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Simple summary: Detecting deficient mismatch repair (dMMR) in patients with

colorectal cancer is essential for clinical decision-making, including evaluation

of prognosis, guidance of adjuvant chemotherapy and immunotherapy, and

primary screening for Lynch syndrome. However, outside of tertiary care

centers, existing detection methods are not widely disseminated and highly

depend on the experienced pathologist. Therefore, it is of great clinical

significance to develop a broadly accessible and low-cost tool for dMMR

prediction, particularly prior to surgery. In this study, we developed a

convenient and reliable model for predicting dMMR status in CRC patients

on routine preoperative characterization utilizing multiple machine learning

algorithms. This model will work as an automated screening tool for identifying

patients suitable for mismatch repair testing and consequently for improving

the detection rate of dMMR, while reducing unnecessary labor and cost in

patients with proficient mismatch repair.

Background: Deficient mismatch repair (dMMR) indicates a sustained anti-

tumor immune response and has a favorable prognosis in patients with

colorectal cancer (CRC). Although all CRC patients are recommended to

undergo dMMR testing after surgery, current diagnostic approaches are not

available for all country hospitals and patients. Therefore, efficient and low-cost

predictive models for dMMR, especially for preoperative evaluations, are

warranted.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1049305/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1049305/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1049305/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1049305/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1049305/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1049305/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1049305&domain=pdf&date_stamp=2022-12-22
mailto:jipengLi1974@aliyun.com
mailto:zjsty@fmmu.edu.cn
https://doi.org/10.3389/fonc.2022.1049305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1049305
https://www.frontiersin.org/journals/oncology


Xu et al. 10.3389/fonc.2022.1049305

Frontiers in Oncology
Methods: A large scale of 5596 CRC patients who underwent surgical resection

and mismatch repair testing were enrolled and randomly divided into training

and validation cohorts. The clinical features exploited for predicting dMMR

comprised the demographic characteristics, preoperative laboratory data, and

tumor burden information. Machine learning (ML) methods involving eight

basic algorithms, ensemble learning methods, and fusion algorithms were

adopted with 10-fold cross-validation, and their performance was evaluated

based on the area under the receiver operating characteristic curve (AUC) and

calibration curves. The clinical net benefits were assessed using a decision

curve analysis (DCA), and a nomogram was developed to facilitate model

clinical practicality.

Results: All models achieved an AUC of nearly 0.80 in the validation cohort,

with the stacking model exhibiting the best performance (AUC = 0.832).

Logistical DCA revealed that the stacking model yielded more clinical net

benefits than the conventional regression models. In the subgroup analysis, the

stacking model also predicted dMMR regardless of the clinical stage. The

nomogram showed a favorable consistence with the actual outcome in the

calibration curve.

Conclusion: With the aid of ML algorithms, we developed a novel and robust

model for predicting dMMR in CRC patients with satisfactory discriminative

performance and designed a user-friendly and convenient nomogram.
KEYWORDS

colorectal cancer, deficient mismatch repair, real-world research, machine learning,
routine preoperative characterization
Introduction

Colorectal cancer (CRC) is the third most common cancer

and the second most common cause of cancer-related death

worldwide, posing an ongoing threat to public health (1). As a

molecular subtype of CRC, microsatellite instability (MSI) or

deficient mismatch repair (dMMR) plays a prominent role in the

formation of tumors and development of cancer and is therefore

a potential therapeutic target (2). dMMR leads to the

accumulation of multiple mutations and MSI to further

induces tumorigenesis (3), which is observed in approximately

15% of CRC cases and incorporated in the universal screening

protocol for Lynch syndrome (4).

MSI or dMMR has a favorable prognosis but gains no benefit

from neoadjuvant chemotherapy with fluorouracil in CRC

patients with stage II (5). More importantly, recent studies

elucidate that immune checkpoint blockade (ICB) treatment in

patients with MSI or dMMR can yield remarkable clinical

benefits (6). Further investigations suggest that the benefit of

ICB treatment in these patients is not limited to CRC but

encompasses all solid tumors (7). Now, MSI or dMMR has
02
been approved by the FDA as the first pan-cancer biomarker for

immunotherapy response (8). Given the extensive clinical

applications, MSI or dMMR testing has been recommended by

multiple international guidelines for all CRC patients (9–11).

