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Introduction: Manual inspection of histopathological images is important in

clinical cancer diagnosis. Pathologists implement pathological diagnosis and

prognostic evaluation through the microscopic examination of

histopathological slices. This entire process is time-consuming, laborious,

and challenging for pathologists. The modern use of whole-slide imaging,

which scans histopathology slides to digital slices, and analysis using

computer-aided diagnosis is an essential problem.

Methods: To solve the problem of difficult labeling of histopathological data,

and improve the flexibility of histopathological analysis in clinical applications,

we herein propose a semi-supervised learning algorithm coupled with

consistency regularization strategy, called“Semi- supervised Histopathology

Analysis Network”(Semi-His-Net), for automated normal-versus-tumor and

subtype classifications. Specifically, when inputted disturbing versions of the

same image, themodel should predict similar outputs. Based on this, themodel

itself can assign artificial labels to unlabeled data for subsequent model training,

thereby effectively reducing the labeled data required for training.

Results: Our Semi-His-Net is able to classify patches from breast cancer

histopathological images into normal tissue and three other different tumor

subtypes, achieving an accuracy was 90%. The average AUC of cross-

classification between tumors reached 0.893.

Discussion: To overcome the limitations of visual inspection by pathologists for

histopathology images, such as long time and low repeatability, we have

developed a deep learning-based framework (Semi-His-Net) for automatic

classification subdivision of the subtypes contained in the whole pathological

images. This learning-based framework has great potential to improve the

efficiency and repeatability of histopathological image diagnosis.

KEYWORDS

deep learning, semi-supervised learning, data augmentation, consistency

regularizaton, whole-slide images
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1 Introduction

Normal vs. tumor and cancer subtype classification via

pathological examination is a key process in the diagnosis of

cancer malignancy and treatment selection. Clinically,

pathologists need to quickly and accurately analyze their

patient’s biopsy and draw a pathological diagnosis report.

During the diagnosis process, due to the large size of a slice,

pathologists need to continuously zoom in and out of the field of

view for observation to determine the key regions for diagnosis

and perform classification based on features. Manual analysis of

pathological slices is extremely time-consuming and labor-

intensive, and some critical diagnostic information may be

missed (1). In addition, the existence of difficult or ambiguous

cases in pathology has aggravated the subjectivity and

randomness of pathological diagnosis, resulting in inconsistent

diagnoses by multiple diagnoses or different experts (2). The

latest reports indicate that the clinical need for pathological

analysis is increasing, and while skilled pathologists are in

shortage (3).

Automated classification of tumor subtypes has become an

active research topic since the emergence of whole-slide images

(WSIs) technology (4, 5). Computer-aided diagnosis (CAD)

systems are computer-based systems that evaluate and

quantify aberrant cells and tissues in a short time, thereby

helping enhance the accuracy of pathological decisions and

relieving the workload of pathologists (6). Recently, there have

been significant progresses in deeplearning methods for clinical

analysis and research onWSIs (7), and large-scale data collection

and analysis can reveal the spatial behavior shared between

cancers (8).

However, due to the shortage of current computing

resources, it is not feasible to use WSIs as the input of

convolutional neural networks (CNNs) classification model (9)

or fully convolutional networks (FCNs) segmentation model
Frontiers in Oncology 02
(10) to realize image analysis. One feasible scheme is to down-

sample the original image to a lower resolution, which will

inevitably lead to a reduction in the final accuracy. Another

possible scheme is to tile the WSIs to patches for analysis and

combine the results of tile analysis (7). In order to keep the

accuracy of the pathological slice analysis, we adopt the second

scheme to realize the whole image analysis. Deep learning

approaches to WSIs analysis suffer three major limitations: 1)

The labeling data of histopathological images are particularly

rare. The size of WSIs is large and requires experienced

pathologists to use special labeling tools and spend

considerable time and cost to annotate. Deep learning-based

algorithms typically require a large amount of data to perform

optimal training and be able to generalize, making the model

prohibitively expensive when training the model or migrating to

new medical tasks (11–13). 2) The presentation of the

histopathological slide is closely related to the preparation of

samples (flash-frozen or formalin-fixed paraffin-embedded), and

is also affected by the staining conditions, which limits the

system prediction accuracy. 3) Pathological images contain a

wealth of information, as shown in Figure 1, there are

background areas (blood vessels, lymphocytes, among others)

that affect the analysis.

To address the above challenges, we design to apply semi-

supervised learning (SSL) to work out the normal vs. tumor and

cancer subtype classification problem. Our model draws on the

strategy of generating artificial labels via consistency

regularization and pseudo-labeling in FixMatch (14).

