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Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most

commonly diagnosed in adolescents. Given the continued poor outcomes

for patients with metastatic and relapsed Ewing sarcoma, testing innovative

therapeutic approaches is essential. Ewing sarcoma has been categorized as a

‘BRCAness’ tumor with emerging data characterizing a spectrum of DNA

damage repair defects within individual Ewing tumors, including the

presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare

germline-based defects. It is critical to understand the cumulative impact of

various DNA damage repair defects on an individual Ewing tumor’s response to

therapy. Further, in addition to DNA-damage-directed therapies, subsets of

Ewing tumors may be more susceptible to DNA-damage/immunotherapy

combinations given the significant cross-talk between DNA damage and

inflammatory pathways in the tumor microenvironment. Here we review

potential approaches utilizing DNA-damaging agents as modulators of the

Ewing tumor immune microenvironment, with a focus on radiation and

opportunities during disease metastasis and relapse.
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Introduction

Ewing sarcoma is the second most common bone tumor diagnosed in adolescents

and young adults. Ewing sarcoma is driven by a fusion oncoprotein derived from the

translocation of EWSR1 on chromosome 22 with an ETS family member, most

commonly FLI1 on chromosome 11 (1). Patients with upfront metastatic or relapsed

Ewing sarcoma continue to have very poor outcomes (2), and new therapeutic

approaches continue to be in high demand. The exquisite sensitivity of Ewing tumors

to DNA damage has been recognized for decades and DNA damaging agents such as

chemotherapy and radiation continue to be the mainstays of Ewing sarcoma therapy,

even for aggressive disease (3).
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DNA damage can elicit significant alterations in tumor

biology, including modulation of the tumor immune

microenvironment (TIME). Historically, the impact of DNA

damage on the Ewing TIME has been understudied given a

paucity of tumor biopsies at the time of relapse and the lack of

syngeneic or transgenic (immunocompetent) mouse models of

Ewing sarcoma (4). DNA-damaging agents can promote

immunogenicity through multiple mechanisms including

increasing the neoantigen repertoire, increasing antigen

presentation, and shifting the cytokine profile to promote an

inflamed tumor microenvironment (5, 6). Understanding TIME

alterations elicited by DNA damage specifically in Ewing

sarcoma is a high priority, as TIME modulation during DNA

damage may offer a new avenue for therapy for patients with

aggressive disease. Therapeutically, it can be challenging to

increase chemotherapy doses or add additional marrow-

suppressive agents into existing chemotherapy backbones for

the treatment of Ewing sarcoma, also highlighting why multi-

modality approaches, such as TIME modulation, are in need.

Immunotherapy includes medications and cell-based

therapies that broadly act by enhancing the anti-tumor

immune response through various mechanisms (7) and have

been utilized successfully in many adult carcinomas and soft

tissue sarcomas (8, 9) (10). Clinical trials investigating single-

agent immunotherapy, such as PD1 inhibition, have not

demonstrated a significant clinical benefit in advanced Ewing

sarcoma (11, 12). Given the importance of immunotherapy type

and timing in disease response (13) such results are neither

surprising nor discouraging when currently so little is known

about the Ewing TIME. Primary Ewing sarcoma is known to

have low overall immune infiltration compared to other tumors

types. However, some studies have demonstrated a correlation

between increased infiltration of CD8+ T cells and improved

outcomes (14, 15). Our recent work demonstrated the Ewing

TIME can evolve and demonstrate enhanced immune cell

infiltration upon disease metastasis and relapse, possibly due

to a combination of prior chemotherapy exposure and changes

in tumor microenvironments (bone versus lung) (16). This work

again highlights the need to better understand Ewing tumor

immunobiology, especially in the setting of relapse.

In this mini-review we will discuss the layers of DNA

damage repair defects in Ewing sarcoma, how DNA damaging

agents can influence the TIME, and ways in which

immunomodulation during DNA damage could provide new

therapeutic opportunities for Ewing sarcoma in the future.
DNA damage and Ewing sarcoma

EWSR1::FLI1 and DNA damage sensitivity

Ewing tumors demonstrate high sensitivity to DNA damage.