However, in clinical practice, not all CRC patients are tested for

MSI or dMMR, especially those in developing cities and

hospitals; this is because testing requires particular genetic or

immunohistochemical examinations, which are costly and time-

consuming and rely on excellent pathology laboratories and

doctors (12). Therefore, a low-cost tool that can be used in all

CRC patients from different cities and hospitals is essential.

Machine learning (ML) has shown great potential in

identifying features of disease subtypes and outcomes, with

successful application in disease screening (13), prognosis

evaluation (14), and efficacy prediction (15). Previous studies

have suggested that ML can recognize pathomorphological

characteristics that contribute to MSI or dMMR from

hematoxylin and eosin-stained tissue sections. Although these

results are promising, the performance of ML is poorer when

tissue areas are smaller than surgically resected specimens and is

subject to inter-hospital variability in relation to the quality of
frontiersin.org
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histological sections (16, 17). Meanwhile, researchers have

discovered susceptibility genes associated with MSI or dMMR

from genomic sequencing data based on ML algorithms.

However, genetic testing is expensive, making it difficult to

test all patients (18).

In this study, we aimed to develop an ML-based model for

predicting dMMR that is easily accessible and consistent among

different regions and hospitals based on routine clinical data. As

an automated screening tool, the model is expected to

complement further confirmatory testing, while reducing

unnecessary labor and cost in patients with proficient

mismatch repair (pMMR).
Methods

Patients

This retrospective study included a primary cohort of CRC

patients who underwent surgical resection and dMMR testing

between January 2015 and August 2021 in the Xijing Hospital of

Digestive Diseases, Air Force Military Medical University

(Shaanxi, China). The inclusion criteria were as follows: (1)

primary colorectal cancer confirmed via cytological and

histological examinations; (2) dMMR testing; and (3) complete

clinical and pathological data. In contrast, the exclusion criteria

were as follows: (1) coexistence of other primary malignant

tumors and (2) chemoradiotherapy, immunotherapy, and other

related anti-tumor therapies before surgery. In total, 5596

patients and 80 clinical features, including primary

demographic characteristics, tumor information, and routine

laboratory data, were investigated in our study. All data retrieved

from electronic patient records were further transformed and

normalized to facilitate feature selection and model building,

and all clinical data were explicitly scrutinized. The study was

approved by the Medical Ethics Committee of the First Affiliated

Hospital of the Air Force Military Medical University (No.

KY20112170-C-1).
Model development

Traditional models depend largely on human-selected

features, while ML can learn features from data, which allows

researchers to obtain untapped information and detect difficult-

to-discern patterns (19). Therefore, we constructed a predictive

model based on ML. In this study, the cohort was split into

separate training and validation sets at an 8:2 ratio using the light

gradient boosting machine (LGBM) (random state = 3), which

could maintain the same ratio of positive-to-negative samples in

the training and validation sets. As a classical approach, cross-

validation is typically exploited to avoid overfitting of training
Frontiers in Oncology 03
data in ML (20). Thus, in the training set, we employed k-fold

cross-validation (k = 10), a procedure that uses subsets of data to

iteratively train and validate the predictive performance of a

model. In this procedure, a cohort is randomly divided into 10

subsets, of which nine subsets are included in the training set

and the remaining subset in the testing set; the optimal

hyperparameters arise from the combination of the best cross-

validation results and the model that will provide the best

predictive performance on a new sample (21). For model

development, we trained eight basic models based on eight

different ML pipelines. The LGBM is a highly efficient gradient

boosting decision tree suitable for scenarios with large amounts

of data and high-dimensional features (22). Random forest (RF)