Specifically, when the model input is the same image with

different disturb, the model should correspond to the same

predicted distribution. Thus, for labeled data, the model’s

predictions are consistent for input images with small noise

(random horizontal flips). After that, given the unlabeled data

with weak enhancement as input, the model predicts the

distribution, and when the maximum value of the model
FIGURE 1

Examples show four classes in breast histology microscopic images: normal, benign, in situ carcinoma and invasive carcinoma.
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output reaches the threshold we set in theproposed method, a

valid artificial label is generated. This label will serve as a label

constraint for the model training of strong augmented images

for this image.

The major contributions of our study are as follows:
Fron
1. We adopt a semi-supervised scheme to classify

histopathological images, which can be applied to

tumor histopathological slices analysis from various

tissues and organs.

2. We propose to use consistency regularization and

pseudo-labeling strategies in generating artificial labels

for unlabeled images, to achieve effective use of

unlabeled data.

3. Considering that there may be a large number of

irrelevant regions in WSIs, we recommend adding

constraints to the loss function to allow the generation

of empty labels, with removing these areas during the

training process according to the results predicted by the

model.
2 Related work

2.1 CAD systems in tumor whole-slide
images analysis

In the last decade, CAD has achieved good results in WSIs

analysis (5, 15). It assists doctors in clinical decision-making by

detecting, quantitatively analyzing, or visualizing relevant areas

with diagnostic information. Many systems and methods have

been developed for this purpose. For example, Al-kofahi et al.

(16, 17) developed a semi-automatic cell nucleus segmentation

system for quantitative histocytometry. The system uses a graph-

cut-based binarization to extract the image foreground and

detect nuclear seed points via multiscale Laplacian-of-

Gaussian filtering, which is used to obtain initial segmentation

and refined using a second graph-cuts-based algorithm. Zhang

et al. (18, 19) employed hierarchical voting and a repulsive active

contour to detect and segment breast microscopic cells. These

cells were then subjected to real-time retrieval of images with

supervised kernel hashing that encodes a high-dimensional

image feature vector to only tens of binary bits hash tables. In

addition, several more mature softwares have been applied in

pathological image analysis tasks such as annotation,

visualization, cell and tissue detection by QuPath, cell-by-cell

analysis and quantification by HALO (20), and cancer vs. non-

cancer analysis by e-pathologists (21).

Several learning-based methods have been developed for

histopathological image analysis, such as those based on CNNs

for subtype classification (22), FCNs for segmentation (23), and
tiers in Oncology 03
Mask R-CNN (24) for nuclei detection and segmentation (25).

The most similar to our work is classification and mutation

prediction which automatically classifies lung tumor subtypes

and predicts mutations (7) by learning a parametric function

using an Inception v3 architecture (26). In this study, the WSIs

were tiled into non-overlapping 512 × 512-pixel patches, and

they were applied as input data to feed into the Inception v3

Network,classified LUAD vs. LUSC with the area under the

curve (AUC) of 0.97, and six mutated genes in LUAD with

AUCs from 0.733 to 0.856. Yu et al. (27) built a CNNs to classify

histopathology images using lung adenocarcinoma and lung

squamous cell carcinoma WSIs in TCGA, achieving AUC >

0.935 in identifying tumor regions from whole-slide

histopathology images and AUC > 0.877 in recapitulated

expert pathologists’ diagnosis. Noorbakhsh et al. (11) observed

that CNN can not only be used for histopathological

classification but also that the classifier comparison reveals

intra-slide spatial similarities, i.e., the tumor/normal CNN

trained on one tissue is effective for other tissues. Despite the

advances highlighting the potentiality of deep learning methods

in the analysis of WSIs, most of these depend on plenty of

labeled images, which is a significant disadvantage compared to

our method. Our work focuses on extending SSL to

histopathological classification, thereby possibly reducing the

dependence of deep learning models on labeled data to

some extent.
2.2 Semi-supervised learning

SSL is a common learning method that utilizes labeled data

together with unlabeled data to strengthen a model’s

performance (28, 29). Extensive work has been conducted on a

variety of image classifications (14, 30–35). Lee et al. (30) first

proposed using pseudo-labels to effectively use unlabeled data,

i.e., using the training modelto make predictions of the category

of unlabeled data to acquire pseudo-labels and then utilizing

cross-entropy loss to minimize errors between prediction results

and pseudo-labels. Tietz et al. (31) implemented SSL by

transforming Ladder Network (36), which represents relevant

invariant features by a denoising autoencoder (dAE) and a clean

encoder, while Laine et al. (32) simplified and optimized the

previous method to make training faster and performance better.

Virtual adversarial training (33) generates adversarial Gaussian

noise on the input and uses entropy minimization.

