transduction, which may serve as a

new biological marker for STAD and a new approach for STAD

treatment by targeting the drug target of HHIP formation (34).

Overactivation of the hedgehog pathway is linked to the

occurrence and progression of STAD, and specific targeted

therapy targeting this pathway shows good potential as an

effective measure for the clinical management of STAD

(35).M6A genes may influence STAD cell migration and

proliferation via modulating the nod like receptor

signaling pathway.

This study examined numerous features of STAD using

cluster analysis. The expression of 24 m6A regulators was

divided into three unique patterns. Interactions between m6A

regulators might result in m6A methylation or demethylation.

The m6A regulator clusters indicated that tumor cells control

their activity by different RNA regulation patterns. Survival

disparities in diverse patterns suggest that m6A regulatory

patterns have a major influence on STAD patients’ survival.

However, classification of m6A regulators into three categories is

insufficient to accurately reflect patient prognosis. As a result, the

m6Ascore was developed to differentiate the m6A expression

patterns and directly predict prognosis. In our investigation, the

m6Ascore was linked to the impact of immunotherapy.

Individuals with a low m6Ascore had a better prognosis than
Frontiers in Oncology 11
those who did not get immunotherapy. The higher mutation rate

of the low m6Ascore group, along with the release of SNV

neoantigens and ITH, might explain this result. The higher the

mutation rate in tumor tissue, the more immunogenicity that

has been stored is released, and treatment efficacy improves. As a

result of the discovery of novel ICIs targeting CTLA4 and PD1,

which are generated by activated T cells, neoantigens have

emerged as important tumor antigens for the human immune

system. However, other researchers observed an inverse

association between ITH and the immune checkpoint response

in liver cancer. Patients with significant tumor heterogeneity

responded favorably to immunotherapy. The reason may be that

tumor heterogeneity reacts differently to immunoreactivity,

whereas tumor heterogeneity does not necessarily determine

immunotherapy response.

The tumor part was composed of a complex TME. As the

understanding of the diversity and complexity of the tumor

microenvironment deepens, emerging evidence reveals its

critical role in the tumor progression, immune escape, and its

effect on response to immunotherapy (36). Based on the link

between m6A change and immune cell infiltration in STAD, the

correlation of m6A modification with the impact of tumor

immunotherapy was investigated. Patients with a low

m6Ascore had significantly increased CD274 expression,

indicating the effectiveness of anti-PD-1/L1 immunotherapy.

There is a significant difference in immunotherapy outcomes

when ctla4 is positive and pd1 is negative or when ctla4 is

negative and pd1 is positive. According to MSI, m6Ascore
A B D

E F
G H

C

FIGURE 8

TMB Score Construction. (A) TMB of m6Ascore.group. (B) Tumor Burden Mutation with m6Ascore. (C) TMB.survival. (D) TMB-score.survival.
(E) High mutations. (F) Low mutations. (G, H) Survival investigation.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1050288
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.1050288
expression is the greatest in MSS at both high and low risk.

Therefore, this study comprehensively through parsing the TME

landscape heterogeneity and complexity, we identified some

different tumor immune phenotypes, which may also provide

benefits to guide and predict the reactivity of immunotherapy.

The relationship between m6a and STAD has been marginally

explored. Currently, four papers have used bioinformatics analysis

to explore the relationship between m6a and STAD (37–40). Yao

Qi et al. observed the expression of METTL14 in STAD by

bioinformatics and immunohistochemistry assays. METTL14

expression was substantially downregulated in STAD, reflecting

the contribution of major tumors in STAD, progression of TNM

staging and poor OS. Furthermore, the inhibitory effects of

METTL14 on STAD cell proliferation, migration and invasion

have been demonstrated in in vitro experiments. Na Luo et al.

identified a 10-gene signature based on probable predictive m6a

regulatory genes, and these genes (METTL3, WTAP, RBM15,
Frontiers in Oncology 12
RBM15B, YTHDC2, YTHDF2, HNRNPC, FMR1, LRPPRC, and

RBMX) were found to be negatively associated with STAD clinical

stage. 23 m6a genes were found in STAD Prognosis by Zhang

Meijing et al.

The uniqueness of the study is as follows. First, the current

study complemented prior papers with additional FRG data

from the TCGA database, which is constantly updated. Second,

TCGA data were used as the primary analysis, with GEO data

included into the common pattern for model validation. Third,

to strengthen the credibility of the results, several databases were

employed to measure immune cells and function.

Our analysis has the following limitations: (1) the present

study did not obtain sufficient different data sources from other

publicly available sites to validate the model’s trustworthiness. (2)

The functional enrichment processes at work in the regulatory

networks of various risk groups were explored, but their specific

mechanisms in permitting m6A require more investigation to
A B
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FIGURE 9

(A) T1-T2. (B) T3-4. (C) Anti-PD-1/L1 immunotherapy. (D) ips_ctla4_neg_pd1_neg. (E) ips_ctla4_neg_pd1_pos. (F) ips_ctla4_pos_pd1_neg.
(G) ips_ctla4_pos_pd1_pos. (H, I) MSI analysis.
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confirm the current findings. (3) The prediction model created in

this study must be externally and practically validated.
Conclusions

We discovered three distinct m6A regulatory patterns for

STAD, as well as transcriptome and immune infiltration

characteristics in distinct m6A regulatory patterns. The

current study specifies the functions of m6A regulators and

explains the underlying causes of different clinical outcomes and

immunotherapy responses in different m6A regulatory patterns.

A detailed investigation of individual m6A regulation patterns

wil l contribute to the formulation of personalized

immunotherapy treatments for STAD patients and provide a

better understanding of STAD immune-cell characterization.

Furthermore, the goal of this work is to discover and

thoroughly profile the gene signatures of m6A-related

regulators in STAD. The many m6A alteration patterns

contributed significantly to the TME’s variety and complexity.

A predictive model was also created based on the m6a gene

signature, which might predict the clinical course of STAD. Our

findings suggest that the m6A genes are promising prognostic

markers that might give new insights into STAD treatment

options and guide successful immunotherapy.
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