is an ensemble learning algorithm that builds and merges diverse

decision trees to obtain the optimal classification performance

(23). Gaussian Naive Bayesian (GNB), a supervised learning

method, approaches the classification task with the naive

assumption of independence between every pair of features

(24). The K-nearest neighbor (KNN) is a simple and effective

classification algorithm using the k-nearest points of inputs to

predict responses (25). The multilayer perceptron (MLP) is a

feedforward neuronal network consisting of an input layer, an

output layer, and one or more hidden layers that are closely

connected; it is widely used in distinguishing data that are not

linearly separable (26, 27). A classification and regression tree

(CART) is a modeling approach for classification (binary

response) and regression (continuous response) that has been

successfully utilized in clinical practice (28). The support vector

machine (SVM) is currently the mainstream classifier in ML,

which has been intensively applied for pattern recognition and

data classification (29). Logistic regression (LR) is a generalized

linear model used to solve binary classification problems, which

can fit binary or multinomial LR (30). To further optimize the

model, we applied bagging bootstrap aggregation, an ensemble

technique used for classification or regression, to determine the

hyperparameters of the basic models (31). Next, we built a fusion

model with hard voting (based on the average of the bagging

model) or soft voting (based on the weighted average of the

predicted class probabilities) (32).
Feature importance

Shapley additive explanation (SHAP), one of the most

optimal ML explication methods based on the game theory,

allows both local and global interpretabilities of the output of

any ML-based model (33). To determine which features

contributed most to the model predictions, we calculated and

visualized the SHAP values on the stacking predictions. Each

SHAP value measured how much each feature contributed,

either positively or negatively, to the risk of dMMR assigned

by the model.
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Model performance

We adopted the area under the receiver operating

characteristic curve (AUC) as the mainstay parameter of

model performance. Furthermore, we calculated and compared

the sensitivity, specificity, precision, negative predictive value

(NPV), false discovery rate (FDR), accuracy, average precision

(AP), and confusion matrix to further assess the comprehensive

performance of the ML-based models. In addition, a decision

curve analysis (DCA) was employed to evaluate the clinical net

benefit of the models (34).
Statistical analysis

Statistical analysis was conducted using R (version 4.1.2;

https://www.Rproject.org), and ML modeling was performed

using Python (version 3.6.5; https://www.python.org). The

following Python packages were used: “imblearn,” “sklearn,”

“lightgbm,” “randomForest,” and “mlxtend.” Meanwhile, the

following R packages were utilized: “tableone,” “survival,”

“mice,” and “rms.” Qualitative data were compared between

the two groups using the c2 test or Fisher’s exact test. P < 0.05

was considered statistically significant.
Results

Baseline clinical data

The flowchart of this study is shown in Figure 1. The

primary data were extracted from electronic medical records

between January 2015 and August 2021. According to the
Frontiers in Oncology 04
inclusion and exclusion criteria, 5596 patients were enrolled as

the study population: 4476 patients included in the training

cohort and 1120 in the validation cohort. No significant

differences were found in the prevalence of dMMR between

the two cohorts. dMMR was found in 508 (11.3%) and 110

(9.82%) patients in the training and validation cohorts,

respectively. There was no significant difference between the

difference of clinical characteristics between the training cohorts

and testing cohorts, including gender, age, tumor type, primary

site, histological grade, tumor size and other experimental

indicators (P >0.05). The baseline characteristics of the cohorts

are shown in Table 1.

Fourteen clinical features with better performance were

eventually employed to build the final model: age at diagnosis,

sex, hemoglobin (HB) level, platelet count, albumin level,

globulin level, lymphocyte ratio, eosinophil ratio, neutral

lymphoid ratio (NLR), CA125 level, primary site, histologic

tumor grade, tumor type, and tumor volume. The baseline

characteristics of the dMMR and pMMR groups are shown in

detail in Table 2.
Parameters

We trained the LGBM with a depth of 5, a learning rate of

0.012, basic learners of 230, a leaf size of 8, and maximum bins of

256. For the RF and CART, the maximum depths of the basic

trees were 10, and the basic learners were 500. For the KNN, the

leaf size was 30, and the optimum number of neighbors was 400.

For the MLP, we used three hidden layers with a size of 50, 30,

and 10, respectively; a learning rate of 0.08; and the Adam

optimizer and ReLU activation function. For the SVM, we

combined a C value of 0.01 with a kernel smoothing
FIGURE 1

The workflow of the study. ML, machine learning; ROC, receiver operating characteristic; DCA, decision curve analysis.
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TABLE 1 Characteristics of patients in the training and validation cohorts.