Given that such methods can learn the characteristics of

datasets in limited labeled data, some researchers have

considered using them for WSI analysis. For example,

Myronenko et al. (37) use instance pseudo-labels strategy for

WSI image analysis. Chhipa et al. (38) presented a novel self-

supervised pre-training method, which learns efficient

representations on histopathology medical images utilizing
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magnification factors. The latest semi-supervised methods (14,

34) incorporate previous research: consistency regulation,

pseudo-label or label sharpening, entropy minimization, and

other DA strategies, and the performance has also been

significantly improved. Inspired by this novel SSL mechanism,

we propose extending FixMatch (14) to WSIs analysis. Our

method applies to the entire WSIs, only a limited labeled area in

the WSIs, or an additional limited amount of labeled data.

Data augmentation (DA) is important in deep-learning-based

image classification methods by providing a model with novel

training data created by transforming the original dataset. A wide

variety of DA methods have been proposed in the literature, and

theycan be divided into three categories: simple augmentation

methods, regional-level augmentation methods, and automatic

augmentation methods. Most augmentation methods are

dependent on the first category: geometric transformation such as

flips, crops, affine transform, and pixel-level content transformation

such as invert, noise, blur, sharpness, and contrast disturbance.

Several regional-level augmentation methods, such as Cutout (39)

and random erasing (40), randomly mask or modify the pixel value

in an area of N × N size in the image, and thus use regularization to

improve model performance. The most similar applications to our

work are AutoAugment (41), Fast AutoAugment (42) and

RandAugment (43), which generates novel image data from the

original dataset by training a sub-network to search for the

appropriate augment parameters.
Frontiers in Oncology 04
3 Methods

In the present section, we first illustrate our proposed Semi-

His-Net method to analyze pipline of histopathological images

and then present the key method and loss function of Semi-His-

Net. We focus on classification problems, and are committed to

maximizing the effect of unlabeled data and implementing the

model training in a semi-supervised manner.
3.1 Pipline

The architecture of Semi-His-Net is illustrated in Figure 2.

As described above, instead of simply dividing the data into

training and testing sets (the labels of the training set for the

model are visible, and the labels of the testing set for the model

are invisible), our method leverages partially labeled data and a

considerable amount of unlabeled data. As the size of WSIs is too

large and the limitation of GPU memory makes it impossible to

realize the WSI convolution operation, we tiled the image into

512 × 512 pixel non-overlapping patches. We construct a semi-

supervised model combining consistency regularization and

pseudo-labeling, which uses a small number of labeled tiles to

drive the training of the classification model. The labels of the

unlabeled tiles are iteratively estimated during the training

process. The following steps are included of our analysis method.
FIGURE 2

Method overview: the proposed semi-supervised histopathology image analysis method for WSIs. We learn the parameters for a CNN
classification model that maps the tiled histopathology images to the tumor subtype. To make unlabeled images participate in model training,
the pseudo-labels are estimated from the predicted category probability distribution of the classifier.
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1. Organizing sample datasets. The samples are randomly

divided into training and testing sets.

2. Exporting ×20 or ×40 magnification images from the

original tumor, suspected tumor, or tissue normal

sample slices and tile them into 512 × 512 pixel non-

overlapping tiles.

3. Feeding the tiles to our semi-unsupervised model,

including data with unlabeled and labeled annotations,

and predicting the category of tiles. The semi-supervised

model is shown in fig:framework. A schematic diagram

of our model is described in sec:Semi-supervised Model.

4. Displaying the results of the model on the original WSIs.
3.2 Semi-supervised histopathology
analysis network

In this subsection, we introduce the key models for our WSIs

analysis method, a semi-supervised deep learning model based

on consistency regularization and pseudo-labeling, called Semi-

His-Net.
3.2.1 Problem definition
There are two situations in our data: 1) the labeled part of the

WSIs, and 2) some slides are manually labeled and others

are unlabeled.

For an L-class classification problem, given a batch X of

labeled data with one-hot targets and a batch U of unlabeled data

without manual labeling. The classification model extracts

features and generates the predicted class distribution pmodel(y|

x) from the input image data x. To enable the model to capture

the similarity of the effective features from the image, we

calculated the cross-entropy loss CE(||) between the predicted

class distribution pmodel(y|a(x)) generated by the model for the

augmented image a (x) and the original one-hot label.

Furthermore, for unlabeled data, the consistency regularization

strategy means that the predictions of different perturbations

corresponding to the same image are consistent. The model

predicts the distribution from the unlabeled data and generates

artificial labels as pseudo labels for its strong-augmented data A

(ub) training. In this way, unlabeled data with a distribution close

to labeled data can be the first to obtain pseudo-labels to

participate in training, and multiple iterations to achieve

predictions on the data set.

