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Pancreatic cancer is currently the seventh leading cause of cancer-related

deaths worldwide, with the estimated death toll approaching half a million

annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common

(>90% of cases) and most aggressive form of pancreatic cancer, with

extremely poor prognosis and very low survival rates. PDAC is initiated by

genetic alterations, usually in the oncogene KRAS and tumor suppressors

CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream

signaling pathways that regulate important cellular processes. One of the

processes critically altered is autophagy, the mechanism by which cells clear

away and recycle impaired or dysfunctional organelles, protein aggregates and

other unwanted components, in order to achieve homeostasis. Autophagy

plays conflicting roles in PDAC and has been shown to act both as a positive

effector, promoting the survival of pancreatic tumor-initiating cells, and as a

negative effector, increasing cytotoxicity in uncontrollably expanding cells.

Recent findings have highlighted the importance of cancer stem cells in

PDAC initiation, progression and metastasis. Pancreatic cancer stem cells

(PaCSCs) comprise a small subpopulation of the pancreatic tumor,

characterized by cellular plasticity and the ability to self-renew, and

autophagy has been recognised as a key process in PaCSC maintenance and

function, simultaneously suggesting new strategies to achieve their selective

elimination. In this review we evaluate recent literature that links autophagy

with PaCSCs and PDAC, focusing our discussion on the therapeutic

implications of pharmacologically targeting autophagy in PaCSCs, as a

means to treat PDAC.
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Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is the most

common form of pancreatic cancer and is expected to become

the second-leading cause of cancer-related deaths worldwide by

2030 (1, 2). PDAC origin remains a controversial issue but most

studies support the notion that it arises from the uncontrollable

proliferation of the ductal cells of the exocrine compartment,

resulting in the development of a highly aggressive neoplasm (3).

The molecular profiling of PDAC includes multiple gene

expression alterations and copy number aberrations with

KRAS (Kirsten rat sarcoma viral oncogene homolog)

mutations accounting for more than 90% of the cases.

However, further cancer progression requires additional

mutations including tumor suppressor protein p53 (TP53),

cyclin-dependent kinase inhibitor 2A (CDKN2A) and SMAD

family member 4 (SMAD4) (4, 5). Treatment strategies for

PDAC include tumor resection in combination with chemo/

radio therapies but the efficacy is very limited as most patients

relapse and eventually die from metastasis within 5 years (2).

In PDAC, approximately 1% of the total tumor mass consists

of Pancreatic Cancer Stem Cells (PaCSCs) that feature auto-

renewal and differentiation characteristics that allow them to

generate multiple and genetically diverse cancer cell lineages (6).

PaCSCs were initially described by Li et al. as cells that uniquely

express a combination of CD24/CD44/EpCAM surface markers,

and display enriched tumor initiating capacity when

transplanted in immunocompromised mice (7). Over the last

few years, investigation of the PaCSC population has attracted

significant attention and is now being recognised as the main

source of tumor heterogeneity and plasticity, and a niche of

major importance for pancreatic tumor initiation and

progression (8). In addition to CD44, CD24 and EpCAM

(ESA), other markers that have been subsequently employed

to characterise PaCSCs include CD133, ALDH1, CXCR4 and

DCLK1, however, expression of these proteins is not restricted to

PaCSCs exclusively (9–12). Many diverse signaling pathways

have been found to operate in PaCSCs, including Notch, WNT,

Hippo, Sonic-Hedgehog, mTOR and PI3K/Akt. These pathways

actively maintain stemness and ensure an increased metastatic

potential, but at the same time promote chemoprevention and

resistance to conventional therapies (13).