Training Cohort Validation Cohort

Characteristic (n=4476) (n=1120) P value

Gender, No (%) 0.975

Male 2614 (58.4%) 671 (59.9%)

Female 1862 (41.6%) 449 (40.1%)

Age, mean ± SD, years 60.49±12.37 60.32±12.54 0.995

Tumor type 0.995

Common adenocarcinoma 3796 (84.81%) 965 (86.16%)

Adenosquamous carcinoma 1 (0.02%) 0 (0%)

Mucinous adenocarcinoma 626 (13.99%) 139 (12.41%)

Squamous cell carcinoma 6 (0.13%) 2 (0.18%)

Neuroendocrine carcinoma 28 (0.63%) 9 (0.80%)

Signet ring cell carcinoma 19 (0.42%) 5 (0.45%)

Primary site 0.995

Cecum-ascending colon 855 (19.10%) 197 (17.59%)

Transverse colon 161 (3.60%) 35 (3.13%)

Descending colon 239 (5.34%) 67 (5.98%)

Sigmoid colon 770 (17.20%) 209 (18.66%)

Rectum 2451 (54.76%) 612 (54.64%)

Albumin level, No (%), (g/L) 0.995

<30 38 (0.85%) 10 (0.89%)

≥30 4438 (99.15%) 1110 (99.11%)

Globulin level, (g/L)
median (interquartile range)

27.4 (24.6,30.3) 27.45 (24.4,30.3) 0.995

Lymphocyte ratio, No (%) 0.99

<0.255 2225 (49.71%) 550 (49.11%)

≥0.255 2251 (50.29%) 570 (50.89%)

Eosinophils ratio,
median (interquartile range)

0.01 (0.01,0.03) 0.01 (0.01,0.03) 0.975

HB level, No (%), (g/L) 0.995

< 30 0 (0%) 0 (0%)

30-60 25 (0.56%) 5 (0.45%)

60-90 389 (8.69%) 80 (7.14%)

>90 4062 (90.75%) 1035 (92.41%)

Platelet level, No (%), (×109/L ) 0.995

<100 89 (1.99%) 20 (1.79%)

100-400 4116 (91.96%) 1051 (93.84%)

>400 271 (6.05%) 49 (4.37%)

CA125, No (%) 0.975

(Continued)
F
rontiers in Oncology
 05
 fron
tiersin.org

https://doi.org/10.3389/fonc.2022.1049305
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1049305
TABLE 1 Continued

Training Cohort Validation Cohort

Characteristic (n=4476) (n=1120) P value

Normal 3967 (88.63%) 985 (87.95%)

Abnormal 509 (11.37%) 135 (12.05%)

Histological grade 0.995

Well differentiated 992 (22.16%) 243 (21.70%)

Moderately differentiated 2807 (62.71%) 701 (62.59%)

Poorly differentiated 677 (15.13%) 176 (15.71%)

Tumor volume, No (%), (cm3) 0.995

<9 1472 (32.89%) 357 (31.87%)

9-17.5 1517 (33.89%) 374 (33.39%)

≥17.5 1487 (33.22%) 389 (34.74%)

NLR, No (%) 0.995

<2.56 2236 (49.96%) 569 (50.80%)

≥2.56 2240 (50.04%) 551 (49.20%)

HB, hemoglobin; CA125, carbohydrate antigen 125; NLR, neutral lymphoid ratio
F
rontiers in Oncology
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TABLE 2 Comparison of clinical characteristics in the dMMR and pMMR group.

Training dataset Validation dataset

Characteristic dMMR (n=508) pMMR (n=3968) P value dMMR (n=110) pMMR (n=1010) P value

Gender, No (%) 0.191 0.697

Male 283 (55.71%) 2331 (58.74%) 64 (58.18%) 607 (60.1%)

Female 225 (44.29%) 1637 (41.26%) 46 (41.82%) 403 (39.9%)

Age, mean ± SD, years 56.94±14.2 60.95±12.04 <0.001 55.9±14.03 60.8±12.28 0.001

Tumor type <0.001 0.074

Common adenocarcinoma 365 (71.85%) 3431 (86.47%) 86 (78.18%) 879 (87.03%)