3.2.2 Semi-His-Net CNN and transfer learning
The classification model is based on ResNet101 (44), which can

solve the problem of deep neural network degradation and is very

suitable for medical image analysis. We initialized our model with

pre-trained parameters on ImageNet large dataset and then refined

the parameters of the last few layers. In sec:hyperparameter, we
tiers in Oncology 05
discuss the influence of the network architecture setting and

network layers optimized via backpropagation.

3.2.3 Consistency regularization and
pseudo-labeling

Consistency regularization is a commonly used method for

training deep models. It relies on DA, indicating that the model

should correspond to the prediction result distribution when the

perturbation image of the same image is inputted (45). This type

of consistency regularization method is applied in the SSL

method, and it has become an important part of the latest SSL

technology (32, 33, 46). Consistency regularization applied to

unlabeled data relies on the assumption that the output of model

will not changed when the input data is ambiguous, such a

model uses unlabeled data to train the model through standard

supervised classification L2-norm loss:

o
mB

b=1

pmodel yja ubð Þð Þ − pmodel yja ubð Þð Þ22 (1)

“Pseudo-Label” (30) borrows the idea of consistency

regularization in equ:1 with the model training on artificial

labels to get predictive outputs on unlabeled data. This

provides a simpler and more efficient strategy, and practice

has proved that it can significantly improve the results.

“MixMatch” (34) addresses this by sharpening the average of

K prediction that use classification models to separately predict

unlabeled data that undergoes Ktimes stochastic DA. In this

method, we use a pseudo-label strategy to simplify the

consistency regularization, so that unlabeled data learns a

generated ‘‘one-hot” form of pseudo-label instead of the

category probability distribution. Let qb=pmodel(y|a(ub)) be the

class distribution from a given stochastic data-augmented input

a(ub) through a classification model. We use q̂ b = arg  max  (qb)

to retain the maximum value of the model’s predicted

distribution as a pseudo-label. The former is defined as follows:

1
mBo

mB

b=1

I max   qbð Þ > bð ÞCE q̂ bjjqbð Þ, (2)

where I(·) is an indicator function, referring to the generation of

a “one-hot” probability distribution when the maximum value of

the predicted probability distribution is greater than the

hyperparameter b. CE(||) refers to thecross-entropy between

two probability distributions, q̂ b and qb.

In addition, because there are many normal or abnormal

areas (blood cells, cytoplasm, and inflammatory cells) in WSIs

that have content but are not relevant to the analysis, we

recommend using zero label to effectively avoid mandatory

marking of irrelevant tiles.

3.2.4 Dynamic data augmentation
Motivated by the previous successful outcome of data

augmentation (DA) in semi-supervised learning, we propose an
frontiersin.org
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optimized version of DA similar to that of RandAugment (43).

Specifically, we define an image processing transformation library

based on the Python Image Library that contains K transforms such

as flips, affine transform, noise, blur, among others. The specific

transformations are shown in Table 1. Subsequently, one operation

in the library was randomly selected for each transformation, andN

operations were performed. Owing to the use of different

microscopes/scanners and the differences in staining schemes and

chemical manufacturers, there are possible large color differences

between digital histopathology images from different institutions

(47). To further generalize the model during the training process,

color, brightness, and other modifications were added to the image

processing transformation library. Here, although a more

sophisticated method can be used to select the elements in the

library for combination defining an independent search algorithm

to reduce the computational complexity and computational

overhead, we have chosen this simpler and more effective

method. The random transformation has only two parameters

(the number of transformations N and the global distortion M)
Frontiers in Oncology 06
to guide the image processing; however, owing to the random

combination, there are N × K × M potential transformation

strategies. The number of transformations N and global distortion

M are adjusted dynamically according to the number of iterations.

Based on this method, the disturbance is added to the tiles that

are inputted into classification model. Figure 3 displays a set of

original tiles and disturbed tiles at different iteration times. In the

beginning, the disturbance is not obvious, and with the training of

the model, the disturbance becomes increasingly obvious.

3.2.5 Loss function
There are two situations of data would be feed into the

classification model, which correspond to different constraints:

1) For tiles with a one-hot label and a weakly augmented image,

we use supervised cross-entropy loss. 2) For tiles without labels,

we use unsupervised consistency training loss.

Supervised cross-entropy loss: Given a batch X={(xb,pb):

b∈(1,…,B)} of labeled data, where the data xb with one-hot

targets pb. The loss function Lx on the labeled data is defined as:
TABLE 1 Transformations available in Semi-His-Net.

