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Mesenchymal stem cells (MSCs) have been used to treat various diseases including

Alzheimer’s disease and cancer. In particular, the immunomodulatory function of

MSCs plays a major role in cancer therapy using stem cells. However, MSCs exert

promotive and inhibitory effects on cancer. The immunomodulatory effects of

MSCs in the tumor microenvironment (TME) are ambiguous, which is the primary

reason for the different outcomes of MSCs therapies for tumors. This review

discusses the use of MSCs in cancer immunotherapy and their

immunomodulatory mechanisms in cancers.
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1 Introduction

Mesenchymal stem cells (MSCs) are easily accessible stem cells with high

differentiation potentials and immunomodulatory function. MSCs are mainly obtained

from various tissues including bone marrow, umbilical cord, amniotic fluid, teeth, and fat

tissues (1). MSCs are widely used to treat various disorders including neurodegenerative

diseases (1), nerve injuries (2), and cancers (3). MSCs therapies have achieved good

results for nervous system diseases. However, MSCs show different effects in tumor

treatments, tumorigenesis, and development. For example, MSCs from umbilical cord

stroma promote the proliferation and metastatic behaviors of breast cancer cell lines in

vitro, such as retinoblastoma protein (Rb)+ MCF-7 and MDA-MB-231 (4). It has also

been reported that microRNA-222/223 from MSCs promote Rb+ breast cancer

recurrence and bone metastasis in a tumor-bearing mouse model (5). Additionally, a

study using clinical samples found that cancer cells promotes breast cancer (Rb+)

invasion and metastasis by the phagocytosis of MSCs (6). Recent studies have found

that MSCs promotes the development of pancreatic cancer due to IL-6 by MSCs

paracrine. Furthermore, the promoting effect of MSCs on tumor can be eliminated by

knockout the expression of IL-6 in MSCs (7). Intriguingly, human umbilical cord stroma
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MSCs (hUC-MSCs) inhibited colon cancer via modulating the

proportion of macrophages, which show that MSCs could

regulate the polarization of macrophages (8). These studies

indicate that MSCs therapy may promote cancer development

and metastasis. This is largely because of the heterogeneity of

MSCs and the heterogeneity of tumors. Indeed, different subsets

of MSCs show varying immunomodulatory functions in tumors

(Figure 1). For example, transplantation of CD90low MSCs

derived from mouse compact bone into a mouse model of

ovarian cancer promotes the expression of interleukin-12 (IL-

12), interleukin-21 (IL-21), interferon-g (IFN-g), and the pro-

inflammatory factor chemokine (C-X-C motif) ligand 10

(CXCL10), and inhibited the expression of anti-inflammatory

factors, including interleukin-10 (IL-10) and C-C chemokine

ligand-5 (CCL-5), thereby suppressing tumor growth and

improving survival (9). Reprogrammed interleukin-7 (IL-7)-

IL-12-MSCs are reported to promote the activation of CAR-T

immune cells and the release of IFN-g and tumor necrosis factor-

a (TNF-a), which markedly enhanced colorectal cancer cell

death (10). However, interleukin-17 (IL-17) significantly
Frontiers in Oncology 02
promotes the immunosuppressive function of MSCs by

inducing the expression of IFN-g and TNF-a (11). IL-17 has

been reported to mediate immunosuppression by enhancing the

expression of programmed death 1 (PD-1) in MSCs via

inducible nitric oxide synthase (iNOS) (12). Therefore, MSCs

could suppress tumor development by activating immune cells

or promote tumor development by suppressing immune

cells (Figure 2).
2 The inhibitory effects of MSCs
in cancers

Although MSCs are used in cancer therapy, some studies

show that they have the potentials to inhibit or promote tumor

development. For instance, human adipose-derived MSCs (Hu-

ADSCs) promote epithelial-mesenchymal transition (EMT) in

MCF-7 cells via the TGF-b/SMAD and PI3K/AKT pathways in

the TME (13). Studies have shown that the secretion of

interleukin-8 (IL-8) and interleukin-6 (IL-6) by human
FIGURE 1

The effects of various MSCs subtypes on cancer.
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umbilical cord-derived MSCs (hUCMSCs) activates the

expression of IL-8 and IL-6 in MCF-7 cells through autocrine

signaling and induction of CD44+/CD24- cells, thereby

promoting MCF-7 cell migration in vitro and in vivo (14).

