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Tripartite motif (TRIM) 31 is a new member of the TRIM family and functions as

an E3 ubiquitin ligase. Abnormal TRIM31 expression leads to a variety of

pathological conditions, such as cancer, innate immunity diseases, sepsis-

induced myocardial dysfunction, cerebral ischemic injury, nonalcoholic fatty

liver disease and hypertensive nephropathy. In this review, we comprehensively

overview the structure, expression and regulation of TRIM31 in cancer.

Moreover, we discuss the dual role of TRIM31 in human cancer, and this dual

role may be linked to its involvement in the selective regulation of several

pivotal cellular signaling pathways: the p53 tumor suppressor, mTORC1, PI3K-

AKT, NF-kB and Wnt/b-catenin pathways. In addition, we also discuss the

emerging role of TRIM31 in innate immunity, autophagy and its growing sphere

of influence across multiple human pathologies. Finally, a better understanding

of the dual role of TRIM31 in cancer may provide new therapeutic strategies

aimed at inhibiting the cancer-promoting effects of TRIM31 without affecting

its tumor suppressor effects.
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1 Introduction

Ubiquitination is a common posttranslational modification of proteins. It

participates in various cellular processes and physiological responses in cancer,

inflammatory disorders, infection and other diseases by regulating the degradation and

activation of intracellular proteins (1). The ubiquitination process is catalyzed by E1, E2

and E3, among which E3 ubiquitin ligase is mainly involved in the recognition and

binding of target proteins (2). E3 ubiquitin ligases can be divided into two major classes:

homologous to E6-AP COOH terminal (HECT) E3 ubiquitin ligases and RING finger-

containing E3 ubiquitin ligases. Although TRIMs are considered to be RING finger-

containing E3 ubiquitin ligases, not all TRIM E3 ubiquitin ligases have a RING domain.
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To date, there are 9 ring-domain-free TRIM proteins in humans

(3). Apart from the RING finger domain, TRIM proteins also

contain one or two zinc-binding motifs, named B-boxes, and a

coiled-coil domain. According to their domains, TRIM proteins

are divided into I to XI subfamilies (4–6). TRIM proteins

regulate important cellular processes, such as intracellular

signal transduction, innate immunity, transcriptional

regulation, autophagy, and carcinogenesis (7, 8). In cancer

research, TRIM members act as oncogenes or tumor

suppressor genes in ovarian cancer, renal cell carcinoma,

gastric cancer, and breast cancer by controlling multiple

processes such as transcriptional regulation, DNA repair, cell

proliferation, apoptosis, and metastasis (9–13).

TRIM31 is a member of the TRIM family, and structural

analysis found that it contains a RING domain, which makes it

an E3 ubiquitin-protein ligase (14). The RING domain is a zinc-

binding motif located in amino acids 10-20 of the first methionine

in nearly all TRIM protein N-terminal portions (15). General

insights into RING domain function are derived from the report

that the RING domain contains the CBL protein, which has shown

that the RING domain regulates ubiquitination events (16–18). It

has been reported that C16, C36, C53, C56, and C58 are the key

amino acids of the RINGdomain, andmutation of these amino acid

sites can inhibit the E3 ubiquitin ligase activity of TRIM31 (19–21).

Apart from the RING domain, TRIM31 also contains one zinc-

finger domain named the B box (type 2 box). B-box domains exist

in more than 1500 proteins from a variety of organisms, and they

can be divided into two groups, in which the intervals of 7-8 zinc

binding residues of type 1 and type 2 B-box domains are different.

Type 2 B-box proteins play a role in the ubiquitination process.

After the B boxes are the coiled-coil region at the N-terminus, this

domain regulates homomeric and heteromeric interactions between

TRIM proteins and other proteins, especially self-association. In our

research, the coiled-coil region was important for the binding of

TRIM31 and p53 (22). TRIM31 has no domain at the C-

terminus (Figure 1).
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Recent studies on TRIM31 strongly advocate for the critical

role of TRIM31 in cancer, immunity and inflammation. In this

review, in addition to accumulating recent corroborations that

endorse this dual role of TRIM31 in cancer, we also discuss the

emerging role of TRIM31 in innate immunity, inflammation and

autophagy and its growing sphere of influence across multiple

other human pathologies.
2 Expression of TRIM31 in cancer
and its clinical value

To date, the clinical correlation of TRIM31 in cancer is still

elusive. Several reports have revealed that there is a positive

correlation between the expression of TRIM31 and cancer

prognosis in specific cancer types. TRIM31 is upregulated in

gastric adenocarcinoma and may be a potential biomarker of

gastric cancer because it is overexpressed in the precancerous stage

(23). TRIM31 was markedly upregulated in hepatocellular

carcinoma, gallbladder cancer, colorectal cancer, high-grade

glioma, pancreatic cancer and acute myeloid leukemia, and the

high expression of TRIM31 was also associated with an aggressive

phenotype, advanced disease status and poor prognosis (24–29).