Transformation Description Parameter Range

Rotate Rotates the picture by degrees. q [-20, 20]

Fliplr Flips the picture horizontally with a probability of L. L [0, 1]

Flipud Flips the picture vertically with a probability of L. L [0, 1]

Brightness Converts the picture to a colorspace with a brightness-related channel, adds between −a and a, then converts
back to the input colorspace (RGB).

a [-30, 30]

Contrast Adjusts contrast by scaling each pixel to
127 + a*(v−127).

a [0.1, 1.9]

Cutout Fills one or more random rectangular patches in the picture using a fill mode. n [1, 5]

Dropout Sets p percent of pixels in picture to zero. p [0, 0.1]

Sharpness Sharpens the picture and covers the results with the initial picture with a strength of L. L [0, 1]

Shear x Shears the picture alongside the horizontal axis in rate S. S [-0.3, 0.3]

Shear y Shears the picture alongside the vertical axis in rate S. S [-0.3, 0.3]

Change Colorspace Converts to HSV colorspace and adds a value between 0 and a to Hue channel, then converts back to the
input colorspace (RGB).

a [0, 50]

Solarize Thresholds all pixels over value of T. T [0, 256]

Translate x Transforms the picture horizontally by (L × image width) pixels. L [-0.3, 0.3]

Translate y Transforms the picture vertically by (L × image high) pixels. L [-0.3, 0.3]

Gaussian Noise Adds gaussian noise to the picture, sampled normal distribution on per pixel N(0,s). s [0, 0.2]

Gaussian Blur Blurs picture using a gaussian kernel s. s [0, 3]

Color Temperature Changes the temperature to Kelvin value between a and b. a and b [1000,
40000]

Invert Inverts the image and replaces the pixels of the original image with a ratio of L. L [0, 1]
fro
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Lx =
1
Bo

B

b=1

CE pbjjpmodel(y a xbð Þj Þ,ð (3)

where CE(||) refers to the cross-entropy between two probability

distributions pb and pmodel(y|a(xb)) , pmodel(y|xb) is the model

prediction for the input xb, a(xb) is weakly-augmented data.

Unsupervised consistency training loss: Given a batch U=

{ub:b∈(1,…,B)} of unlabeled data, where the data ub without

manual label. We used a pseudo-label method (30). First, for

weakly-augmented data, the model predicts the class

distribution qb=pmodel(y|a(ub)) . Subsequently, we use q̂ b =

arg  max  (qb)to retain the maximum value of the model’s

predicted distribution as a pseudo-label, and q0 to indicate that

all classification distribution are 0 as a zero label. The loss

function Lu on unlabeled data is defined as:

Lu =
1
mBo

mB

b=1

CE q0jjpmodel yjA ubð Þð Þð Þ, if max   qbð Þ ≤ h

0, if h < max   qbð Þ ≤ q

CE q̂ bjjpmodel yjA ubð Þð Þð Þ, if max   qbð Þ > q,

8>><
>>:

(4)

where A(ub) is strong-augmented data. The extremely low

prediction distribution (max (qb)≤h ) is constrained by setting

the cross-entropy loss between prediction distribution and all-

zero distribution to reduce the impact of potentially uncertain

tiles on the currently labeled tiles for the classification model.

The “one-hot” probability distributions valid when the

maximum value of the predicted probability distribution is

greater than the hyperparameter q.
The two losses are then summed for the full objective loss

LTotal :
Frontiers in Oncology 07
LTotal = Lx + lLu : (5)

when the labeled tiles and unlabeled tiles are mixed for training,

we use the weighting factor L to equalize the supervised/

unsupervised loss.
4 Experiments and results

In this section, we evaluate the efficacy of Semi-His-Net in

the WSI analysis. We relied on two public histopathology image

datasets: BACH and TCGA.
4.1 Implementation details

Our Semi-His-Net was implemented using PyTorch1 and

run on two NVIDIA A100 Tensor Core GPUs. We used the

optimizer of SGD with Nesterov Momentum, which has a

momentum of 0.9. And the batch size is 32. The learning rate

is initialized to 0.01 and divided by 10 every 10 epochs. We

evaluated models using an exponential moving average with a

decay of 0.999 and applied a weight decay of 0.0004. In addition,

in all experiments, we take advantage of weak augmentation on

the labeled data, i.e., random horizontal flipping, and we use

strong enhancement strategy for the unlabeled data, i.e., the

augmentation of the random magnitude (43) in the

augmentation library. In the training process, we used 3-fold
FIGURE 3

Example tiles from histopathological images, with dynamic data augmentation.
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cross-validation on the training set to train the models in the

three experiments.
4.2 Experiments on ICIAR 2018 breast
cancer histology image dataset

4.2.1 Datasets
The breast cancer histology image datasets were acquired

from the challenge on BACH2. The challenge contains two goals:

Task 1 is to automatically divide the breast histological

microscopic images stained by hematoxylin and eosin (H&E)

into four subtypes (normal tissue, benign abnormality,

malignant carcinoma in situ, and malignant invasive

carcinoma). This task corresponds to 400 RGB color

microscope images (There are 100 images in each of the four

subtypes.) with a size of 2048 ×1536 pixels and pixel scale

0.42mm ×0.42mm. Task 2 is to locate the lesion areas including

benign, situ carcinoma, and invasive carcinoma subtypes in the

WSIs. This task corresponds to 30WSIs witch have pixel-scale of

0,467 mm/pixel. Among them, 10 WSIs are labeled pixel-wise

and 20 are unlabeled.
4.2.2 Contribution of unlabeled data

The microscopic image dataset was randomly assigned to

two sets: a training set (80%) and a test set (20%). All images

were re-divided into 512 × 512 patches with a step size of 256

pixels; that is, each original image corresponded to 35 new

patches. Each patch corresponds to the labels of the

predominant cancer types, and these patches constitute the

labeled data in the training set. A total of 20 unlabeled WSIs

in the WSI dataset were tiled by non-overlapping 512-×512-

pixel windows and retained those tiles with the foreground area

over 50% as the unlabeled data in the training set.

We compared the proposed Semi-His-Net with the classic

CNN classification methods. In sec:Problem Definition, we

introduced the definition of this method, that is, the

classification model can learn from unlabeled data to alleviate

the demand for labeled data.

Each microscopy image in the test dataset was divided into

35 patches, and each patch was fed through the CNN model to

predict the subtype. Subsequently, the average 35 prediction

results are used to generate one-hot prediction by adopting the

largest distribution. As for the evaluation metrics, we utilize

precision and recall to measure the accuracy of classification

precision =
TP

TP + FP
, (6)
2 https://iciar2018-challenge.grand-challenge.org

Frontiers in Oncology 08
recall =
TP

TP + FN
, (7)

where T and F denote the correct or not, P andN denote positive

and negative. TP and FN denote the positive class prediction is

positive and positive class is predicted as negative, and FP and

TN denote the negative class is predicted as positive and negative

class prediction is negative, respectively.

In addition, we calculated the accuracy of four subtypes. For

multi-classification problems, the accuracy is the same as the

results of F1-score, Micro-precision and Micro-recall, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
: (8)

The accuracy, precision and recall of these classification

methods were listed in Table 2, which includes classic fully

supervised deep learning models and the state-of-the-art semi-

supervised models. After the analysis of the results of the full-

supervised model, ResNet101 was used as the main backbone of

the subsequent semi-supervised model. All the models are

trained and tested with PyTorch on the platform of two

NVIDIA A100 Tensor Core GPUs with the parameter settings:

mini-batch size (32), learning rate (initialized to 0.01 and divided

by 10 every 10 epochs), momentum (0.9), weight decay

(exponential moving average with a decay of 0.999 and weight

decay of 0.0004). Taking the fully supervised ResNet101 as the

baseline, we could find that the performance of the model with

the semi-supervised strategy, MixMatch, FixMatch and the

proposed Semi-His-Net has been significantly improved, with

the accuracy increased by 1.2%, 1.2% and 3.7% respectively.
4.2.3 Interactive guided learning
To evaluate the proposed Semi-His-Net algorithm on the

WSI dataset, we compared its semi-automated analysis results

guided by label data with the model analysis results of the

supervised training model. For the supervised method, we

used the trained ResNet-101 model introduced in the previous

section to test the WSI images directly. The labeled data of semi-

automated analysis was obtained by the microscopic image

dataset and partial area from the WSI dataset. When Semi-

His-Net was used in WSI images, the tiles from the WSIs could

as unlabeled data, and they could be used with labeled data to

optimize the classification model further iteratively; they could

also select a part of the area on the WSI image (manual labels

corresponding to WSI images from WSI dataset, simulating

pathologists marking typical areas on the WSIs images) with the

patches from the microscopic image dataset as label data to

realize interactive learning.