Hypoxic preconditioning enhances the expression of miR-21-

5p-derived from MSCs extracellular vesicles (MSC-EVs), which

can promote lung cancer development by suppressing apoptosis

and promoting M2 macrophage polarization (15). Human

menstruation blood-derived MSCs (hMBSCs) are reported to

mediate their anti-cervical cancer effects, in vitro and in vivo,

through the TGF-b1/JNK/p21 signaling pathway (16). It is

reported that intravenous injection of human amniotic MSCs

(hAMSCs) into mice bearing HepG2, a hepatocellular carcinoma

cell line, induces HepG2 apoptosis and significantly suppresses

its proliferation. Further antibody array analysis showed that the

hAMSCs overexpressed dickkopf-3 (DKK-3), dickkopf-1 (DKK-

1), and insulin-like growth factor binding protein-3 (IGFBP-3).

More importantly, hAMSCs and their conditioned media exhibit

similar anti-tumor effects in vitro, suggesting that the anti-tumor

effects of hAMSCs may be mediated by hAMSCs-derived

cytokines including DKK-3, DKK-1, and IGFBP-3 (17). It is
Frontiers in Oncology 03
reported that lipoxin A4, as an endogenous lipoxygenase-

derived eicosanoid mediator, could reverse the mesenchymal

phenotype of pancreatic cancer and suppress its invasion and

metastasis by inhibiting autocrine TGF-b1 signaling, and that

therapeutically targeting this process may prevent pancreatic

cancer metastasis (18). These studies highlight the different

potential anti-cancer effects of MSCs, which may be because

MSCs have a variety of immunomodulatory functions in the

TME (Table 1).

In cancer inhibition (Table 2), MSCs are reported to inhibit the

production of pro-inflammatory factors, cause the conversion of

macrophages into phagocytic regulatory cells, and activate the

immune microenvironment of colorectal cancer (22). Bone

marrow MSCs (BMSCs) are reported to suppress tumorigenesis

by inhibiting the production and proliferation of myeloid-derived

suppressor cells (MDSCs) (25). Interestingly, when BMSCs were

transplanted into a mouse model of hepatoma to treat ascites,

tumor growth was inhibited and the survival time of the mice was

prolonged, probably because BMSCs inhibited the production and

proliferation of MDSCs (26). Hsa-miR-23b-3p from BMSCs is

reported to inhibit PI3k/Akt/NF-kB signaling, to maintain the T
FIGURE 2

Schematic representation of the immunomodulatory roles of MSCs in cancer.
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helper type 17 cells (Th17)/regulatory T cells (Treg) balance, and to

activate the tumor immunemicroenvironment, thereby suppressing

the development of intracranial tumors (27).
3 The promoting effects of MSCs
in cancers

In cancer promotion, prostate cancer-infiltrating MSCs are

reported to mediate their immunosuppressive effects by

suppressing the proliferation of T cells in a dose-dependent

manner, and to upregulate the cell surface levels of programmed

death ligand-1 (PD-L1)/programmed death ligand-2 (PD-L2)

via IFN-g/TNF-a signaling (19). Secretion of IL-8 by gastric

cancer associated MSCs (MSCs originated from human GC-

MSCs) promotes the expression of PD-L1 by gastric cancer cells,

causing resistance to cytotoxic CD8+ T cells. Studies have shown

that PD-L1 expression in gastric cancer regulates the production

of c-Myc to promote tumor development through STAT3/

mTOR signaling (20). GC-MSCs promote the activation of

CD4+ T cells, which in turn, promote PD-L1 expression in
Frontiers in Oncology 04
GC-MSCs via p-STAT3 signaling, thereby promoting tumor