A major cellular process that was found to be critically

altered during PDAC initiation and progression is autophagy

(14). Autophagy is a highly conserved “self-digestion” process

that involves the catabolism of dysfunctional compounds,

damaged organelles and engulfed pathogens to maintain

cellular integrity and survival. Autophagy is achieved by the

enclosure of this cytoplasmic “waste” cargo inside double-

membrane vesicles and their concomitant translocation to

lysosomes for degradation. Normally, autophagy acts as a

major regulator of homeostasis, however under stressful
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conditions (hypoxia, starvation etc) mainly induced by disease

(including cancer), the degradation of subcellular elements is

accelerated in order to recycle the macromolecules and render

them available to fulfill energy requirements (15–17). Major

autophagic signals and regulators include the mammalian target

of rapamycin (mTOR), AMP-activated protein kinase (AMPK),

WNT and TGFb (18–20).

In this concise review, we evaluate the literature, outline

current evidence on the role of autophagy in PaCSCs, and

discuss how this knowledge can lead to more effective

therapies against PDAC.
Autophagy in PDAC – A double-
edged sword

Increased autophagic activity in PDAC has long been

recognized as a major contributing factor in tumor survival,

progression and metastasis. Through autophagy, PDAC tumors

gain vital resources for the maintenance of their integrity, and

this is achieved viamechanisms that have been expertly reviewed

in great detail elsewhere (more recently by Gillson et al, 2022)

(14). Our intention here is to focus on the seemingly

contradictory and often debated dual (positive and negative)

role of autophagy in PDAC. In this context, autophagy has been

shown to attenuate the development of preneoplastic lesions in

early pancreatic carcinogenesis, whereas, at more advanced

stages, it was shown to promote tumor development.

Disruption of the vital autophagy related genes atg7 or atg5

induces the development of benign pancreatic intraepithelial

neoplasia (PanIN) in mice harboring the oncogenic KrasG12D

mutation. However, despite the fact that spontaneous adenomas

do occur, these are not able to progress to a more malignant state

(21–23). Autophagy is up-regulated in various PDAC cell lines

and is found to be elevated in PanINs as they progress towards

PDAC. Consequently, inhibition of autophagy with the use of

chroloquine or with shRNA against atg5 suppresses their growth

in vitro and attenuates tumor development in pancreatic cancer

mouse models (24). This effect was attributed to elevation of

ROS (Reactive Oxygen Species) levels, increased DNA damage

and impaired mitochondrial function. Resulting tumors retain

their benign character and do not evolve to a more malignant

state, indicating that autophagy assists tumor initiation at first

but then acts as tumor suppressor, blocking progression to more

advanced stages. Similar observations were made with the loss of

atg5 or atg7 in mice harboring oncogenic KRAS mutations.

Biallelic loss of atg5/7 reinforced tumor initiation but repressed

the transition of PanINs to PDAC in mice carrying a wild-type

p53 allele. On the contrary, when p53 is deleted, loss of atg5/7

results in accelerated tumor progression indicating that p53

status can determine whether autophagy will act as a tumor

suppressor or accelerate tumor development (22, 23). In a later
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study, Görgülü et al, showed that biallelic deletion of atg5 in the

presence of oncogenic KRAS stimulated acinar-to-ductal

metaplasia (ADM), which progressed to PanIN stage 1 but did

not eventually lead to PDAC. In contrast, mice carrying just one

wild-type copy of the atg5 gene were able to develop PDAC and

exhibited increased invasive capacity with a higher frequency

than their wild-type (KRAS : ATG5+/+) counterparts (25).

Interesting results regarding the cumulative role of

autophagy in PDAC were also extracted from two mouse

models, in which hallmark KRASG12D mutation was combined

with two distinct heterozygous Trp53 loss-of-function

mutations, frequently encountered in human pancreatic

carcinomas (Trp53R172, Trp53172H) (26, 27). In these

models, one Trp53 allele is inactivated via a loss-of-function

mutation, while the second one is subsequently lost via loss of

heterozygosity (LOH), at a later stage of tumor progression (28).

These models do not bear a complete deletion of Trp53, and

therefore emulate human disease pathology more faithfully, thus

enabling the investigation of the complex interplay between

mutant Trp53 and autophagy regulation. In both models,

pancreas-specific autophagy inhibition was achieved via a Cre-

mediated genetic ablation of ATG7 with conflicting results.

