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Emerging studies have revealed the role of microbiota in regulating

tumorigenesis, development, and response to antitumor treatment. However,

most studies have focused on gut microbiota, and little is known about the

intratumoral microbiome. To date, the latest research has indicated that the

intratumoral microbiome is a key component of the tumor microenvironment

(TME), and can promote a heterogeneous immune microenvironment,

reprogram tumor metabolism to affect tumor invasion and metastasis. In this

review, we will summarize existing studies on the intratumoral microbiome of

gastrointestinal cancers and reveal their crosstalk. This will provide a better

understanding of this emerging field and help to explore new therapeutic

approaches for cancer patients by targeting the intratumoral microbiome.
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Introduction

Interactions between the microbiome and human body are well known to be complex

(1, 2). The microbiome can affect different physical processes in several ways, most

importantly through metabolism and immunity. Approximately 20% of human

malignant tumors are associated with the microbiome (3), of which gastrointestinal

cancers, including Helicobacter pylori-associated gastric cancer, hepatitis B virus-

associated hepatocellular carcinoma (HCC), and Fusobacterium nucleatum-associated

colorectal cancer (CRC), account for a vast proportion.

The commensal microbiota mainly resides in the gut (4). Emerging evidence has

indicated an association between gut dysbiosis and various tumors (5), as well as revealed

the potential of gut microbiota as a non-invasive diagnostic marker for tumors. For

example, Ren et al. reported a decrease of butyrate-producing bacteria but increased

lipopolysaccharide-producing bacteria in early HCC (6). Similarly, a decrease of

methanogenic archaea, Saccharomycetes, and Pneumocystidomycetes, but enrichment

of halophilic archaea, Malasseziomycetes in fecal samples of patients with CRC were also
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found (7). In addition, a series of microbial prognostic models

are established to discriminate cases from control individuals (6,

8). Moreover, the dysbiosis of microbiome is stage-specific and

specific microbial markers are associated with the survival of

patients, independently of tumor stage, lymph node metastases,

or clinical parameters (8). Gut dysbiosis can lead to alterations in

key proteases and metabolites, such as toll-like receptor, nuclear

factor-kappa B (NF-kB), and short-chain fatty acids, regulate

immunity and metabolism so as to induce tumorigenesis and

development (9). Furthermore, the key role of gut microbiota in

mediating tumor responses to chemotherapy and immunotherapy

has also been highlighted (10, 11).

Considering the outstanding progression of gut microbiota,

studies on intratumoral microbiome have also substantially

advanced in recent years. The intratumoral microbiome is

reported to interact with TME and play important roles in

regulating tumorigenesis, development, and response to

antitumor treatments (1, 12, 13). Here, we will review studies

on the intratumoral microbiome of gastrointestinal cancers.
Intratumoral microbiome of
gastrointestinal cancer

As early as in the last century, scientists have detected the

presence of bacteria in tumor tissues (14). However, characterizing

the intratumoral microbiome remains difficult because of the

extremely low microbial biomass of tumors and limited detection

technology. With the development of next-generation sequencing

technology, emerging studies have begun to explore the

composition of the intratumoral microbiome and its role in

tumorigenesis and progression. A recent study detected

intratumoral bacteria in 1526 tumor tissues of melanoma,

pancreatic cancer, lung cancer, ovarian cancer, glioblastoma, bone

cancer, and breast cancer using multiple technologies (e.g., 16S

rRNA sequencing, immunohistochemistry, immunofluorescence

hybridization, and bacterial culture) (15). Intratumoral bacteria

were found to be tumor-specific and associated with smoking

history and immunotherapy response. Moreover, they may affect

tumor occurrence, development and their therapeutic responses by

regulating inflammation and immunity, participating in metabolic

processes, and destroying DNA stability (16). In the next section, we

will elaborate on the research progress about intratumoral

microbiome in different types of gastrointestinal cancers.
Esophageal cancer

Esophageal cancer is the fourth leading cause of cancer-related

death in China with 5-year survival rate less than 20%. It is

associated with squamous dysplasia, alcohol consumption,

cigarette smoking, and dietary habits (17, 18). Epidemiologic
Frontiers in Oncology 02
studies have shown the association between variations of the