growth (21). BMSCs home to the TME in response to

chemokines and cytokines secreted by cancer cells, which are

‘educated’ by the TME and promote the generation of Ly6G+

MDGCs that inhibit T cells proliferation to suppress the tumor

immune microenvironment (23). In a mouse model of multiple

myeloma, BMSCs are reported to inhibit T cells immune

response by means of the PD-1/PD-L1 signaling pathway,

thereby promoting the development of multiple myeloma, and

markedly shortening mouse survival (24). Thus, MSCs can

promote or suppress immune function through various

immunomodulatory mechanisms, thereby influencing tumor

development (Table 3).
4 The immunoregulatory role of
MSCs and immune cells in the TME

Immune cells, including innate and adaptive immune cells,

play an important role in the TME. In particular, TME is mainly

composed of tumor cells, immune and inflammatory cells
TABLE 2 The inhibitory effect of MSCs in cancers.

Cells Tumors Mode of action Results Ref

BMSCs

Intracranial aneurysm EVs Inhibition (27)

Cervical cancer EVs Inhibition (28)

Colorectal cancer EVs Inhibition (29)

Ovarian cancer Paracrine Inhibition (9)

hMBSCs Cervical cancer Paracrine Inhibition (16)

Hu-ADSCs Neuroblastoma Paracrine Inhibition (30)

MSCs
Colorectal cancer EVs Inhibition (22)

Glioma EVs Inhibition (31)

hUCESCs Breast cancer (Rb+) Cell to cell Inhibition (32)

hAMSCs Hepatocellular carcinoma Paracrine Inhibition (17)
frontiersin
hUCESCs, human uterine cervix-derived MSCs; hAMSCs, human amniotic mesenchymal stem cells; hMBSCs, human menstrual blood-derived stem cells; Hu-ADSCs, human adipose-
derived stem cells.
TABLE 1 The cancer immunomodulatory effects of various MSCs.

Cells Immune state Molecular mechanism Results Ref

PC-MSCs immunosuppression IFN-g/TNF-a-PD-L1/PDL2 promotion (19)

immunosuppression IL-8/PD-L1 promotion (20)

GC-MSCs immunosuppression CD4+ -T-PD-L1 promotion (21)

MSCs immunoactivation Macrophages are re-coded as regulatory cells involved in phagocytosis, thus inhibiting the
production of pro-inflammatory cytokines.

inhibition (22)

CMSCs immunosuppression Ly6G+-MDSCs inhibits the proliferation of T cells. promotion (23)

immunosuppression PD-1/PD-L1 pathway. promotion (24)

BMSCs immunoactivation myeloid-derived suppressor cells. inhibition (25,
26)

immunoactivation Hsa-miR-23b-3p maintains the balance of Th17/Treg. inhibition (27)
PC-MSCs, prostate cancer-infiltrating MSCs; GC-MSCs, gastric cancer mesenchymal stem cells; MSCs, mesenchymal stem cells; CMSCs, cancer-educated mesenchymal stem cells; BMSCs,
bone marrow-derived mesenchymal stem cells.
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around them, tumor-related fibroblasts, and nearby interstitial

tissues, microvessels, and various cytokines and chemokines. It is

a complex and comprehensive system, which can be divided into

immune microenvironment dominated by immune cells and

non-immune microenvironment dominated by fibroblasts.

Among them, Innate immune cells include macrophages,

natural killer cells (NKs), neutrophils, and dendritic cells

(DCs). Adaptive immune cells include lymphoid T cells and B

cells. However, MSCs have a variety of immunomodulatory

effects on innate and adaptive immune cells (Figures 3, 4),

through several pathways.
Frontiers in Oncology 05
4.1 The effect of MSCs on innate
immune cells in the TME

4.1.1 MSCs and macrophages
Macrophages as effector cells of the innate immune system

play a vital role in mediating host anti-cancer responses by

initiating and participating in immune responses (37, 38). The

primary functions of macrophages in mediating tumor regression

are phagocytosis, direct lysis of cancer cells, and secretion of

cytokines with direct or indirect tumoricidal activities.