While in KRasG12D/+; Trp53R172H/+ animals, ATG7

ablation impeded tumorigenesis, by reducing incidence of both

pre-invasive and terminal PDAC lesions (27), KRasG12D/+;

Trp53R172/+ mice were characterized by an increased

abundance of both acinar-to-ductal metaplasia (ADM) and

pancreatic-intraepithelial neoplasia (PanIN) foci as well as

more foci of invasive pancreatic tumors (26). The

contradictory data derived from the above studies confirm the

context-dependent role of autophagy in tumor evolutionary

routes, which seems to be largely affected by the genetic

background of the tumor-initiating cells.

The dual role of autophagy in PDAC biology has highlighted

the importance of deciphering whether this process has a

predominantly positive or negative effect in tumor

development. Clarification of this important point will

determine whether autophagy should be pharmacologically

stimulated or inhibited in order to provide an effective

treatment option for PDAC, with consensus so far favoring

the later hypothesis.
Autophagy in pancreatic cancer
stem cells

Cancer stem cells have been shown to rely heavily on

autophagic processes for the maintenance of their stemness,

their survival under hypoxic and other stress conditions and

the development of resistance to therapies (29). The study of

autophagy in PaCSCs has been attracting increasing attention

over the last decade due to the realization of its crucial

involvement in PDAC development and its potential role in
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PDAC therapies (Figure 1). Rausch et al. was the first to

demonstrate an interaction between PaCSCs, hypoxia and

autophagy, initially by studying fixed patient-derived PDAC

samples where he revealed strong co-expression of markers for

CSCs (CD44, CD24), hypoxia (CA-IX) and autophagy

(BECLIN1, LC3) (30). During hypoxia, cells from the

established cell line MIA-PaCa2 that features high CSC

properties are able to survive and migrate, whereas BxPc-3 cells

with limited CSC properties cannot respond efficiently and

eventually undergo apoptosis (30). The higher stemness of

MIA-PaCa2 cells is due to several key mutations that they

carry. These include amino-acid substitutions in KRAS and

TP53 (G12D and R248W, respectively) and a complete loss of

CDKN2A (31, 32). On the contrary, BxPc-3 cells appear to have

physiological KRAS while they carry a different amino-acid

substitution in TP53 (Y220C) and display complete loss of

both CDKN2A and SMAD4 proteins. These genotypic

differences are considered to be responsible for the higher

stemness of MIA-PaCa2 cells, indirectly leading to the

suppression of non-canonical Wnt signaling (33). In this

context, autophagosomes and expression of autophagy-related

genes (beclin1, atg3, atg4b, and atg12) were found to be

significantly elevated in CSCs of the MIA-PaCa2 cell-line but

not in BxPc-3 cells. Similarly, Zhu et al. has shown that in the

stressful environment of hypoxia, pancreatic cancer cells with

stem cell-like properties (isolated by means of CD133 expression)

displayed a significant degree of metastatic potential, self-renewal

ability and elevated expression of the autophagy-related proteins

LC3-II and BECLIN1 (34). Moreover, HIF-1a has been positively

correlated with autophagy (35) as migrating cells with stem cell

features exhibited concurrent up-regulation of HIF-1a and

autophagy-related genes (ATGs). This correlation was further

confirmed by evidence that HIF-1a down-regulation by RNA

silencing results in reduced autophagy (34). Co-expression of the

autophagy marker LC3 with stem cell markers CD133, CD44 and

ALDH1 in pancreatic cancer tissue samples is another example in

support of the positive correlation between autophagy and cancer

cell stemness (36). Interestingly, the same study showed that

pancreatic cancer patients with increased co-expression of LC3

and ALDH1 correlated with poor Progression Free Survival (PFS)

and worse Overall Survival (OS). PANC-1 cells transfected with

lentivirus carrying shRNA against atg5, atg7 and becn1 exhibited

a significant decrease in CD44, CD133 and ALDH1 expression.