Multivariate survival analysis demonstrated that TRIM31 was an

independent prognostic factor for glioma patients (27). From the

Human Protein Atlas data, immunohistochemical analysis found

that TRIM31 was more highly expressed in liver, gastric,

pancreatic, gallbladder, colorectal tumors and glioma (Figure 2,

more information please see www.proteinatlas.org). It is suggested

that upregulation of TRIM31 is a common feature of many

epithelial cancers and predicts a poor prognosis. However,

several reports have indicated that TRIM31 is downregulated in

cancer; for example, TRIM31 expression is downregulated in lung

cancer tissues and cell lines and correlates with clinic-pathological

factors (30). Our research showed that TRIM31 expression was

decreased in breast cancer tissues and that lower TRIM31 levels
FIGURE 1

Domain organization of the TRIM31 protein. The different TRIM31 domains are reported with numbers and indicate the first and last amino acids
of each domain.
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were associated with worse survival of breast cancer patients (22).

Altogether, the aforementioned studies showed that TRIM31 was

upregulated in liver, gastric, pancreatic, gallbladder, colorectal

tumors and glioma, and higher levels of TRIM31 are related to

the poor prognosis of cancer patients. However, there are also

opposite conclusions. TRIM31 was downregulated in lung and

breast cancer, and higher expression of the TRIM31 gene is linked

to better overall survival of patients.
3 Regulation of TRIM31 expression

The expression of TRIM31 in diverse cancer cells is different,

and its expression is tightly controlled by various factors. Recent

reports have shown that TRIM31 expression is regulated by

retinoid, microRNA and posttranslational modifications.

Retinoids, natural or synthetic derivatives of vitamin A, are

effective in the treatment of acute promyelocytic leukemia

(APL) and are used in the chemoprophylaxis of cancers such as

breast, skin, head and neck and liver cancers. Retinoid bound to

the promoter of TRIM31 to induce TRIM31 expression and then

suppressed the proliferation of breast cancer (31). MicroRNA is a

small single-stranded noncoding RNA with a length of 21-23 nt

that regulates the transcriptional inhibition, cleavage and

degradation of mRNA (32). According to related studies,

abnormal miRNA function is closely related to tumor invasion

and metastasis (33, 34). In ovarian cancer, microRNA-551b

downregulates TRIM31 expression by targeting its 3’ UTR to
Frontiers in Oncology 03
promote cancer progression (35). In addition, microRNA-29c-3p

is abnormally expressed in many cancers, including gastric cancer,

colon cancer, pancreatic cancer and hepatocellular carcinoma

(36–38). Overexpression of microRNA-29c-3p significantly

inhibited the proliferation and migration of hepatocellular

carcinoma (HCC) cells in vitro and the growth of HCC tumors

in vivo. Mechanistically, microRNA-29c-3p directly bound to the

TRIM31 promoter and suppressed TRIM31 expression (39).

Posttranslational modifications including phosphorylation,

ubiquitination and acetylation have been shown to modulate

various biological functions, such as cell signal conduction,

protein–protein interactions, protein transport, cell differentiation

and proliferation through regulating the protein conformation,

localization, stability and activity (40, 41). The TRIM31 protein is

polyubiquitinated in gastric cancer, which leads to its proteasomal

degradation. Furthermore, the ubiquitin proteasome-regulated

degradation of TRIM31 was confirmed in AsPC-1 pancreatic

cancer cells (23). These discoveries suggest that posttranslational

modification can control the abundance of endogenous TRIM31.
4 The dual role of TRIM31 in cancer:
Oncogene or Tumor Suppressor?