Macrophages are divided into two subtypes containing M1 and
TABLE 3 The promoting effect of MSCs in cancers.

Cells Tumors Mode of action Results Ref

ADSCs Lung cancer Paracrine Promotion (33)

BMSCs
Multiple myeloma Paracrine Promotion (24)

Lung cancer EVs Promotion (15)

Hu-ADSCs Breast cancer (Rb+) Paracrine Promotion (13)

hUCMSCs Lung adenocarcinoma EVs Promotion (34)

UC-MSCs Breast cancer Paracrine Promotion (14)

Breast cancer (Rb+) EVs Promotion (5, 35)

MSCs Lung cancer Paracrine Promotion (36)

Breast cancer (Rb+) Cell to cell Promotion (6)
frontiers
ADSCs, adipose-derived mesenchymal stem cells; Hu-ADSCs, human adipose-derived stem cells; hUCMSCs, UC-MSCs, human umbilical cord stroma-derived MSCs.
FIGURE 3

MSCs can modulate innate immune cells through the mechanism of paracrine cytokines, EVs, and cell to cell interaction.
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M2. M1 macrophages activate anti-tumor effects and protect from

carcinogenesis. There is evidence that the TME contains M2

macrophages, which inhibit anti-tumor immune responses (39–

41). MSCs can exert their anti-tumor effects by interacting with

macrophages in the TME (39, 41), and they have been reported to

bias macrophages toward the “anti-inflammatory” M2 subtype,

which is characterized by elevated IL-10 levels and reduced

expression of iNOS and IL-12 (39, 41–43). However, it is

reported that intraperitoneal injection of MSCs into a mouse

model of colorectal cancer did not fully repair inflammation-

driven intestinal mucosal lesions, but the MSCs accumulated in

the abdominal cavity, accompanied by T cells and macrophages.

The macrophages treated with MSCs exhibit the M2 phenotype,

with the levels of IL-10 and iNOS elevated, while those of IFN-g,
IL-6, and TNF-a, were reduced (44). It is reported that the iNOS,

MCP-1,and IL-6 secreted by M1 condition medium MSCs could

polarize the infiltrating tumor-associated macrophages (TAM)

into M2 macrophages, thereby causing immunosuppression and

promoting tumor development (45). The EVs secreted by MSCs in

ischemic preconditioning may promote the M2 polarization of

macrophages and the growth and invasion of non-small lung

cancer cells (NSCLC) through miR-21-5p (15). Similarly, human

placental MSCs play an immunosuppressive role by transforming

pro-inflammatory M1 macrophages into anti-inflammatory M2

macrophages (46). Additionally, MSCs produce CCL-5, which

binds to CCR-5, causing the secretion of colony-stimulating

factor-1 (CSF-1) again, and CSF-1 binding to CSF-1 receptors in
Frontiers in Oncology 06
MSCs to promote the recruitment of macrophages (47). Tumor-

educated MSCs release large amounts of chemokines, including C-

C chemokine ligand-2, C-C chemokine ligand-7, and C-C

chemokine ligand-12, thereby accelerating the recruitment of

CCR-2 dependent monocytes and macrophages to the tumor,

which finally promotes tumor growth (48).

Thus, MSCs-mediated transition of macrophages from M1

to M2 subtype may be closely associated with immunoregulation

in the TME.

4.1.2 MSCs and NKs
NKs are the main effector cells of the innate immune system,

which directly kill virus-infected and stressed cells as well as tumor

cells in an MHC-independent manner (49). NKs are a part of the

host natural defense mechanism. They use C-type lectin molecules

for target recognition. Therefore, NKs are thought to be involved in

tumor surveillance. It is reported that the overexpression of

Sirtuin-1 by MSCs recruits NKs to the TME and effectively

inhibits the growth of breast cancer (Rb+) cells (50).