DNA damaging agents , including doxorubicin and
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cyclophosphamide, have formed the chemotherapy backbone

for the treatment of Ewing sarcoma since the first use of adjuvant

therapy in the 1970s (17). Ewing sarcoma is also sensitive to

radiation therapy (18). Decades later, a screen of hundreds of

cancer cell lines seeking to identify biomarkers for targeted

cancer agents discovered EWSR1::FLI1 was significantly

associated with sensitivity to the PARP [Poly (ADP-ribose)

polymerase] inhibitor (PARPi) olaparib (19). PARP1 is an

enzyme involved in DNA damage repair and a drug target in

BRCA-mutant cancers deficient in homologous recombination

repair (20). PARP1 drives transcription and accelerates base

excision repair (21, 22), and inhibition of PARP1 leads to cell

death in cancers deficient in homologous repair by causing

defects in the replication fork needed to repair DNA damage.

Further studies elucidated that EWSR1::FLI1 interacts directly

with PARP (20). Gorthi et al. demonstrated that expression of

the EWSR1::FLI1 fusion oncoprotein correlated with increased

chemosensitivity (23). Mechanistically, they found that EWSR1::

FLI1 promotes R-loop accumulation, and ultimately deranges

DNA damage repair machinery by impairing normal BRCA1

functionality. A study in 2002 by Spahn et al. also demonstrated

that the N-terminal portion of EWSR1::FLI1 can interact with

the C-terminal portion of BRCA1-Associated Ring Domain 1

(BARD1), thus providing another potential link between

EWSR1::FLI1 and BRCA1 biology (24). Such studies provided

rationale for phase II clinical trial of olaparib as single-agent

therapy in patients with refractory Ewing sarcoma (25) and

subsequent studies have demonstrated that sensitivity to PARP

inhibition in Ewing sarcoma is increased in the setting of other

DNA damaging agents (irinotecan, temozolomide) (26). Despite

this, the overall clinical response of Ewing tumors to PARPi has

been underwhelming. Lastly, elegant work has demonstrated the

importance of the level of EWSR1::FLI1 fusion oncoprotein

expression on Ewing cell behavior. EWSR1::FLI1 expression

can vary between cells within a tumor. It is plausible that

Ewing cells with low versus high EWS::FLI1 expression may

demonstrate altered sensitivity to DNA damage (27–29), thus

allowing for tumor cell subpopulation targeting.
Somatic and germline variants in
Ewing sarcoma

In addition to DNA-damage-repair defects imparted by

EWSR1::FLI1 in all Ewing tumors, there is the potential for

Ewing tumors to harbor additional defects in DNA damage

repair through the presence of somatic and germline variants or

post-transcriptional modifications resulting in loss of protein

expression. When comparing Ewing tumors to adult

carcinomas, and even other pediatric primary bone tumors

such as osteosarcoma, Ewing sarcoma demonstrates a very low

tumor mutational burden (30–32). A handful of recurrent

somatic variants, such as STAG2, CDKN2A, and TP53 have
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been reported in Ewing sarcoma (31, 32). Ewing tumors

harboring one or more of these somatic mutations may

demonstrate altered responses to DNA damage, as each of the

corresponding proteins have been shown to participate in DNA

damage repair through different mechanisms. For example, in

vitro studies of STAG2-deficient glioblastomas demonstrated

increased sensitivity to PARP inhibition (33). In Ewing sarcoma,

loss of STAG2 expression can be secondary to STAG2 somatic

mutations or loss of protein expression in the absence of a

mutation (34).

A third layer of DNA-damage-repair deficiency to consider

in Ewing sarcoma derives from germline pathogenic variants.