Reduced levels of expression of these CSCmarkers concomitantly

affected the stem cell properties of the transfected cells. Their self-

renewal capacity and their proliferation potential were reduced,

as these cells formed less spheres and exhibited impaired growth

in culture compared to their control counterparts (36).

Furthermore, when the transfected cells were transplanted into

NOD/SCID mice, tumor volume was consistently lower

compared to control mice and displayed resistance to

gemcitabine. These results were further confirmed by

pharmacological regulation of autophagy with the addition of
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the autophagy inhibitor chloroquine (CQ) and the inducer

rapamycin. Levels of LC3/ALDH1 and CD44/CD133

expression were reduced by CQ treatment but showed

significant increase in the presence of rapamycin (36).

Additionally, osteopontin (OPN), which was previously

reported to positively regulate sphere forming ability of cancer

cells, was found to increase the levels of CD44, CD133, ALDH1

and LC3-II in various pancreatic cell lines, an effect that can be

reversed by attenuating osteopontin activity or blocking

autophagy altogether. After suppression of the OPN-mediated

signaling pathways, it was revealed that NF-kB is a major

contributor of OPN-stimulated autophagy and CSC activity.

This observation is in agreement with other studies that have

identified NF-kB as an inducer of autophagy under stressful

environmental conditions such as heat shock (37). Finally, recent

studies by Qin et al. showed that the stem cell-like properties of

pancreatic cancer cells were reduced after the inhibition of the

Nutrient-deprivation Autophagy Factor-1 (NAF-1), an

autophagy-related protein localized in the outer mitochondrial

membrane that is mainly involved in the maintenance of

mitochondrial integrity (38–41). Pancreatic CSCs display an

increased sensitivity to defects in mitochondrial homeostasis
Frontiers in Oncology 04
due to their predominant dependence on oxidative

phosphorylation (OXPHOS) for their survival (42). NAF-1

inhibition therefore significantly affects stem cell properties of

PaCSCs and mitigates their invasive capacity (41).
Targeting autophagy in PDAC

The majority of patients with PDAC are diagnosed in

advanced stages of the disease, when the tumor is inoperable

and surgery is no longer a viable treatment option. Chemotherapy

and radiotherapy are first-line palliative treatments for PDAC

patients and the standard chemotherapeutic drug commonly used

was Gemcitabine until Folfirinox (a combination of 5-

fluorouracil, folinic acid, irinotecan and oxaliplatin) proved to

be more efficient in increasing OS (43).

Targeting autophagy in combination with chemotherapy has

emerged as an attractive and very promising strategy in

confronting PDAC. A variety of autophagy inhibitors, with

distinct substrate specificities, have been developed and

evaluated in vitro on cancer cell-lines, as well as in vivo on

mouse models of PDAC. Based on their target molecules, the
FIGURE 1

Effects of autophagy perturbation in PaCSCs maintenance and function. In vitro and in vivo experiments have shown that the presence of HIF-
1a, rapamycin or osteopontin increase the survival of cancer stem cells and help metastasis. This is associated with an increase in LC3+/ALDH1+
and CD44+/CD133+ surface marker expression. On the contrary, when there is a reduction of HIF-1a or osteopontin, when atg5, atg7 and
becn1 are silenced, or in the presence of chloroquine, cancer stem cells undergo apoptosis.
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existing inhibitors can be segregated into two main classes: those

that aim at constraining the initial step of autophagosome

formation (44, 45) and those that block the merging of

autophagosomes with lysosomes by altering the acidic

environment of lysosomes (46, 47). The first class

encompasses agents that impede the generation of the two

core autophagy initiation multi-protein complexes, ULK1 and

PI3KC3-C1 (48, 49). The main representatives of this class are

MRT68921 (50, 51), SBI-0206965 (52–54) and SBI-7455 (55),

which selectively target ULK1 kinase, and Spautin-1 (56, 57) and

SAR405 (58, 59), which selectively suppress the PI3KC3-C1

complex. To this day, none of these compounds have progressed

further into clinical studies on human patients.