Adenosquamous carcinoma 0 (0%) 1 (0.03%) 0 (0%) 0 (0%)

Mucinous adenocarcinoma 135 (26.57%) 491 (12.37%) 23 (20.91%) 116 (11.49%)

Squamous cell carcinoma 0 (0%) 6 (0.15%) 0 (0%) 2 (0.2%)

Neuroendocrine carcinoma 5 (0.98%) 23 (0.58%) 1 (0.91%) 8 (0.79%)

Signet ring cell carcinoma 3 (0.59%) 16 (0.4%) 0 (0%) 5 (0.5%)

Primary site <0.001 <0.001

Cecum-ascending colon 237 (46.65%) 618 (15.57%) 53 (48.18%) 144 (14.26%)

Transverse colon 43 (8.46%) 118 (2.97%) 13 (11.82%) 22 (2.18%)

Descending colon 71 (13.98%) 168 (4.23%) 17 (15.45%) 50 (4.95%)

Sigmoid colon 59 (11.61%) 711 (17.92%) 12 (10.91%) 197 (19.5%)

Rectum 98 (19.29%) 2353 (59.3%) 15 (13.64%) 597 (59.11%)

Albumin level, No (%), (g/L) <0.001 <0.001

(Continued)
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parameter of 0.01. Each bagging model was also linked with 10

datasets generated by random sampling for 10 times, allowing

the construction of the predictive models based on identical

basic algorithms and evaluation of their performance using the
Frontiers in Oncology 07
10-fold cross-validation test. The eventual stacking model

consisted of eight bagging models, with final weight values of

42 (LGBM), 12 (RF), 2 (GNB), 4 (KNN), 4 (MLP), 10 (DT), 34

(SVM), and 24 (LR).
TABLE 2 Continued

Training dataset Validation dataset

Characteristic dMMR (n=508) pMMR (n=3968) P value dMMR (n=110) pMMR (n=1010) P value

<40 163 (32.09%) 653 (16.46%) 32 (29.09%) 159 (15.74%)

≥40 345 (67.91%) 3315 (83.54%) 78 (70.91%) 851 (84.26%)

Globulin level, (g/L)
median (interquartile range)

27.9 (24.78,30.83) 27.4 (24.6,30.3) 0.021 27.85 (24.8,31.37) 27.4 (24.3,30.2) 0.129

Lymphocyte ratio, No (%) <0.001 0.016

<0.255 305 (60.04%) 1920 (48.39%) 66 (60%) 484 (47.92%)

≥0.255 203 (39.96%) 2048 (51.61%) 44 (40%) 526 (52.08%)

Eosinophils ratio,
median (interquartile range)

0.013
(0.007,0.023)

0.015
(0.008,0.025)

0.016
0.013

(0.006,0.023)
0.015

(0.008,0.026)
0.281

HB level, No (%), (g/L) <0.001 <0.001

< 30 0 (0%) 0 (0%) 0 (0%) 0 (0%)

30-60 8 (1.57%) 17 (0.43%) 0 (0%) 5 (0.5%)

60-90 97 (19.09%) 292 (7.36%) 19 (17.27%) 61 (6.04%)

>90 403 (79.33%) 3659 (92.21%) 91 (82.73%) 944 (93.47%)

Platelet level, No (%), (×109/L ) <0.001 0.004

<100 8 (1.57%) 81 (2.04%) 0 (0%) 20 (1.98%)

100-400 421 (82.87%) 3695 (93.12%) 99 (90%) 952 (94.26%)

>400 79 (15.55%) 192 (4.84%) 11 (10%) 38 (3.76%)

CA125, No (%) <0.001 0.003

Normal 400 (78.74%) 3567 (89.89%) 87 (79.09%) 898 (88.91%)

Abnormal 108 (21.26%) 401 (10.11%) 23 (20.91%) 112 (11.09%)

Histological grade <0.001 0.002

Well differentiated 120 (23.62%) 872 (21.98%) 26 (23.64%) 217 (21.49%)

Moderately differentiated 238 (46.85%) 2569 (64.74%) 55 (50%) 646 (63.96%)

Poorly differentiated 150 (29.53%) 527 (13.28%) 29 (26.36%) 147 (14.55%)