Interestingly, MSCs from various tissues have different

immunosuppressive effects on NKs. Studies have shown that

tumor-derived MSCs are more immunosuppressive than normal

MSCs, which may be caused by the differential expression of

NCAM (CD56) (51). It is reported that the immunomodulatory

effects of MSCs vary across NK cell lines. For instance, MSCs

suppress IFN-g secretion by the NK cell line, KHYG-1, but not by

NK-92 (another NK cell line). WhereasMSCs are more sensitive to
FIGURE 4

MSCs can modulate adaptive immune cells through the mechanism of paracrine pathway, EVs, and cell to cell interaction.
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NK-92 than KHYG-1. Interestingly, the immunosuppression of

MSCs is regulated by indoleamine 2,3-dioxygenase (IDO) and

prostaglandin E2 (PGE-2), which are secreted by MSCs (52).

Transcriptional activator with a PDZ motif (TAZ)-expressing

MSCs inhibit NKs receptor stimulation, signal ligand and NKs

cytotoxicity via the mechanism of cell-to-cell contact regulation,

and have a strong immunosuppressive effect on NKs (53). On the

contrary, MSCs derived from Wharton’s Jelly derived activates

NKs by secreting cytokines, including IL-2, IL-12, interleukin-15

(IL-15), and IL-21, with the latter influencing immune responses

by driving the secretion of IFN-g and TNF-a (54).

Although the mechanisms underlying the interaction between

MSCs and NKs in tumors are not clear, above studies indicate that

the paracrine function of MSCs in the TME may be involved.

4.1.3 MSCs and DCs
DCs are the main type of antigen-presenting cells (APCs)

and an important component of innate immunity. In cancer,

danger signals promote DCs activation and/or maturation

culminating in an antigen-specific T cells response that is

necessary for pathogen clearance and killing cancer cells.

MSCs mainly affect the immune regulation of lymphocytes by

regulating the transmission of DCs antigen. Several studies have

focused on the regulation of DCs differentiation by MSCs. For

example, during the maturation of DCs, the supernatant from

MSCs inhibits CD83 expression, suppresses IL-12 production,

and interferes with endocytosis (55). Additionally, it is reported

that MSCs block the differentiation of CD14+/CD1a progenitor

cells into dermal/interstitial DCs, but they do not affect the

production of CD1a+ Langerhans cells. It is reported that MSCs

completely inhibit the differentiation of monocytes into immature

DCs by secreting IL-6, macrophage colony-stimulating factor (M-

CSF), or other soluble factors (56). BMSCs have been reported to

partially inhibit the differentiation of DCs into bone marrow

progenitor cel ls by secret ing IL-6 (57). IL-10, an

immunosuppressive cytokine, influences the differentiation and

maturation of DCs via JAK/STAT signaling, and MSCs are

reported to inhibit DCs maturation by stimulating IL-10

secretion and JAK1/STAT3 signaling. In addition to IL-10, the

secretion of TNF-a stimulating gene-6 (TSG-6) byMSCs has been

shown to inhibit the activation of MAPK and NF-kB signaling

during LPS-induced DCs maturation (58). These results suggest

that MSCs maintain an immature or semi-mature DCs

phenotype. Interestingly, studies have shown that BMSCs also

block DCs migration in response to chemokine (C-C motif)

ligand-19, thereby interfering with antigen presentation by DCs

(59, 60). However, MSCs are less directly involved in tumor

immune regulation, and more indirectly participate in tumor

immune regulation via regulating DCs. For example, tumor-

associated MSCs are reported to modulate the expression of

cysteinase via the IL-10/STAT3 signaling pathway, thereby

inhibiting the production of cysteine by DCs and suppressing

the proliferation of naïve T cells (61).
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These findings indicate that MSCs interfere with the three

main functions of DCs, namely, the upregulation of antigen

presentation and co-stimulatory molecules, their antigen

presentation capacity, and migration ability of specific

antigens. However, further studies are needed to determine

how MSCs modulate DCs in tumors.

4.1.4 MSCs and neutrophils
Neutrophils are short-lived effector cells of the innate immune

system and they play major roles in the activation, localization, and

expression of adaptive immune responses (62). There are two

important aspects of the role of neutrophils in cancer: (1) the main

purpose of neutrophilic functions is killing infectious

microorganisms, and neutrophils were not evolutionarily

programmed to fight or support cancer; (2) neutrophils are a

plastic and diverse population of cells, which either support or

interfere with cancer development andmetastasis. Reprogramming

of neutrophils by tumors results in phenotypic modulation that

reshapes these functions to support tumor progression.