Examples of semi-automated analysis results are shown in

Figure 4. The prediction results considerably improve with the

use of SSL by comparing Figures 4B, C. Randomly select some

tiles from the WSI images to associate with the ground truth

labels, as shown in Figure 4E, to increase the proportion of label
frontiersin.org
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data in the training set; simultaneously, it could simulate

pathologists that label typical areas to achieve semi-automatic

analysis of WSI images. Then, the interactive training based on

the private annotation data can improve the quality, and the

comparison result images Figures 4C, F can be observed.
4.3 Experiments on TCGA dataset

4.3.1 Datasets
To validate the effectiveness of SSL in transfer learning, 11

tissues of cancer histopathological images were obtained from

TCGA, including lung cancer, kidney cancer, gynecological
Frontiers in Oncology 09
cancer, and gastrointestinal cancer. Specifically, lung cancer

data includes two major histologic types of non-small cell lung

cancer: adenocarcinoma (LUAD) and squamous cell

carcinoma (LUSC); Kidney cancer data includes three

subtypes: c lear cel l (KIRC), papil lary (KIRP), and

chromophobe (KICH). Gynecologic cancer refers to the

cancer that starts in woman’s reproductive organs, data in

this work includes three subtypes: uterine corpus endometrial

carcinoma (UCEC), breast invasive carcinoma (BRCA),

ovarian serous cystadenocarcinoma (OV). Gastrointestinal

cancer re fe r s to the cancer tha t s ta r t s f rom the

gastrointestinal tract and accessory organs of digestion, data

in this work includes three subtypes: colon adenocarcinoma
B C

D E F

A

FIGURE 4

Example histological images of breast cancer (A) and corresponding manully label (D). Results of breast cancer analysis: A visual comparison of
the supervised ResNet-101 model (B) and the semi supervised method (C). In particular, (E) is to randomly select some tiles from WSI images as
marking data, that is, to simulate pathologists to mark typical areas. (F) is the result of interactive guided semi-supervised learning.
TABLE 2 Comparison of different classification methods.

Normal Benign in situ carcinoma Invasive carcinoma

Model Accuracy P R P R P R P R

Supervised VGG (9) 56.3 ( ± 10.9) 60.0 60.0 61.1 55.0 60.0 60.0 62.5 45.5

Inception (26) 71.3 ( ± 9.9) 68.4 65.0 71.4 75.0 68.1 75.0 66.7 77.8

ResNet101 (44) 86.3 ( ± 7.5) 89.4 85.0 81.8 90.0 80.9 85.0 94.4 85.0

Semi-supervised Pseudo-Labeling (30) 61.3 ( ± 10.7) 57.9 55.0 61.9 65.0 52.4 55.0 73.7 70.0

Mean Teacher (48) 70.0 ( ± 10.0) 66.7 70.0 68.4 65.0 70.0 70.0 75.0 75.0

MixMatch (49) 87.5 ( ± 7.2) 90.0 90.0 80.9 85.0 85.0 85.0 94.7 90.0

FixMatch (14) 87.5 ( ± 7.2) 94.4 85.0 85.0 85.0 81.8 90.0 90.0 90.0

Semi-His-Net 90.0 (± 6.6) 90.0 90.0 89.4 85.0 85.7 90.0 95.0 95.0

We show the average Accuracy with a 95% confidence interval in parentheses, Precision (P) and recall (R) (%) of four subtypes: normal tissue, benign abnormality, malignant carcinoma
in situ, and malignant invasive carcinoma. Bold font indicates best result obtained for predictions.
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(COAD), rectum adenocarcinoma (READ), stomach

adenocarcinoma (STAD).

4.3.2 Shared representation across tumor types
The cross-classification strategy was used to verify the spatial

relations between different tumor types. Specifically, we used all

WSI images in each subtype to train a CNN classifier model to

distinguish normal/tumor tissues and used the trained model to

predict normal/tumor slices of other cancer types. Interestingly,

the average AUC of cross-classification reached 0.893 (AUC of

0.88 ± 0.11, in Ref. Noorbakhsh etal. (11), the tumor data sample

selected herein is not completely consistent with this work.). The

feasibility of cross-classification proves that there are shared

morphological features between cancer types.

We applied the proposed Semi-His-Net for cross-

classification. All WSI images in one type were selected as

labeled data, and the rest of the cancer type data were used as

unlabeled data to participate in the training analysis of the

classification model. Figure 5 shows the AUC using the

supervised CNN classification model and the proposed semi-

supervised method. The Semi-His-Net model has improved AUC

in the cross-analysis of most tumors compared to the fully-

supervised model, thereby also reflecting that the SSL strategy is

more conducive to discovering the hidden spatial relationships

between histopathological from different tumor types.
4.4 Network architectures and
hyperparameter settings

4.4.1 Influence of backbone architectures
We investigated the impact of the network architecture on the

performance of Semi-His-Net. Especially, we use the Inception v3

architecture (26), ResNet (ResNet18, ResNet34, ResNet50,
Frontiers in Oncology 10
ResNet101, ResNet152) (44), and DenseNet (DenseNet121,

DenseNet161, DenseNet201) (50) as the state-of-the-art image

classification algorithms. To distinguish between lung

adenocarcinoma and squamous cell carcinoma on TCGA-

LUAD and TCGA-LUSC datasets by histopathological image,

we replaced only the backbone network used for classification, and

reported the performance of subtype classification achieved by

these backbones in tab:dis1. The dataset consists of 956

histopathological slides from 956 patients.Here, only diagnostic

slides from the dataset were selected. The dataset is divided

randomly into training set and the test set by 8:2.