4.1 The tumor suppressor role of TRIM31

Recently, increasing evidence has shown that TRIM31 plays

an important tumor suppressor role in the occurrence and
FIGURE 2

TRIM31 is highly expressed in several types of tumors (The Human Protein Atlas data). The rabbit polyclonal antibody HPA046400 (Sigma
Aldrich) was used for the immunohistochemistry assay. The cancer tissues of glioma, melanoma, thyroid gland, pancreatic cancer and liver
cancer were strongly cytoplasmic stained. Occasional membranous positivity was observed in colorectal cancer. Urothelial cancer and most
kidney cancers were negatively stained. Normal tissues showed weak to strong cytoplasmic positivity with HPA046400 antibody, as presented
at the bottom. In glioma, thyroid cancer, liver cancer, colorectal cancer, and pancreatic cancer, the expression of TRIM31 in cancer cell
cytoplasm is higher than that in adjacent normal tissues. However, in lung cancer, testis cancer, kidney cancer, and urothelial cancer, the
expression of TRIM31 was lower than that in adjacent normal tissues.
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development of various cancers. TRIM31 was first reported in

breast cancer in 2002. Retinoid induced proliferation inhibition

of breast carcinoma cells by targeting the TRIM31 promoter

(31). In our study, we found that TRIM31 directly interacted

with p53 and subsequently stabilized and activated p53 by

inducing K63-linked ubiquitination as well as inhibiting

MDM2-mediated K48-linked ubiquitination of p53 and then

suppressing breast cancer progression (22). In addition, TRIM31

plays a potential tumor suppressor role in non-small cell lung

cancer. The expression of TRIM31 in lung cancer cell lines was

lower than that in the normal bronchial cell line HBE. TRIM31

inhibited the cell proliferation rate and colony formation by

reducing the expression of the cell cycle regulators cyclin D1 and

cyclin E (30). Moreover, TRIM31 can be recognized as a growth

suppressor at the early stage of gastric adenocarcinoma (23).

Therefore, TRIM31 may act as a tumor suppressor in the early

stage of the tumor. Altogether, these studies have shown that

TRIM31 might play a tumor suppressor role in breast cancer,

non-small cell lung cancer and the early stage of gastric

adenocarcinoma (Figure 3).
4.2 The oncogene role of TRIM31

Recently, studies have shown that TRIM31 is an oncogene in

various cancers. A number of carcinogenic mechanisms have been

proposed for TRIM31, such as regulating the P53, mTORC1,

PI3K-Akt, NF-kB andWnt/b-catenin pathways to promote tumor
Frontiers in Oncology 04
onset and progression (24–30). P53 is one of the most important

tumor suppressor proteins. In differentiated cells, the abundance

and activity of p53 are strictly regulated. With an increased risk of

acquiring mutations, the accumulation and activation of p53

protein are regulated by posttranslational modifications (42).

TRIM31 was significantly upregulated in the anchorage-

deprived HCC cells compared with their attached counterparts

and promoted anoikis resistance. TRIM31 can directly interact

with p53, which is an inhibitor of the AMPK pathway, and

regulate the K48-linked ubiquitous degradation of p53. It was

further confirmed that excessive activation of the AMPK pathway

is the cause of TRIM31-mediated HCC cell resistance to anoikis.

That is, TRIM31 facilitates anoikis resistance by targeting the

degradation of p53 and subsequently overactivating the AMPK

pathway (24). AMPK phosphorylates tuberous sclerosis complex

2 (TSC2) and enhances its activity (43). TSC2 is an upstream

inhibitor of the mTORC1 pathway. MTOR forms two unique

catalytic subunits of the complex, called mTORC1 and mTORC2,

and it plays critical roles in a variety of biological processes, such

as cell growth, survival, autophagy, metabolism, and immunity

(44, 45). TRIM31 facilitates the malignant behaviors of HCC cells

by overactivating the target of the mTORC1 pathway. Further

studies have shown that TRIM31 plays a carcinogenic role by

directly interacting with the TSC1 and TSC2 complexes and

facilitating the ubiquitination of K48 and the degradation of the

complex (19).

The phosphoinositide 3-kinase (PI3K)–AKT pathway is an

important node in controlling cell growth, migration,
FIGURE 3

Schematic diagram of TRIM31 function in cancer. TRIM31 can act as either a tumor suppressor or an oncogene. TRIM31 inhibits cell growth by
reducing the expression of Cyclin D1 and Cyclin E. TRIM31 stabilizes P53 expression to suppress tumor cell proliferation and metastasis. TRIM31
promotes tumor onset and progression by regulating the P53, mTORC1, PI3K-Akt, NF-kB and Wnt/b-catenin pathways. Retinoid induced cell
growth arrest by targeting the promoter of TRIM31. miR-551b suppresses the expression of TRIM31 by targeting its 3’-UTR and further promotes
cell invasion and drug resistance. miR-29c-3p can inhibit TRIM31 expression by targeting its 3’-UTR. TRIM31 activated Wnt/b-catenin signaling
to promote cell survival.
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proliferation, and metabolism in mammalian cells and is the