Tumor volume, No (%), (cm3) <0.001 <0.001

<9 92 (18.11%) 1380 (34.78%) 22 (20%) 335 (33.17%)

9-17.5 117 (23.03%) 1400 (35.28%) 19 (17.27%) 355 (35.15%)

≥17.5 299 (58.86%) 1188 (29.94%) 69 (62.73%) 320 (31.68%)

NLR, No (%) <0.001 0.029

<2.56 204 (40.16%) 2032 (51.21%) 45 (40.91%) 524 (51.88%)

≥2.56 304 (59.84%) 1936 (48.79%) 65 (59.09%) 486 (48.12%)

dMMR, mismatch-repair deficiency; HB, hemoglobin; CA125, carbohydrate antigen 125; NLR, neutral lymphoid ratio.
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tiersin.org

https://doi.org/10.3389/fonc.2022.1049305
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1049305
Feature importance

To further determine the association of each feature with the

outcome of mismatch repair (MMR), we employed the SHAP

values. Meanwhile, we calculated and visualized the significance

of each feature by analyzing the SHAP values in all individual

models (Supplementary Table S1) and stacking model

(Figure 2). The 10 most important features in the stacking

model were the primary tumor site, tumor volume, age at

diagnosis, histological tumor grade, tumor type, and

preoperative HB level, albumin level, platelet count, NLR, and

eosinophil ratio. Notably, a larger tumor volume, younger age,

higher histological tumor grade, higher platelet count, and

higher NLR ratio were associated with a higher risk of dMMR,

while a higher preoperative HB level, albumin level, and

eosinophil ratio were related to a lower risk of dMMR.
Model performance

Expectedly, all individual models demonstrated optimal

predictive performance in the internal validation set

(Figure 3A). Additionally, the stacking model exhibited an

outstanding predictive performance, with a relatively high

AUC of 0.831 and NPV of 97.03%. The AUC, sensitivity,

specificity, precision, NPV, FDR, accuracy, AP, F1-sore, and

MCC of each model in the internal validation set are listed in

Supplementary Table S2. An intuitive and concise confusion

matrix was also employed to evaluate the performance of the

models; the detailed outcomes of model prediction in the

internal testing set are shown in (Supplementary Table S3).

To further appraise whether our ML-based models

performed better than did the classical LR strategy, we fit our

data in the LR models. The stacking model had a higher AUC
Frontiers in Oncology 08
and NPV than the LR model (Supplementary Table S4).

Considering the clinical implications and with the guidance of

the models, we drew a DCA curve by performing a logistic DCA

analysis. The corresponding results revealed a favorable net

clinical benefit of both the stacking and LR models, although

the stacking model had a stronger effect (Figure 3B).
Subgroup analysis

To further confirm the comprehensive performance of the

stacking model in complicated clinical scenarios, we stratified our

cohort into four subgroups according to the AJCC stage. The

analysis showed that the stacking model achieved a promising

discriminative capacity, irrespective of the tumor stage (Figure 4).
Clinical application

To facilitate the clinical application of the model, we further

developed a concise and accessible nomogram based on 14

crucial features that can be used to accurately assess the MMR

status of CRC patients (Figure 5A). Thereafter, a calibration

curve was adopted to evaluate the predictive power of the

nomogram. The calibration curve indicated that the error

between the actual and predicted dMMR rates was very small,

suggesting that the nomogram possesses a preferable accuracy in

predicting dMMR (Figure 5B). The features could also well

predict the prognosis of CRC patients. Similarly, we

constructed a prognostic nomogram and calibration curve,

which showed that the predictive power was close to the ideal

curve, indicating that the prognostic nomogram has a great

predictive capability (Figure 5C, D).
BA

FIGURE 2

SHAP summary plot of the 14 feature of the stacking model. (A, B) Each dot corresponds to each feature attribution value for the model of each
patient, with positive values indicating a contribution that increase the probability of dMMR development while negative values indicating a
contribution that decreases the probability. Dots are colored according to the values of features for the respective patient and accumulate
vertically to depict density. Red represents higher feature values, and blue respective lower feature values. HB, hemoglobin; NLR, neutral
lymphoid ratio; CA125, carbohydrate antigen 125.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1049305
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1049305
Discussion