GC-MSCs inhibit the chemotaxis, survival, activation, and

function of neutrophils through the IL-6/STAT3/ERK1/2

signaling pathway and promote the development of gastric cancer

(63). MSCs promote the storage of neutral fat in neutrophils, which

enters breast metastatic cells through the macrophage-lysosome

pathway, thereby providing tumor cells with energy for survival and

proliferation (64). MSCs induce neutrophil activation via AKT/p38

signaling, secrete the inflammatory factors IL-17, IL-23, and TNF-

a, and promote the growth and metastasis of gastric cancer (65).

When co-cultured with MSCs, neutrophils are protected by IL-6

secretion by MSCs, and participate in STAT3 signaling.

Surprisingly, TNF-a-activated MSCs secrete the high levels of

CXCR2 ligands, such as CXCL1, CXCL2, and CXCL8, which

mediate the recruitment of neutrophils by MSCs. This is mainly

because the chemokine receptor CCR-2 that is highly expressed in

neutrophils, blinds to CXCR2. In turn, the neutrophils promote

cancer metastasis (66). These studies provide the guidance for the

immunomodulatory mechanism of TME mediated by neutrophils

regulated by MSCs via paracrine pathway.
4.2 The effects of MSCs on adaptive
immune cells in the TME

4.2.1 MSCs and lymphocyte T cells
T cells are the main cellular effectors of adaptive immunity,

which play major roles in antigen-specific and memory-related

homologous immunity (67). T cells have two of the major

functions in mounting a response against cancer cells, which

are the recognition and direct killing of cancer cells, a process

known as cell-mediated cytolysis, and the production and

secretion of cytokines that induce activation and proliferation

of other effector cell populations. There are two primary T cells

subgroups, namely CD4+ and CD8+ T cells, which are involved

in developing an effective immune response against cancers.
frontiersin.org
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In a mouse model of multiple myeloma, BMSCs have been

reported to suppress T cell-mediated immune responses via the

PD-1/PD-L1 signaling pathway, including by inhibiting the

proliferation of CD4+ T cells, reducing the Th1/Th17 ratio,

and increasing the levels of Th2 and Treg cells. Meanwhile,

the cytokines of the corresponding T cells subsets also changed

(24). In a Balb/c nu/nu tumor transplantation model, CD4+ T

cells are reported to upregulate PD-L1 expression in gastric

cancer-derived MSCs (GC-MSCs) via the p-STAT3 signaling

pathway, and to activate the PD-1/mTOR signaling pathway,

thereby promoting gastric cancer growth (21). Interestingly,

exosomal miRNA derived from BMSCs, hsa-miR-23b-3p,

targets Krüppel-like factor 5 (KL5) by inhibiting PI3k/Akt/NF-

kB signaling and maintaining the balance of Th17/Treg, thereby

inhibiting the development of intracranial aneurysms (21).

Recombinant IL-7/IL-12 MSCs are reported to enhance the

ability of CAR-T cells to attack colorectal cancer (10). In

cervical cancer, MSCs protect cancer cells from attack by

cytotoxic T cells by downregulating the expression of HLA

class I (68). Tumor-derived MSCs inhibit T cells proliferation

and block cysteine transport to T cells through DCs cells (61).

Amazingly, nontoxic neem leaf glycoprotein (NLGP) has been

shown to upregulate cysteine expression by suppressing IL-10

secretion by TC-MSCs, thereby restoring the proliferation and

effector function of T cells in the TME (69). MSCs secrete

inflammatory cytokines, including CCL-5 and IL-17B, and

which promote tumor invasion and metastasis (70). IL-21

secreted by MSCs could effectively inhibit malignant B

lymphoma by inducing T cells and NKs, and by suppressing

immunosuppressive cells (71).