most commonly activated pathway in human cancers (46). In

glioma, by silencing or overexpressing TRIM31 expression, the

proliferation, invasion and migration of glioma cells could be

downregulated or upregulated through the PI3K/Akt signaling

pathway (27). Moreover, TRIM31 can activate the PI3K/Akt

signaling pathway to enhance chemoresistance in glioblastoma

(47). In gallbladder cancer, TRIM31 promotes proliferation and

invasion via the PI3K/Akt signaling pathway (25). The PI3K/

AKT/IKK alpha pathway regulates the activation of NF kappa B

and b-catenin in CRC cell lines (48). Nuclear factor kappa B

(NF-kB) is activated in various cancers and not only coordinates

with immunity and inflammation but also plays a vital role in the

development of cancer (49, 50).. Past research has shown that

ubiquitin modification plays an important role in the regulation

of NF-kB signaling (51–53). As an E3 ubiquitin ligase, TRIM31

promotes K63-linked polyubiquitination of tumor necrosis

factor receptor-associated factor 2 (TRAF2) to upregulate the

levels of nuclear p65 and then maintains the activation of NF-kB
in pancreatic cancer cells. Furthermore, TRIM31 promotes

gemcitabine resistance in pancreatic cancer cells by activating

the NF-kB signaling pathway (28). In addition, TRIM31

activates the NF-kB pathway to promote migration and

invasion in glioma and colorectal cancer (26, 54). TRIM31

regulates Wnt/b-catenin signaling to promote acute myeloid

leukemia progression and sensitivity to daunorubicin (29).

Collectively, TRIM31 plays an oncogene role in cancer by

regulating the p53, mTORC1, NF-kB, and PI3K-Akt

pathways (Figure 3).
4.3 The possible mechanism of TRIM31
in promoting or suppressing cancer

TRIM31 is a critical factor that is able to perform multiple

functions in cancer, and the complex function of TRIM31 makes

it difficult to identify TRIM31 as an oncogene or tumor

suppressor. Here, we will discuss why TRIM31 can promote or

inhibit cancer from the following aspects. First, TRIM genes are

usually expressed in a variety of splicing forms (55). There are

three isoforms of TRIM31 (TRIM31a, TRIM31b and TRIM31g).
TRIM31a was the most common splicing form and has been

registered in the public database. TRIM31 b is a truncated form of

TRIM31 at the C-terminus. TRIM31 g is a mutant protein of

TRIM31 truncated at the C-terminus. Studies have shown that the

TRIM31 isoforms have different biological roles in cancer.

Therefore, the differential expression of TRIM31 isoforms may

lead to the different roles of TRIM31 in cancer. Second,

proteins containing a RING finger domain can serve as E3

ubiquitin ligases (17), and Sugiura proved that TRIM31 has

autoubiquitylating activity in vitro. It has been demonstrated
Frontiers in Oncology 05
that the autoubiquitination activity of TRIM31 regulates the

intracellular abundance of TRIM31 (23). The strict regulation of

the TRIM31 protein level may be linked to its seemingly

contradictory behaviors in the cancer process. Third, several

cancer-associated proteins that can be posttranslationally

regulated by TRIM31 have been reported, such as TRAF2,

TSC1/TSC2 and P53. The different target proteins of TRIM31

may decide the tumor promoter or tumor suppressor of TRIM31

in cancer. Therefore, discovering new target proteins of TRIM31 is

necessary to further understand the role of TRIM31 in cancer.
5 TRIM31: Growing influence in
innate immunity and autophagy

5.1 The emerging role of TRIM31 in
innate immunity

Innate immunity provides the first line of defense against

invading pathogens. Activation of innate immunity requires the

recognition of pathogen-associated molecular patterns through

pattern-recognition receptors (56, 57). As a regulator of

Mitochondrial antiviral signaling protein (MAVS) aggregation,

TRIM31 can be recruited to mitochondria after viral infection

and specifically regulate antiviral signaling mediated by RIG-I-

like receptor (RLR) pattern-recognition receptors. Further study

showed that TRIM31 interacted with MAVS and catalyzed the

Lys63 (K63)-linked polyubiquitination of MAVS by Lys10,

Lys311 and Lys461. This modification promoted the formation

of prion-like aggregates of MAVS after viral infection (20).