Multiple sequencing studies of pediatric cancers have noted a

small fraction of germline pathogenic variants in patients with

Ewing sarcoma (35, 36). In a germline variant analysis of

sequencing data from 175 patients with Ewing sarcoma, likely

pathogenic variants were identified in 13.1% of patients (37). In

the variants found, involving 22 different genes, a strong

enrichment for DNA repair pathways and DNA double-strand

break repair was noted on pathway analysis. Our work and

others continue to add to the growing number of germline

variants in DNA damage repair genes noted in patients with

Ewing sarcoma (38, 39). Our group’s prior work demonstrated

that loss of additional DNA damage repair machinery, such as

BARD1 expression, can indeed confer Ewing cells more

susceptible to DNA damage as compared wuth the sensitivity

imparted by the presence of EWSR1::FLI1 alone (40). Figure 1

depicts a brief summary of the spectrum of DNA damage repair

deficiencies in Ewing sarcoma.
DNA damaging agents used in Ewing
sarcoma therapy

Given the spectrum of DNA damage repair defects in Ewing

sarcoma, DNA damaging agents will continue to be a mainstay

of therapy. Following the original treatment schema with

doxorubicin and cyclophosphamide discussed above, in the

1980s it was noted that ifosfamide and etoposide, which also

exert their anti-neoplastic effect through induction of DNA

damage, were effective in treating patients with relapsed Ewing

sarcoma (41). This led to the development of the National

Cancer Institute protocol INT-0091 (CCG-7881 and POG-8850)

in which ifosfamide and etoposide were added to the

standard therapy backbone. Improved overall and event free

survival was seen in patients with newly diagnosed, localized

Ewing sarcoma using this five-drug approach (42). Alternating

cycles of VDC (vincristine, doxorubicin, cyclophosphamide)

and IE (ifosfamide and etoposide) thus remain the standard of

care for patients with upfront localized or metastatic Ewing

sarcoma. AEWS0031 later demonstrated that shortening the

time between cycles (interval compression) provides additional

benefit (43).
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In addition to chemotherapy, radiation is also an important

component of Ewing sarcoma treatment. Radiation is a curative-

intent treatment modality option for local control, either as

definitive treatment or as adjuvant treatment following surgical

resection. The commonly prescribed radiation dose for definitive

treatment of primary tumors is 55-60 Gy in 1.8-2 Gy fractions

(44). The most recent Children’s Oncology Group protocols for

Ewing sarcoma recommend 45 Gy be delivered to the original

tumor volume with an additional 10.8 Gy boost delivered to the

post-induction chemotherapy volume (3). Gross residual disease

post-surgical resection is treated with 55.8 Gy, and microscopic

disease treated with 50.4 Gy. There has recently been data

suggesting that dose escalation up to a total dose of 70.2 Gy

may be of benefit in improved local control (45), although this

strategy has not been widely adopted to date. More recent

studies show that hypofractionation (5-10 Gy doses over 5-10

fractions) may be as or more effective at treating sarcomas,

including Ewing sarcoma (46).

Radiation therapy is also a key component in the treatment

of metastatic and relapsed Ewing sarcoma. For patients

presenting with pulmonary metastases at diagnosis, there have

been multiple studies demonstrating the survival benefit of

whole lung irradiation after completion of chemotherapy (47).

For patients presenting with bony metastases, outcomes are

worse overall; however, radiation delivery to sites of metastatic

disease is beneficial (48). Patients with solitary bone metastases

benefited most from radiotherapy, with doses of up to 50 Gy to

sites of bony metastases being utilized. As patients with Ewing

sarcoma receiving radiation are often a higher-risk patient

population (incomplete resections, metastatic disease, relapse,

etc.), this is a group of high interest when considering

immunotherapy interventions following post-DNA damage

modulation of the Ewing TIME.
Immunomodulation through
DNA damage

Immunomodulation by chemotherapy

DNA damaging chemotherapeutic agents have been shown

to induce immunogenicity through a variety of mechanisms (5).