esophageal microbiota and esophageal disease (19, 20). For

example, normal esophagus was found to be with higher

abundance of Streptococcus, while esophagitis and Barrett’s

esophagus is enriched in gram-negative bacteria, such as

Veillonella, Prevotella, Haemophilus, Neisseria, Granulicatella,

and Fusobacterium (21). In contrast, esophageal cancer is

associated with specific Gram-negative bacteria (e.g., Escherichia

coli and Fusobacterium nucleatum) (22, 23). Similarly, a decrease

of Veillonella and Granulicatella while an enrichment of

Lactobacil lus fermentum were found in esophageal

adenocarcinoma (EAC) patients compared to controls and

Barrett’s esophagus patients (24, 25). Attentionally, the relative

abundance of Fusobacterium spp. was also gradually increased

from physiological normal esophagus to esophageal squamous cell

carcinoma (ESCC) (26), associated with advanced tumor stage

and poor overall survival (27), while the abundance of

Proteobacteria was decreased. In a word, esophageal cancers of

various pathological types are all complicated with microbial

dysbiosis, meanwhile, with decreased microbial diversity

compared with control individuals (24, 26).

Although the composition and diversity of the esophageal

microbiota correlate with esophageal disease (22), while most

data on esophageal microbiota are derived from small-scale

cross-sectional studies and the evidence is insufficient to

assume causality.
Gastric cancer

Gastric cancer is a common gastrointestinal cancer and a

leading cause of cancer-related death. Proteobacteria (e.g., H.

pylori) are primarily detected in gastric cancer (28, 29) and have

been reported to promote precancerous lesions, such as gastric

atrophy, intestinal metaplasia, and atypical hyperplasia, which can

eventually lead to gastric cancer (30). Previous hypotheses suggest

that an acidic microenvironment in the stomach causes a lack of

bacterial diversity. While the microbial diversity in gastric cancer

have been found significantly increased as compared with that in

chronic gastritis and intestinal metaplasia, with higher relative

abundance of Streptococcus (31, 32). Microbial alpha-diversity

increases with disease severity, that is, chronic gastritis has the

lowest microbial diversity, whereas gastric cancer has the highest

(31). As reported, Proteobacteria, Firmicutes, Bacteroidetes,

Fusobacteria, and Actinobacteria are the dominant bacteria at

the phylum level, and potential cancer-promoting bacteria (e.g.,

Lactobacillus, Escherichia-Shigella, Lachnospiraceae) are enriched

in gastric cancer at the genus level (33). This is consistent with the

discovery in other types of tumors (34–36). Altered microbiota in

gastric cancer (e.g., bacterial overgrowth and diversified microbial

community) might potentially promote inflammation and

carcinogenesis (33).
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The community structure and microbial diversity of gastric

cancer remain poorly understood. Nonetheless, bacterial

overgrowth is potentially associated with the development of

gastric cancer, and the microbial community construct in gastric

cancer and its potential role in carcinogenesis also remain to be

further explored.
Pancreatic cancer

Pancreatic cancer is one of the most aggressive human

malignancies with a five-year survival rate of 8%. The pancreas

used to be considered a sterile organ. However, emerging studies

have demonstrated the presence of bacterial species in the

pancreas. A variety of bacteria were detected in 76% of

pancreatic ductal adenocarcinoma (PDAC) tissues with a

higher proportion in pancreatic cancer tissues compared with

normal pancreatic tissues (12, 37). Proteobacteria, Bacteroidetes,

and Firmicutes were found to be the dominant phyla in tumor

tissues (12). Higher alpha-diversity of tumor microbiome and

high abundances of a microbial signature (Pseudoxanthomonas-

Streptomyces-Saccharopolyspora-Bacillus clausii) were correlated

with longer survival, which could contribute to the anti-tumor

immune response by favoring recruitment and activation of CD8

+ T cells (11, 38). In addition, bacterial species cultured from

fresh PDAC tumor tissues were found to induce resistance to

chemotherapeutic drug gemcitabine by preclinical study (37).

Beyond intratumoral bacteria, Aykut et al. explored the fungal

community of PDAC (39, 40). They showed that fungi migrated

from gut lumen to the pancreas, and PDAC showed an alarming

increase in fungi compared to normal pancreatic tissue both in

humans and mouse models. Specifically, patients with PDAC

could be distinguished from healthy individuals by the

abundance of markedly enriched Malassezia spp.