dMMR or MSI in CRC patients can serve as a cardinal

parameter for clinical decision-making, as it identifies a distinct

patient subset with a favorable prognosis, in whom treatment

with standard fluorouracil-based chemotherapy has no clinical

benefit and in whom ICB treatment might be of remarkable

benefit (35). However, in clinical practice, only a portion of CRC

patients is tested for dMMR or MSI owing to the associated high

costs and dependence on the operator. Therefore, a low-cost,

broadly accessible, and robust predictive model for dMMR or
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MSI that can guide diagnostic and therapeutic strategies is

urgently needed.

Recently, an increasing number of researchers harnessed ML

as a breakthrough tool for sophisticated medical issues, which

has made great clinical contributions, including disease

prediction, prognosis evaluation, and new drug development.

ML-based models can achieve considerably better accuracy,

stability, and interpretability compared with traditional

regression models. Thus, we developed and validated an

innovative and cost-efficient model to predict dMMR by

utilizing eight ML algorithms and combining 14 parameters

that are ubiquitously available in clinical practice. Although

partial parameters were found to have relatively weak

contribution to the model output, they were essential for

overall model performance (36). In order to get a higher

sensitivity, specificity and prediction power model, we retained

all parameters filtered by multiple ML algorithms. Notably, all

tests for these parameters were completely standardized and

consistent among different regions and hospitals. Thus, the

findings could be easily generalized to the complicated clinical

environment. The receiver operating characteristic curve

analysis showed that both the final fusion model and

individual models had a satisfactory performance, while the

DCA analysis revealed more net benefits of the fusion model

than of the conventional regression model. Most importantly,

our model showed a prominent capability in recognizing dMMR

in CRC patients regardless of the clinical stage. Ultimately, we

constructed a user-friendly nomogram comprising the features

of the fusion model that can be used in identifying dMMR in

CRC patients and treating them with a personalized strategy.

We established an ML-based model based on adequate

clinical data to predict dMMR in CRC patients. Compared

with previous analogous studies discerning dMMR or MSI

with the combination of histomorphological patterns with
BA

FIGURE 3

Comparison of the performance among machine learning models and DCA analysis. (A) ROC curves of the machine learning in the validation
cohort. (B) Logistic DCA analysis for two models in the validation cohort. Blue shading (LR model) represents the traditional model only based
on logistic regression algorithm, and red shading (stacking model) means the machine model based on ensemble learning strategies and
machine learning fusion algorithms in our study. ROC, receiver operating characteristic; DCA, decision curve analysis; AUC, area under curve;
LR, logistic regression.
FIGURE 4

Evaluation of models’ discriminant capability for CRC patients
with different clinical stage. ROC, receiver operating
characteristic; AUC, area under curve.
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features associated with dMMR or MSI from hematoxylin and

eosin-stained slides of CRC patients and combination of

susceptible genes related to dMMR or MSI with transcriptome

data, our study had several considerable strengths. First, we

focused on incorporating dMMR and adequate clinical

information into our model, which was easily accessible and

closely associated with the comprehensive state of the patients.

Meanwhile, the detection methods of all features were objective

and normalized, which eliminated the variation between

hospitals at different levels and between different locations.

Notably, all data were derived from preoperative examinations,

which could be useful in identifying patients with dMMR early,
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especially those who could not undergo surgical resection or

those who developed distant metastases. Second, all ML-based

models achieved a satisfactory discriminative power. More

importantly, both the individual and stacking models yielded a

crucial NPV (> 0.97), indicating that our model could furnish an

additional value as an automatic screening tool to assist in

clinical decision-making before confirmatory MMR testing.