Given the low mutational burden of Ewing sarcoma, the

mutagenic potential of DNA damaging agents is an appealing

mechanism of enhancing immunogenicity by production of

tumor neoantigens (49). Tumor neoantigens can induce

increased anti-tumor T cell response which is again beneficial

when combined with immunotherapy agents. However,

increased neoantigens in the TIME are not always sufficient to

induce immune response (50). DNA damaging agents

additionally lead to release of damage associated molecular

patterns (DAMPs) after cell death. DAMPs stimulate the
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recruitment of antigen-presenting cells to the site of cell death

and further prime the TIME for an adaptive immune response.

Doxorubicin and cyclophosphamide are utilized in the

treatment of Ewing sarcoma and are known to induce

immunogenic cell death (51). Cyclophosphamide additionally

remains of particular interest as it has been shown to increase

antigen presentation on tumor cells and expand dendritic cell

populations that can promote T cell priming (52, 53).

An additional mechanism by which DNA damaging

chemotherapeutics can increase anti-tumor immune response

is through changes in the cytokine profile of the tumor

environment. Cellular response to DNA damage includes

activation of signaling pathways that lead to release of

proinflammatory cytokines including IFN-a and cytokines

triggered by activation of the NF-kB signaling pathway.

Specifically, cyclophosphamide has been shown to induce IFN-

g and IL-2, pro-inflammatory cytokines that promote

immunogenicity (53). Parkes et al. demonstrated that in a

breast cancer model DNA-damage-repair defects lead to

increased expression of the chemokines CXCL10 and CCL5

from tumor cells (16, 54).

The precise impact of chemotherapy commonly used in

relapsed Ewing sarcoma [irinotecan and temozolomide (IT),

topotecan and cyclophosphamide (TC), high dose ifosfamide

(IFOS), and gemcitabine and docetaxel (GD) (55)] on Ewing

tumor immunobiology is still largely unknown. PARP inhibitors

have been shown to induce infiltration of CD8+ T cells in breast

cancer, and the efficacy of PARP inhibition is due to recruitment

of these cytotoxic T cells through the cGAS/STING pathway

(56). In this model, depletion of CD8+ T cells decreased the

efficacy of PARP inhibition. In addition to recruiting cytotoxic T
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cells, PARP inhibition has also been shown to increase the

expression of immune checkpoint ligand PD-L1 on cancer

cells (57). Our work has previously shown that PD-L1 and

PD-L2 expression can be manipulated in Ewing cell

subpopulations in response to inflammatory signaling (58).

In summary, the effect of DNA damaging chemotherapeutic

agents used in the treatment of Ewing sarcoma can, in theory,

manipulate the TIME; however, this is an understudied area.

While chemotherapy has the temporary ability to alter the

TIME, ultimately due to systemic effects, patients are largely

overall immunosuppressed during therapy. Thus, focal delivery

of DNA damage, such as radiation therapy, may be beneficial

when considering immunotherapy combinations.
Immunomodulation by radiation

The interest in the immune-mediated effects of radiation

date back to the 1980s when it was first noted that local radiation

can lead to anti-tumor effect at distant sites of disease (59, 60).

Subsequently, many studies have demonstrated that local

radiation can produce systemic immune-mediated anti-tumor

effects, though this is not a consistent finding in all studies (6, 61,

62). Studies examining the radiation anti-tumor effect in

immunocompetent vs immunodeficient mouse models of

melanoma have demonstrated that the presence of CD8+

cytotoxic T cells are necessary for this response (63). Radiation

enhances the immune response to tumors through release of

cytokines and chemokines in the tumor microenvironment

following cell death (64). These cytokines and chemokines

result in infiltration of effector immune cells (dendritic cells,
FIGURE 1

The spectrum of DNA damage repair deficiencies in Ewing tumors. Ewing tumors all have a level of DNA damage repair deficiency imparted by
EWSR1::FLI1. The presence of one or more recurrent somatic mutations or rare germline pathogenic variants have the potential to contribute an
additional level of DNA damage repair deficiency in a subset of Ewing tumors. Figure created by biorender.com.
frontiersin.org
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macrophages, cytotoxic T cells) as well as immunosuppressive

populations (Tregs, myeloid-derived suppressor cells) (65).