Attentionally, the origin of tumor-associated bacteria is also

a research hotspot. Considering constant interactions between

the pancreas and gut, the development of pancreatic cancer is

closely related to the dysregulation and mislocation of gut

microbiota (12, 41). Consistent with the above, studies have

estimated that PDAC-associated bacteria can be translocated

from the gastrointestinal tract in a retrograde manner (12, 37).

These findings provide the possibility for further exploration of

intratumoral microbiome and for development of new strategies

for the diagnosis and treatment of pancreatic cancer (42).
CRC

CRC is a common malignant tumor of the digestive tract

with poor prognosis (43). The etiology of CRC involves genetic

and environmental factors (44), in which dietary habits, obesity,

and heavy drinking play important roles in the occurrence of

sporadic CRC. Furthermore, emerging studies have shown the
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potential role of gut microbiota in the development, diagnosis

and treatment of CRC (7, 45–49).

Compared with control individuals, there is no doubt that

the gut microbiota in CRC patients is dysbiosis (50–53). Gut

commensal bacteria (e.g., E. coli, Fusobacteria, enterotoxin-

producing Bacteroides fragilis, and Peptostreptococcus

anaerobius) have been found to be increased in patients with

CRC than in healthy individuals (54–60). Enterococcus faecalis,

Salmonella (61) and F. nucleatum are also revealed with

significant associations with CRC (56, 62, 63). Special species

have been shown to promote tumor cell proliferation in vitro

and in vivo (64), and even predict a poor prognosis (51, 65).

Although studies on fungal communities of CRC are limited, but

some new findings have been obtained. Coker et al. revealed

higher Basidiomycota: Ascomycota ratio in CRC patients and

different clusters of fungal components in early-stage and late-

stage CRC patients, indicating that mycobiome profiles were

stage-specific (7). Ascomycota , Glomeromycota , and

Basidiomycota were found to be the dominant phyla by

characterized fungal microbiota profiles in 27 cases of

colorectal adenomas and adjacent tissues (66). Adenoma size

and disease stage were closely associated with fungal microbiota.

Furthermore, a series of intestinal microbial biomarkers were

identified to distinguish CRC patients from controls (7, 66). This

indicates the potential of intestinal microbiome as a tool towards

targeted non-invasive biomarkers for CRC.

Many studies on the intestinal microbiome of CRC are

performed using fecal samples because of its easy and non-

invasive procedure. However, tissue samples from colonic

mucosa are more valuable to disentangle the physiopathology

of CRC disease and cumulative studies have shown different

microbiome profiles between mucosal and fecal samples (67–

71). So far, the unified microbial community structure associated

with CRC has not been determined and sample collection is

another challenging in microbiome studies of CRC. Accordingly,

further studies are warranted to determine which is more

representative of the real microbial structure change.
HCC

Hepatitis virus is well known to be closely related to HCC,

but the role of bacteria in the occurrence and development of

HCC remains unclear. In 1992, the Frederick Cancer Research

Center identified a spiral bacterium-Helicobacter hepaticus from

the liver tissue, and considered it as a cause of hepatitis and liver

tumors in mice (14). Since then, scientists have carried out a

series of studies on the association betweenHelicobacter spp. and

chronic liver diseases (72–75). The Helicobacter 16S rRNA gene

was sequentially detected in liver tissues of patients with chronic

liver diseases and HCC (76–78). In addition, an association

between H. pylori infection and mortality of patients with HCC

has been observed (79). However, studies on the intratumoral
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microbiota of HCC are scarce and further investigations on the

role of other bacteria in HCC are needed.

The above are reported researches on intratumoral

microbiome of gastrointestinal cancers, and we summarize the

intratumoral microbiome in Table 1.
Crosstalk between intratumoral
microbiome and TME

Emerging studies have demonstrated intratumoral

microbiome as a component of TME, and the crosstalk between

intratumoral microbiome and TME is mutual and highly dynamic

(1, 15). Specifically, the intratumoral microbiome can induce

immunosuppression or immunoactivation, reprogram tumor

metabolism, and form a heterogeneity TME so as to promote or

inhibit tumor development (80, 81). The potential crosstalk

reported between the microbiome and TME is shown in Figure 1.