A recent study found that through paracrine function,

MSCs play different regulatory roles on different T cells

subtypes. MSC-secreted PGE-2 and TGF-b could induce

CD4+/CD25+/FoxP3+ T cells (72, 73). Similarly, MSC-secreted

HLA-G5 helps to inhibit the proliferation of allogeneic T cells

and CD4+/CD25/HighFoxP3+ Tregs (74). Findings from a

mouse model of encephalomyelitis indicate that MSCs release

CCL-2 by inhibiting the STAT3 signaling pathway, thereby

inhibiting the activation of CD4+/Th17 cells (75). Additionally,

MSCs inhibit Th17 cells differentiation at least in part, by

secreting PGE2 and IDO (76). In addition to their direct

effect on T cells, MSCs also influence T cells by regulating

innate immune cells, including macrophages and DCs, through

MSCs-derived paracrine factors. The interaction between co-

stimulatory ligands and TCR on the surface of T cells is

necessary for T cells activation. Therefore, the soluble factors

produced by MSCs can affect the expression of co-stimulatory

ligands in APCs, thereby regulating T cells. For example, MSCs

affect their immunomodulatory functions by influencing

macrophage polarization, which control lymphocyte T cells

differentiation (77). Thus, paracrine factors from MSCs

immunomodulate the TME by directly and/or indirectly,

transmitting regulatory signal to lymphocyte T cells.
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4.2.2 MSCs and lymphocyte B cells
B cells are another major adaptive immune cell types involved

in antigen presentation and antibody production (78, 79). B cells

mount an anti-cancer response by generating tumor-specific

antibodies. Tumor-bound antibodies help to locate a tumor by

serving as recognition molecules to which effector cells bind

through their constant fragment (Fc) receptor. A specialized

feature of certain cytotoxic effector cells is their expression of

receptors for the Fc region of IgG molecules. When tumor cells

are coated with IgG, effector cells with Fc receptors bind to the

target cell and kill it. ADSCs promote the survival of resting B cells

in a contact-dependent manner. However, induced regulatory B

cells are independent of helper T cells (80). In a mouse model of

head and neck cancer, hematopoietic stem cells combined with

MSCs promoted lymphoid B and T cells tumor infiltration, and

effectively inhibited tumor development (81). ADMSCs inhibit B

cells proliferation depending on the presence of T cells (80).

However, it is not clear how the paracrine activity of BMSCs

affects lymphocyte B cells in the TME, which warrants

further investigation.
5 Immunoregulatory roles of EVs-
derived MSCs in the TME

MSCs are thought to mainly mediate their immunomodulatory

functions through paracrine signals. Several recent studies have

shown that secretory EVs contribute to this regulatory effect.

Additionally, MSCs-secreted EVs are considered to be key

paracrine factors. MSC-EVs, which include microcapsules and

small EVs are a heterogeneous group of lipid membrane-

encapsulated nanoparticles containing various biomolecules, RNAs

(like mRNAs and miRNAs), and proteins (such as membrane

receptors, enzymes, cytokines, and growth factors) (82). MSC-EVs

influence cell-cell interactions by transferring bioactive molecules

(locally or remotely) from signaling cells to signal-receiving cells (83,

84). EVs obtain their contents from parental MSCs, so EVs-derived

from MSCs have similar immunomodulatory properties (85, 86).

Thus,MSCs couldmediate their immunomodulatory effects through

the release of EVs.

It is reported that BMSCs-derived EVs suppress immune

function in multiple myeloma by activating MDSCs through the

STAT3/STAT1 signaling pathway, thereby promoting the

development of multiple myeloma (87). ADMSCs-derived EVs

carrying miR-10a promote the differentiation and immune

response of Th17 cells and Tregs, but suppress Th1 differentiation,

thereby indirectly enhancing the immunomodulatory function of

MSCs (88). The membrane sac produced by human MSCs with

cytochalasin B-induced IL-2 overexpression could stimulate

cytotoxic CD8+ T cells in triple negative breast cancer (Rb+) cells

(89). In breast cancer (Rb+), MSCs-derived EVs promote the

differentiation of myeloid cells into M2 macrophages, resulting in

immunosuppression and enhanced tumor growth (90). MSCs-
frontiersin.org

https://doi.org/10.3389/fonc.2022.1047907
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1047907
derived EVs carrying microRNA-15a inhibit immune escape by

colorectal cancer cells by regulating the KDM4B/HOXC4/PD-L1

axis, thereby inhibiting tumor development (91). Surprisingly, the

EVs secreted by Wharton’s Jelly-derived MSCs promote T cells

inhibition through PD-L1 (92). These reports show that MSC-EVs

can be used as an potential tool in cancer immunotherapy (93).