Similar to the effect of chemotherapy described above,

radiation induces immunogenic cell death leading to release of

DAMPs. This leads to increased production and recruitment of

proinflammatory cytokines and chemokines, including CXCL9,

CXCL10, and CXCL11 (66). The generation of this

proinflammatory environment is thought to lead to

recruitment of effector T cells and may enhance the priming

of T cells in the TIME. Recently, the essential role of natural

killer (NK) cells in controlling the radiation-induced anti-tumor

has been demonstrated (67).

In addition to promoting a proinflammatory TIME,

radiation can also exert immunosuppressive effects. Tregs are a

wel l descr ibed subset of CD4+ T cel ls that exert

immunosuppressive effects on the TIME. In some adult

carcinomas, radiation has been shown to increase Tregs and

the subsequent production of immunosuppressive cytokines

including TGF-b and IL-10 (68) TGF-b is known to be

increased following radiation and is converted from its latent

to active form by reactive species generated during radiation

(69). TGF-b exerts immunosuppressive effects on the TIME and

it has been shown that increase in TGF-b in the TIME can lead

to decreased efficacy of immunotherapy through the exclusion of

CD8+ T cells (70). Several studies have demonstrated that

inhibition of the immunosuppressive pathways activated by

localized radiation can improve radiation-induced tumor kill

and anti-tumor immunity (71, 72).

An additional immunosuppressive cell population that can

be induced/increased following radiation are myeloid-deprived

suppressor cells (MDSCs). MDSCs are well described to

promote tumor growth and survival and are known to be

recruited into the TIME of pancreatic and prostate cancer

immediately following radiation (73), with a decrease in this

population seen at 1-2 weeks post radiation. TGF-b is known to

induce differentiation of macrophages to an M2 phenotype

which is protumor and immunosuppressive. These

mechanisms of immunosuppression induced by radiation

represent potential targets to improve the anti-tumor immune

response induced by radiation.
Radiation therapy in Ewing sarcoma:
Untapped potential for multi-
modality therapies

Currently, relatively little is known about the specific impact

of radiation on the Ewing sarcoma TIME. New therapeutic

approaches for patients with metastatic and relapsed Ewing

sarcoma are long overdue. While agents that induce tumor

DNA damage clearly provide some benefit for the treatment of

relapsed disease, they are rarely curative. Understanding which
Frontiers in Oncology 05
multi-modality therapeutic approaches may circumvent Ewing

tumor cell resistance to single- modality therapies is a priority. It

is possible that subsets of Ewing tumors in the DNA-damage-

repair deficiency spectrum (Figure 1) could demonstrate

differential responses to multi-modality therapy. Radiation

therapy is often utilized in patients with high-risk (metastatic

and relapsed) Ewing sarcoma, and given its potential to

modulate the TIME, it is a logical treatment modality to

consider in combination with immunomodulation (Figure 2).

There has been growing interest in oncology to combine

radiation with immunomodulatory agents to improve the anti-

tumor immune response (74–76). Given the concurrent

immune-stimulatory and immunosuppressive effects that

radiation therapy can trigger in the TIME, there has been

interest in combination therapies targeting both of these

sequalae (77). Broadly speaking, logical categories of

immunomodulators to preclinically study in combination with

radiation for the treatment of Ewing sarcoma include: 1)

immune checkpoint inhibitors (ICI), 2) cytokine modulators,

and 3) cell-based therapies. Here we will briefly address each of

these approaches.

The combination of radiation therapy and ICI in patients

with advanced solid tumors has demonstrated promising early

clinical results (74, 75). It has also been reported that the

presence of DNA damage repair defects, such as germline

BRCA 1/2 pathogenic variants, is correlated with increased

expression of immunosuppressive ligands such as PD-1/PD-L1

(78), considered one marker of response to immune checkpoint

inhibition. This association provides a rationale for preclinically

testing the response of Ewing tumors with additional DNA

damage repair defects to the combination of radiation and

immune checkpoint inhibition.