Specifically, if all patients predicted to have pMMR are

excluded from confirmatory detection, this will dramatically

decrease the number of patients undergoing MMR testing,

yielding substantial test-related labor and cost savings. Third,

several previous studies only used a single ML algorithm, while
B

C

D

A

FIGURE 5

Construction of nomogram and calibration diagram. (A) A nomogram to predict the dMMR probability of CRC patients with preoperative routine
indexes. In the nomogram, the total points are the sum of individual point for each feature, with larger total points reflecting greater probability
of dMMR. (B) Calibration curve to evaluate the predictive power of the nomogram. (C) Nomogram to predict the 2- and 4- year OS of CRC
patient, with higher total points denoting worse prognosis. (D) Calibration curve for the estimation of 4-year OS predicted by the nomogram.
The diagonal dotted line represents theoretical response of perfect nomogram, the red solid line indicates the performance of nomogram.
Abbreviations: HB, hemoglobin; NLR, neutral lymphoid ratio; CA125, carbohydrate antigen 125; dMMR, mismatch repair deficiency.
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our study utilized ensemble learning strategies and ML fusion

algorithms, which generated comprehensive learning with

strong robustness and generalizability. Finally, previous studies

have suggested that concordance between MMR and MSI

analysis is quite high especially in CRC patients (37), so our

model may be useful for MSI assessment.

Our findings on the clinicopathological characteristics of

dMMR are consistent with previously published data. dMMR

was more frequently associated with mucinous adenocarcinoma,

poorly differentiated, and mostly located in the right hemicolon

(38, 39). Moreover, younger CRC patients were more likely to

have dMMR than older patients, which might be related to their

higher metabolism rate (40). Notably, beyond these classical risk

factors, our research also identified several risk factors

particularly relevant for dMMR by adopting multiple ML

methods; these factors included a larger tumor volume; lower

HB level, albumin level, lymphocyte ratio, and eosinophil ratio;

and higher platelet count, globulin level, NLR, and CA125 level.

Numerous studies have demonstrated that inflammatory

mediators, important promoters of genetic alterations, play an

important role in tumor initiation and progression (41).

Specifically, inflammatory immune cells, such as macrophages

and neutrophils, produce a wide variety of reactive substances,

which could directly trigger DNA damage of nonimmune cells to

further increase mutation frequency and genomic instability

(42). When DNA sustains damage, specific proteins and

enzymes are activated to repair such damage (43). During this

process, HB and albumin as the primary vectors of nutrients

could reduce DNA injury and strengthen the ability to repair

DNA damage. Conversely, if the levels of HB and albumin

decrease, the capacity to repair DNA damage will distinctly

increase (44, 45). These findings coincide with our data on the

lower levels of HB and albumin and higher NLR. Accumulating

evidence also suggests that platelets play a critical role in

angiogenesis modulation, tumor immune microenvironment

maintenance, and cancer progression (46). An increased

platelet count might be strongly associated with carcinogenesis

and prognosis of CRC patients with dMMR (47). Interestingly,

eosinophils could have both positive and negative effects: They

could both promote tumor progression and exert anti-tumor

activities by secreting cytokines (48, 49). Previous studies have

also indicated that CA125 could serve as an important diagnostic

and prognostic marker in CRC (50). Although several studies

reported that these features are closely associated with dMMR in

CRC patients, the biological explanations for the underlying

mechanisms are not well understood, which is worthy of

further exploration.

B e c au s e th e immune mi c r o env i r onmen t and

clinicopathological features were varied greatly in different

tumors, our model may not be applicable to the assessment of

MSI or MMR in other tumors. However, the insights and methods

of this study were completely generalized on other tumors.

Additionally, this study had several limitations. First, our analysis
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was conducted at a single medical center; more external test

cohorts from different hospitals and regions are of great necessity

to enhance the robustness and generalizability of our models.

Second, this study had a retrospective design; a large prospective

clinical trial is necessary before MMR testing could be routinely

performed in clinical practice. Third, although we utilized SHAP

values and previous data to interpret the feature performance in

our model, further basic science studies are required to determine

the underlying mechanisms.
Conclusions

In conclusion, we successfully confirmed 14 features closely

related to dMMR in CRC patients: age, sex, HB level, platelet

count, albumin level, globulin level, lymphocyte ratio, eosinophil

ratio, NLR, CA125 level, primary site, histologic tumor grade,

tumor type, and tumor volume. An innovative and universal

fusion model based on multiple ML algorithms was constructed

to predict dMMR in CRC patients, which achieved a satisfactory

predictive performance. A user-friendly nomogram was also

adopted, which yielded benefits and demonstrated prospects

for clinical application.
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