The reprogramming of immune infiltration plays important

roles in the crosstalk between the intratumoral microbiome and

TME (2, 82). A recent research revealed that microbial

components (e.g., DNA, RNA, bacterial peptides, and

lipopolysaccharides) could be detected in tumor and immune

cells, indicating that intratumoral microbiome might affect

immune infiltration in TME (15). Similarly, bacterial

polypeptide fragments were found to be directly presented on

the surface of tumor cells or antigen-presenting cells through

human leukocyte antigens. They could promote T cell activation

and potential tumor immune response (83). Tumor monocytes

can be induced to produce interferon-I, regulate macrophage
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polarization, promote communication of natural killer and

dendritic cells, and reprogram the TME (84). In addition, the

microbiota may regulate immune invasion in different tumors in

different ways. Proteus bacteria (mainly E. coli) in CRC may

destroy the intestinal barrier, migrate and colonize the liver

through the damaged intestinal barrier, and promote immune

cell recruitment in the liver (e.g., macrophages, neutrophils, and

monocytes) to induce liver metastasis (85). F. nucleatum is

reported to bind to the immunosuppressive receptor T cell

immunoglobulin through its surface adhesin, thereby

inhibiting T cell activation and natural killer cell lethality (86).

Pushalkar et al. demonstrated that intratumoral bacteria in

pancreatic cancer could promote oncogenesis by inducing

innate and adaptive immune suppression (12). While bacterial

ablation induced immunogenic reprogramming, including

reduction of myeloid-derived suppressor cells, increase of M1

macrophage differentiation, promotion of Th1 differentiation of

CD4+ T cells, and activation of CD8+ T cells (12).

Mechanistically, the immune-suppression characteristic of

PDAC were generated by bacteria through differentially

activating select toll-like receptors in monocytic cells.

Furthermore, special bacterial species were found to favor

recruitment and activation of CD8+ T cells, contribute to the

anti-tumor immune response and affect clinical outcomes of

pancreatic cancer (11).

Many of the above findings are still arguable and need

further research. While, some preclinical models have clarified

potential mechanisms by which microbiota can contribute to

tumorigenesis and established a more causative role. P. gingivalis

infection was found to enhance proliferation of PDAC cells by

cell lines and a xenograft model (87). This was independent of
TABLE 1 Gastrointestinal cancer-associated intratumoral microbiota.

Cancer type Bacteria References Fungi References

Esophageal cancer Escherichia coli
Fusobacterium nucleatum
Lactobacillus fermentum

(22, 23)
(22, 26)
(24, 25)

– –

Gastric
cancer

Helicobacter pylori
Streptococcus
Lactobacillus
Escherichia-Shigella
Lachnospiraceae

(28, 29)
(31, 32)
(31, 33)
(33)

(31, 33)

– –

Pancreatic cancer Pseudoxanthomonas
Streptomyces
Saccharopolyspora
Bacillus clausii

(11, 38)
(11, 38)
(11, 38)
(11, 38)

Malassezia (39, 40)

Colorectal cancer Escherichia coli
Peptostreptococcus anaerobius
Fusobacterium nucleatum
Bacteroides fragilis
Enterococcus faecalis
Salmonella

(55, 59)
(57, 58)

(51, 53, 56, 62, 64)
(54, 60)
(61, 63)
(61, 63)

Ascomycota
Basidiomycota

(7, 66)
(7, 66)

Hepatocellular carcinoma Helicobacter hepaticum
Helicobacter pylori

(14, 72, 75)
(73, 74, 76, 77)

- –
fr
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TLR2 signaling and associated with augmentation of the Akt

signaling pathway (87). Similarly, Akt signaling pathway

activated by H pylori can also result in subsequent degradation

of tumor suppressor p53 in gastric epithelial cells and increase

survival of gastric epithelial cells with sustained DNA damage

(88). Enterotoxigenic B. fragilis can lead to colitis that triggers

IL-17 production and inflammatory pathway activation, such as

NF-kB, to facilitate tumor growth (54, 89). While PI3K-Akt

pathway activated in CRC can lead to increased cell proliferation

and NF-kB activation (58). F. nucleatum may selectively bind

and activate E-cadherin/beta-catenin signaling via its FadA

adhesin, inducing inflammation and CRC (90). Enterococcus

faecalis in CRC induces superoxide production, thus damaging

the DNA of epithelial cells (91, 92).