Compared with MSCs, acellular EVs have low-

immunogenicity, the ability to cross biological barriers, and

strong potential for tumor. But overcoming the problem of

quality heterogeneity still is big problem (86, 94). It is relatively

easy to modify EVs in order to improve their effective content and

surface availability, thereby improving their therapeutic potential.

Based on these advantages, MSC-EVs are expected to develop into

effective alternatives to stem cell immunotherapy.
6 Perspectives

Because of their high differentiation potentials and

immunomodulatory function, MSCs have promising application

potentials in regenerative medicine and cancer therapy. However,

in cancer therapy, MSCs exhibit varying therapeutic effects.

Indeed, clinical trials on the use of MSCs in cancer therapy

(Table 4) have yielded unexpected results. This may be due to

the effects of the tumor immune microenvironment, in which

immune cells are inhibited by various factors, thereby creating an

environment that is conducive for tumor growth. MSCs influence

tumor immune regulation by enhancing or suppressing immune

activation, thereby influencing the therapeutic effects on various

tumors differently. Because of their heterogeneity, the effects of

various MSCs subtypes in the tumor immune microenvironment,

including their effects on anti- or pro-tumor immune cells.

(Figure 1). Thus, preclinical MSCs typing may be necessary to

identify the MSCs with anti-cancer potentials. Additionally,

tumor heterogeneity, coupled with the complex immune

microenvironment, significantly complicates cancer treatment.

Therefore, using MSCs as mediators of immunomodulatory
Frontiers in Oncology 09
activity against tumors offers a novel strategy for

cancer immunotherapy.
7 Conclusions

MSCs have promising potential applications in stem cell

therapy for cancers. However, because MSCs can mediate

immunoactivation or immunosuppression in the TME, it is

necessary to determine their immunomodulatory functions in

various tumor types in order to ensure their effectiveness against

cancers. What is more important is to determine the relationship

between MSCs and different immune cells and how to affect the

activity of immune cells, so as to inhibit or promote tumor

development. Therefore, it is of great significance to understand

the immunomodulatory mechanism of MSCs in cancer therapy.
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TABLE 4 Anti-cancer MSCs in registered clinical trials (Clinicaltrials. gov, National Institutes of Health) as of August 2021.

Cells Tumors Phase Status NCT Location

Ah-BMSCs Prostate Cancer Phase 1 (N=7) Terminated NCT01983709 Maryland, US

MSCs Ovarian cancer Phase 1 (N=5) Completed NCT02530047 Texas, US

HB-adMSCs Pancreatic cancer Not available Not available NCT04087889 Texas, US

Hematological Malignancies Phase 1 (N=6) Completed NCT03106662 Ankara, Turkey

Hematological Malignancies Phase 1 (N=30) Completed NCT00504803 Liege, Belgium

Head and neck cancer Not applicable (N=20) Recruiting NCT02331134 Colorado, US

MSCs Ovarian Phase 1
Phase 2 (N=57)

Recruiting NCT02068794 Minnesota, US

Head and neck cancer Phase 2 (N=120) Recruiting NCT04776538 Copenhagen, Denmark

Head and neck cancer Phase 1 (N=12) Unknown NCT02079324 Seoul, Korea

Leukemia Phase 1 (N=98) Completed NCT00498316 Texas, US
Ah-BMSCs, allogeneic human bone marrow-derived mesenchymal stem cells; HB-adMSCs, allogeneic adipose-derived mesenchymal stem cells.
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