Moreover, USP18 interacts with TRIM31 to promote the K63-

linked polyubiquitination of MAVS and then positively regulates

innate antiviral immunity (58). PB1-F2, Rac1, PRMT7 and FAF1

disrupt TRIM31 interaction with MAVS to inhibit MAVS

activation and negatively regulate innate antiviral immune

responses (59–62). HBV (hepatitis B virus) infection was

reported to induce type III IFNs, and TRIM31 was found to

be a type III IFN-stimulated gene. IFN-induced TRIM5g recruits
TRIM31 to degrade HBx, resulting in suppression of hepatitis B

virus replication (63, 64). In addition to its crucial role in

antiviral processes, TRIM31 also has an important role in

promoting viral infection. COVID-19 caused by the novel

severe acute respiratory syndrome (SARS) coronavirus 2

(SARS-CoV-2) is rapidly emerging and spreading worldwide.

Wang et al. reported that the dimeric domain protein (SARS2-

NP) of the SARS-CoV-2 nucleocapsid is required for liquid-

liquid phase separation of SARS2-NP and RNA, which

suppresses Lys63-linked polyubiquitination and aggregation of

MAVS by reducing TRIM31 binding to MAVS, thus inhibiting

the innate antiviral immune response (65). Moreover, Temena

et al. also found that TRIM31 is positively correlated with SARS
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−CoV−2 associated genes TMPRSS2−TMPRSS4 and

knockdown of TRIM31 significantly altered viral replication

and viral processes in gastrointestinal cancer samples. This

result suggests that TRIM31 may play a role in increasing the

susceptibility to SARS-CoV-2 viral infection in patients with

gastrointestinal cancers (66).

The NLRP3 inflammasome is a multiprotein platform that

comprises NLRP3, ASC, and caspase-1 and plays crucial roles in

host defense against pathogens. The NLRP3 inflammasome is

involved in many kinds of diseases, such as cancer, gout,

autoimmune disorders, atherosclerosis, type 2 diabetes and

obesity (67–70). TRIM31 has been reported to be a feedback

suppressor of the NLRP3 inflammasome. TRIM31 directly binds

to NLRP3 and promotes K48-linked polyubiquitination and

proteasomal degradation of NLRP3. Furthermore, TRIM31

deficiency attenuates the severity of dextran sodium sulfate

(DSS)-induced colitis, an inflammatory bowel disease model in

which NLRP3 exerts a protective effect (21). Moreover, AKT

bound to NLRP3 and phosphorylated it on S5. This

phosphorylation event also stabilized NLRP3 by reducing its

ubiquitination on lysine 496, which inhibits its proteasome-

mediated degradation by TRIM31 (71). In addition, TRIM31

promoted the ubiquitination of NLRP3 to alleviate IL−1ß

secretion and diminished the development of apical

periodontitis (72). TRIM31 also inhibited the NLRP3

inflammasome and pyroptosis through ubiquitination of

NLRP3 in retinal pigment epithelial cells (73). CRNDE

interacted with NLRP3 and decreased TRIM31-mediated
Frontiers in Oncology 06
NLRP3 ubiquitination to activate the NLRP3 inflammasome

and exacerbate IgA nephropathy progression (74). In addition to

the NLRP3 inflammasome, TRIM31 also plays a crucial role in

fungal infections. TRIM31 regulates antifungal immunity by

facilitating K27-linked polyubiquitination of SYK (75).
5.2 TRIM31 and autophagy

Autophagy is one of the major intracellular degradation

systems in addition to the ubiquitin–proteasome system. A

primary role of autophagy is to maintain cellular homoeostasis

by degrading intracytoplasmic proteins and organelles through

starvation and by recycling multiple sources (76–78). Recent

studies have shown that several TRIM proteins regulate cancer

progression via autophagy. TRIM59 inhibits p62 selective

autophagy degradation of PDCD10 to promote the motility of

breast cancer (79). In A549/DDP cells, knockdown of TRIM65

can inhibit autophagy and cisplatin resistance by regulating

miR-138-5P/ATG7 (80). TRIM31, an intestine-specific protein

localized in mitochondria, is essential for promoting

lipopolysaccharide-induced Atg5/Atg7-independent autophagy.