In addition to examining ICIs, modulation of cytokines in

the tumor microenvironment during radiation therapy is of

great interest. While not every cytokine can be addressed in

this mini-review, we will highlight two. TGF-b is an

immunosuppressive cytokine that is increased in tumor

microenvironments following radiation and has been shown to

confer resistance to radiation (72). Inhibition of TGF-b during

radiation has the potential to enhance the anti-tumor immune

response (79). A second cytokine, IL-6, is known to be secreted

by Ewing tumors (80, 81), and can be upregulated following

radiation-induced DNA damage. Further, it is thought that the

presence of IL-6 in the TME confers radiation resistance (82).

IL-6 inhibitors are active in clinical trials as monotherapy for

cancer (83), however, combination therapy with these inhibitors

during radiation offers another therapeutic avenue worthy of

preclinical testing.

Lastly, there is promise for delivering cell-based therapies in the

setting of radiation. Chimeric antigen receptor T-cells (CAR-T)

therapies have shown great success in the treatment of hematologic

malignancies but have not seen the same success in solid tumors

(84). Challenges have included identification of an ideal target
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antigen, cell trafficking to the tumor, and the overall

immunosuppressive environment of solid tumors. Therapies

targeting the DNA damage repair pathway have shown some

success in solid tumors in improving response to CAR-T therapy

through induction of a more pro-inflammatory TIME (85).

Additionally, radiation therapy delivered prior to administration

of CAR-T in a mouse model of glioblastoma demonstrated

improved trafficking and efficacy of the CAR-T cells post-

radiation (86). There is ongoing research in the field to identify a

targetable antigen for cell based therapies for the treatment of Ewing

sarcoma (87). In addition to CAR-T cell therapy, dendritic cell-

based immunotherapy is a cell-based therapy that could logically be

combined with DNA-damaging agents. Studies have demonstrated

improved efficacy of dendritic cell vaccination when given in

combination with radiation (88, 89). Lastly, as noted above,

recent work has demonstrated the key role of NK cells in the

radiation anti-tumor response. Understanding the role of NK cells
Frontiers in Oncology 06
in the TIME of Ewing tumors specifically during radiation is a

priority (67, 90).
Future directions and challenges

Significant historical impediments to studying the

influence of DNA damage on the immune microenvironment

in Ewing sarcoma include, but are not limited to, the lack of an

immunocompetent animal model of Ewing sarcoma (4) and

the sparsity of samples from disease relapse and pre-/post-

intervention biopsies. Recently, a genetically engineered

zebrafish model of Ewing sarcoma has been developed, which

may offer a new immunocompetent model (91), although

studies specifically investigating immune interactions in this

model have not yet been performed. A potentially valuable

model for studying the TIME of Ewing sarcoma is the
FIGURE 2

Radiation and the Ewing sarcoma tumor immune microenvironment. Radiation is often utilized for the treatment of Ewing sarcoma in the
setting of unresectable primary tumors, lung metastases, relapse to the bone, etc. The Ewing tumor immune microenvironment can
demonstrate differences in immune infiltration and cytokine abundance in these distinct microenvironments where radiation is utilized. Figure
created by biorender.com.
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development of humanized (presence of human immune cells),

immunocompetentmousemodels, a focus of ongoing work by our

group. Developing and validating a robust preclinical model to

study the impact of DNA-damaging agents used clinically for the

treatment of Ewing sarcoma on theTIME is a crucial and necessary

step toward determining promising immunomodulatory agents to

partner with radiation or chemotherapy in an attempt to improve

the outcomes for patients with advanced disease. While DNA

damage, such as radiation therapy, is the focus of this mini-

review, the impact of other novel agents, such as tyrosine kinase

inhibitors, agents targeting EWSR1::FLI1, etc., on the Ewing

sarcoma TIME are also worthy of exploration and represent a

limitation of this mini-review.
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