Additionally, tumor microbiome is reported to directly

affect the response to antitumor therapies (93, 94). The

enrichment of Firmicutes, reciprocal changes in abundance of

Verrucomicrobia and Proteobacteria, were found to be

correlated with better immunocheckpoint inhibitor (ICI)

response across various tumors (93, 94). In addition,

F. nucleatum is found to promote the resistance of colorectal

cancer to chemotherapy (95). Mechanistically, F. nucleatum

activated the autophagy pathway by targeting at TLR4 and

MYD88 innate immune signaling and specific microRNAs

to promote chemoresistance (95). A study about CD47-

based cancer immunotherapy revealed that accumulative

Bifidobacterium in TME facilitates local anti-CD47 treatment

by a stimulator of interferon genes (STING)- and interferon-

dependent fashion (96). Besides, disruption of gut microbiota is

estimated to affect the response of tumors to immunotherapy

and chemotherapy both in preclinical models and cancer

patients (97–100). Antibiotic treatment can reduce response to

ICI, while the presence of certain bacteria strains correlates with
Frontiers in Oncology 05
better outcomes (10, 101). Mechanistically, gut microbiota could

modulate the expression of immune checkpoints, the function of

dendritic cell, the homing and recruitment of lymphocyte (82,

83), as well as the production of critical metabolites, such as

short chain fatty acids (SCFA) (102, 103).

The microbiome participates in the modulation of human

metabolism and microbial dysbiosis can induce systemic

metabolic alterations (104, 105). To date, intratumoral

microbiome has been shown to reprogram tumor metabolism

through derived metabolites, and a differential enrichment of

metabolic functional pathways induced by microbiota may

correlate with clinical outcome. As reported, patients with

PDAC who are enrichment in xenobiotics biodegradation and

lipids metabolism pathways have shown better outcomes (11).

Metabolites, such as the secondary bile acids (e.g., deoxycholic

acid, lithocholic acid) and SCFA (e.g., butyrate), have been

reported to regulate inflammation and T cell differentiation

(106–108) and implicated in the tumorigenesis (109, 110).

HCC oncogenesis is found to be closely associated with

intestinal flora, bile acid metabolism, and tumor immunity

(111). Gut microbiota-mediated bile acid metabolism regulates

the occurrence and progression of HCC by affecting the

accumulation of hepatic CXCR6+ natural killer T (NKT) cells

through mediating the expression of CXCL16 in liver sinusoidal

endothelial cells (111). SCFAs, mainly butyrate, can directly

modulate CD8(+) cytotoxic T lymphocytes and Tc17 cells, as

well as induce senescence-like phenotypes and the development

of CRC (106, 107). The secondary metabolites produced by

microbiota, such as reactive nitrate and nitrite, can lead to

accumulation of carcinogenic N-nitroso compounds and

associate with tumor development (26, 112). These studies

shed light on a new theoretical basis for tumor treatment by

regulating microbial metabolism and the microbiota.
FIGURE 1

Crosstalk between intratumoral microbiome of gastrointestinal cancers and tumor microenvironment. The intratumoral microbiota can induce
immunosuppression or immunoactivation via metabolism reprogramming, and form a heterogeneity tumor microenvironment to affect tumor
occurrence and development. This figure is drawn by Figdraw.
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Conclusions

Despite decades of research, gastrointestinal cancers remain

the most lethal malignant tumor with limited treatment options

and poor clinical outcomes. Emerging understanding of

microbiome in gastrointestinal cancers will potentially provide

new insights and opportunities for the development of novel

biomarkers and treatment strategies. Current studies have

revealed the role of microbiota in regulating tumorigenesis,

development, and response to antitumor treatment, while

challenges remain in our understanding of intratumoral

microbiome. For example, how are the mechanisms of action of

intratumoral microbiome in various tumor types? How are they

different? What are the effects of microbial metabolites on tumors?

How does intratumoral microbiota regulate the inflammatory

carcinogenic pathway and immune response? Moreover, research

discoveries on the various types of tumors have been discrepant,

and this may be due to several factors, such as the tumor type,

research methods, and microbial complexity. Moreover, almost no

good clinical data exists for the claims. Therefore, the diversity,

origin, and mechanism of action of intratumoral microbiome

require further clarification. However, intratumoral microbiome

has the potential to be used as diagnostic tools for tumor typing

and to be considered as a potential new therapeutic target. Further

in-depth researches on the intratumoral microbiome are expected

to reveal the complex correlation between intratumoral

microbiome and gastrointestinal cancers. Overall, this exciting

field will allow us to explore the mystery of carcinogenesis from

another perspective and to discover novel targets for precision

medicine in the management of gastrointestinal cancers.
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