TRIM31 directly interacts with phosphatidylethanolamine in a

palmitoylation-dependent manner, leading to the induction of

autolysosome formation (81). Altogether, TRIM31 plays an

important role in innate immunity, autophagy and other

human pathologies (Figure 4).
FIGURE 4

TRIM31: Growing influence in innate immunity and autophagy. TRIM31 plays an important role in innate immunity; TRIM31 interacts with MAVS
and catalyzes the Lys63 (K63)-linked polyubiquitination of MAVS to promote the formation of prion-like MAVS aggregates after viral infection.
USP18 promotes TRIM31-mediated K63-linked MAVS polyubiquitination, while PB1-F2, Rac1, PRMT7, SARS2-NP and FAF1 inhibit TRIM31-
mediated K63-linked MAVS polyubiquitination. TRIM31 directly binds to NLRP3 and promotes K48-linked polyubiquitination and proteasomal
degradation of NLRP3. AKT and CRNDE decreased TRIM31-mediated NLRP3 ubiquitination. Alongside its emerging role in innate immunity,
TRIM31 is also known to be involved in autophagy.
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6 Conclusion and future
perspectives

In conclusion, although the function of TRIM31 has been

studied for many years, there is still much to be clarified

regarding the role of TRIM31 in cancer. A number of studies

suggest that TRIM31 may serve as an oncogene when it is highly

expressed and may facilitate cancer progression, metastasis and

drug resistance by inducing the mTORC1 pathway (19), activating

the NF-kB and AKT signaling pathways (25–28), and

downregulating the activity of p53 (24). However, some studies

have shown that TRIM31 can act as a tumor suppressor, and its

high expression inhibits the proliferation and metastasis of cancer

by stabilizing p53 or decreasing the expression of cyclin D1 and

cyclin E. Although TRIM31 has been extensively studied, some

questions should also be considered. First, the regulation of TRIM31

in cancer should be further researched. Recent research has shown

only that TRIM31 can be regulated by posttranslational

modification, and whether there are other regulatory mechanisms

is still unclear. Second, the mechanism by which TRIM31 promotes

and suppresses cancer needs further study. For example, whether

TRIM31 regulates cancer progression via autophagy or innate

immunity is unknown. Third, as an E3 ubiquitin ligase, TRIM31

can target many proteins (Table 1). Therefore, it is very important

to find new target proteins for studying the function of TRIM31 in

cancer. Although there are still many questions to be addressed, we

believe that in-depth understanding of the TRIM31 in

carcinogenesis may help to answer whether TRIM31 possesses

the potential to become a new anticancer target.

Currently, pharmaceutical companies have entered the era of

E3 ubiquitin ligase-targeted therapy, and targeting the E3 ligase is
Frontiers in Oncology 07
gradually becoming a considerable cancer treatment option (82).

Proteolysis-targeting chimera (PROTAC) has been developed as a

useful protein-targeted degradation technique. A bifunctional

PROTAC molecule is composed of a ligand of the protein of

interest (POI) and a covalently linked ligand of an E3 ubiquitin

ligase (E3). Upon binding to POI, PROTAC can recruit E3 for POI

ubiquitination, which is subject to proteasome-mediated

degradation (83). However, the PROTAC technique has not been

applied to the TRIM31 protein, and future studies may focus on the

application of PROTAC to TRIM31 protein.
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TABLE 1 The TRIM31 targets or interacting proteins.

Target or interacting
proteins

Modification Effect Outcome Reference

P53 K48-linked poly-
ubiquitination

Degradation of p53 Promoting the anoikis-resistance (24)

TSC1/TSC2 K48-linked poly-
ubiquitination

Degradation of TSC1/TSC2 Promoting HCC progression (19)

TRAF2 K63-linked poly-
ubiquitination

Activation of NF-kB Promoting the gemcitabine resistance (28)

P53 K63-linked poly-
ubiquitination

Activation of p53 Suppressing the
proliferation and migration of breast
cancer cell

(22)

MAVS K63-linked poly-
ubiquitination

Promoting the formation of prion-like
aggregates

Activation of antiviral immunity (20)

USP18 No Promoting the K63-linked polyubiquitination
of MAVS

Activation of antiviral immunity (58)

HBx K48-linked poly-
ubiquitination

Degradation of HBx Inhibiting HBV Replication (62)

NLRP3 K48-linked poly-
ubiquitination

Degradation of NLRP3 Attenuating NLRP3
inflammasome activation

(70)

SYK K27-linked poly-
ubiquitination

Activation of SYK Promoting antifungal immunity (74)
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