On the contrary, the compound Hydroxychloroquine (HCQ)

-a derivative of chloroquine and the major representative of the

second class of autophagy inhibitors (60) - has been assessed in a

number of clinical trials for PDAC, either as a monotherapy, or in

combination with standard chemotherapy regimens or novel

classes of anti-proliferative drugs (Table 1). Initially, a clinical

trial investigated the effect of monotherapy using daily

administrations of Hydroxychloroquine, however the drug

yielded no significant responses (61). On the contrary, two

phase 1/phase 1b/2 clinical trials that used a combination of

gemcitabine and HCQ, provided encouraging data as there was

reduction of the CA19.9 tumor marker, an increase in LC3-II

staining and an improved PFS. Despite these very promising

observations however, no safe conclusions could be drawn by

these two studies due to the small number of patients and the lack

of randomization (62, 63). More recently, a randomized phase II

clinical trial was conducted using Gemcitabine together with nab-

paclitaxel, with or without HCQ, in patients with advanced

pancreatic cancer. Although the OS or PFS were not

significantly improved, the study showed that the response rate

was improved in HCQ-treated patients, therefore it was proposed

that HCQ be included at the preoperative stage (61, 64).

Many attempts have been made in order to combine

autophagy inhibition with novel cancer immunotherapy

protocols that are currently under development. Yamamoto
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et al. showed that autophagy inhibition increases expression of

MHC-I molecules on the surface of PDAC cells, leading to

increased infiltration of immune cells, thus demonstrating that

autophagy inhibition combined with immunotherapy could be a

promising therapeutic option against PDAC (65). Nevertheless,

the sole study to this day performed on pancreatic cancer

patients treated with a combination of HCQ, gemcitabine,

nab-paclitaxel and avelumab (an anti-PD-L1 antibody) was

terminated due to undesirable side effects. Further clinical

trials that combine HCQ with MAPK inhibitors for advanced

and metastatic pancreatic cancer are currently under way (66).

In addition to the synthetic agents mentioned above, a

number of natural derivatives have demonstrated a capacity to

interact in multiple ways with the autophagic pathways, and can

potentially be used in PDAC treatment. Even though their exact

mechanism of action is unclear, they seem to converge to a

common path of apoptosis inhibition. Fudan-Yueyang-

Ganoderma lucidum (FYGL; a proteoglycan extracted from

Ganoderma lucidum) and Alantolactone demonstrated

inhibitory effect in late-stage of autophagy along with

increased apoptotic potential, mediated by elevated ROS

production and suppression of STAT3 and Bcl-2 respectively

(67–70). Curcumin is also capable of inducing pro-apoptotic

effects, by increasing the BAX/Bcl-2 ratio (71), while ursolic acid

(UA) downregulated autophagy, predominantly via inducing

cell cycle arrest (72).
Discussion – prospects of targeting
autophagy in PaCSCs

The destruction of CSC niches is essential in order to achieve

PDAC therapy and avoid cancer recurrence, however CSC niches

in PDAC tumors are protected by the low-oxygen tumor

environment and this is a major contributing factor to anti-

cancer therapy resistance (29). Possible treatments could arise

from the targeting of autophagy in PaCSCs and several preclinical

studies are exploring the possibility of eliminating PaCSC niches
TABLE 1 Clinical trials for PDAC that include targeting of autophagy.

CLINICAL
TRIAL

REGIMEN PHASE RESULTS REFERENCE

NCT01273805 Hydroxychloroquine (HCQ) Phase II No significant responses Wolpin et al. 2014
(61)

NCT01128296 HCQ with Gemcitabine Phase I/II Decrease in CA19-9
Surgical oncologic outcomes were encouraging

Boone et al. 2015
(62)

NCT01777477 HCQ with Gemcitabine Phase I No dose-limiting toxicities
Median time to progression was 4 months
Median overall survival was 7.6 months

Samaras et al.,
2017 (63)

NCT01506973 Gemcitabine hydrochloride and nab-
paclitaxel (GA) ± HCQ

Phase II Overall survival at 12 months was 41% in the HCQ group and 49%
in the non-HCQ group
Overall response rate was 38.2% in the HCQ group and 21.1% in
the non-HCQ group

Karasic et al.,
2019 (64)
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by perturbing autophagy. Signaling pathways that are active in

PaCSCs, such as NOTCH, WNT and SHH, are being explored as

possible targets for impairing pluripotency in combination with

autophagy targeting (9). On the other hand, the fact that PaCSCs

reside in the anatomically distinct regions of a niche, which is

often pharmacologically inaccessible, necessitates the exploration

of alterative properties of PaCSCs as targets for therapy. Cancer

dormancy is characterized by attenuation of cell proliferation and

the transition to a quiescence-like state. It has been shown that

dormancy contributes significantly to cancer relapse and

induction of metastasis. Conventional anticancer therapies

usually target proliferating cells hence the acquisition of a

dormant phenotype results to the evasion of treatments and

worse overall survival. The biological mechanisms and signaling

pathways regulating the dormant phenotype of tumor cells also

apply to CSC behavior, and recent studies indicate that autophagy

plays a vital role in the entrance of CSCs to a dormant state, the

maintenance of their survival and their reactivation under specific

conditions (73).

In addition to the pre-clinical studies, efforts to effectively

tackle PDAC currently explore the clinical use of small

molecules that target autophagy, in combination with

chemotherapy and/or immunotherapy (14). Targeting cancer

stemness is currently the basis of ongoing clinical trials on Phase

III with paclitaxel/nab paclitaxel and gemcitabine with the

addition of napabucasin, a small molecule that inhibits

STAT3-mediated gene transcription. The results from phase

1b/2 achieved a Partial Response (PR) of almost 42% and

approximate 3% of Complete Response (CR) (74). This

enhanced chemotherapy scheme could be complemented with

selected compounds that target key components of the

autophagic process, in order not only to eliminate tumor-cells

but also to eradicate hidden and evading PaCSCs.

Despite the undoubted benefits of autophagy inhibition in

cancer treatment, the complex role of this “self-digestion” process

in tumorigenesis, coupled with the capacity of tumor stem cells to

utilize alternative nutrient sources under starvation conditions,

could impose some restrictions to the clinical efficacy of this

therapeutic approach. While in the majority of cases autophagy

is considered a cytoprotective mechanism that serves as an

adaptation system of neoplastic cells in conditions of nutrient

scarcity, there is still controversy regarding its overall effects in

cancer initiation and progression. Recent experimental evidence,

from both in vitro and in vivo studies, suggests a context-dependent

anti-tumor effect of autophagy, mediated by a detrimental effect on

cancer stem cell survival and metastasis. Even though autophagy is

a process antagonistic to apoptosis, overt autophagic influx can in

fact trigger apoptosis under certain conditions by activation of

caspase-8 and the diminution of endogenous apoptosis inhibitors

(75). Moreover, genetic ablation of ATG5 in a KRAS-driven mouse

model of PDAC enhances the metastatic potential of tumor stem

cells, implying an anti-metastatic effect of autophagy under certain

circumstances, especially during the initial stages of tumor
Frontiers in Oncology 06
development (25). It has also been shown that neoplastic cells

are equipped with an intrinsic ability to circumvent dependency on

autophagy and exploit compensatory signal transduction systems,

such as Nrf2 signalling and deployment of complementary

nutritional sources through the process of micropinocytosis (76).

These strategies enable cancer stem cells to survive nutrient stress

conditions arising from starvation, thus ensuring their survival and

growth. It is therefore implied that potential anti-PDAC

pharmacotherapy schemes relying on autophagy targeting in

PaCSCs should carefully consider both the tumor-suppressive

and the tumor-promoting effects of this action.
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