Table 3 shows that ResNet101 backbone achieves slightly

better results in classifying the four tissues. Experimental results

show that, regardless of whether it is DenseNet or ResNet, a

deeper network indicates better analysis results, which has also

been verified in other image classification or segmentation tasks

Khened et al. (51) Cheng et al. (52).

4.4.2 Influence of hyperparameters
To evaluate the influence of the confidence thresholds h and

q, we show the performance achieved by Semi-His-Net with

different threshold values. In the above experiments, we set four

fixed h values to compare the effect of q on the model

performance. The results of accuracy score are presented in

Figure 6, where the threshold values of q = 0.9 and h = 0.2 show

the highest accuracy. When h is fixed, the result will increase

with an increase in q, the highest AUC is displayed at the

threshold value of 0.9, and further increases the threshold value

q, and the AUC will not be increased. Here, the threshold value h
controls the quality and quantity of pseudo-labels; that is, the

accuracy of pseudo-labels increases with the increase of the

threshold q, which directly affects whether the unlabeled data in

training with pseudo-labels, thus affecting the contribution

unlabeled loss function Lu .
BA

FIGURE 5

AUC of cross-classifications on eleven tissues by the supervised CNN classification model and the proposed semi-supervised method. (A)
Results by the supervised CNN classification model; (B) Results by the proposed semi-supervised method. The horizontal axis of the heatmap
represents the classification model trained on one set of cancer type data, and the vertical axis represents the AUC performance of the test data
on the corresponding training data.
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5 Discussion

In this study, we developed a semi-supervised deep-learning

analytical framework that can automatically and efficiently

differentiate the subtypes of tumor pathology. We know this is

not complicated work, but a good combination of the semi-

supervised deeplearning method and H&E staining pathological

image analysis. Using simple and efficient consistency

regularization and pseudo-labeling strategies, the labeled data

required by the training model is reduced, and a large number of

unlabeled data can be involved in the training of the model.

In addition, a variety of deep learning algorithms have been

developed for automatically predicting the subtypes of tumors (7,

53, 54), such as Lu et al. (53) proposed a CLAM (clustering-

constrained-attention multiple-instance learning) method to the

subtyping of renal cell carcinoma and non-small-cell lung cancer as

well as the detection of lymph node metastasis. This learning-based

framework has two potential merits: (1) Automatic classification

results predicted by the model can remove subjective deviation and
Frontiers in Oncology 11
ensure reproducible decisions. (2) The prediction time of a WSI is

about 30s (depending on the specific size and content of the image),

which greatly reduces the time required comparedwith manual

evaluation, therefore, the auxiliary diagnosis process can reduce the

healthcare burden. However, most studies were only evaluated for

specific organs or data with specific acquisition protocols, which

affects their clinical applicability inmulti-center data or migration to

other organs. Secondly, in addition to the BACH dataset used in our

study, there have been various international challenges recently,

from which we can see the clinical demand for automated

pathological analysis techniques. Most of the annotations are for

patches rather than the whole image. These annotations are very

time-consuming and labor-intensive and have high requirements

on pathologists’ professionalism and clinical experience. Therefore,

such annotations are veryprecious for research.

In conclusion, to overcome the limitations of visual

inspection by pathologists for histopathology images, such as

long time and low repeatability, we have developed a deep
learning-based framework (Semi-His-Net) for automatic

classification subdivision of the subtypes contained in the

whole pathological images.This learning-based framework has

great potential to improve the efficiency and repeatability of

histopathological image diagnosis.
6 Conclusion

In this study, we presented a original CNNs-based SSL

framework to analysis tumor histopathological images, called

Semi-His-Net. Specifically, for unlabeled images, we use

consistency regularization and pseudo-labeling to encourage the

same image with different perturbations to have similar

distributions predicted by the model. By integrating these strategy

into CNNsmodel, the dataset used to train the Semi-His-Net model

only needs to have a small number of images containing labels and

some unlabeled image, which makes training and usage more

flexible and competitive with supervised CNN models. Our
FIGURE 6

Measuring the effect of varying the confidence threshold values h and q.
TABLE 3 Area Under the Curve (AUC) achieved by different models
(%).

Model Normal LUAD LUSC

Inception v3 0.990 0.956 0.966

ResNet18 0.979 0.966 0.971

ResNet34 0.984 0.967 0.973

ResNet50 0.988 0.969 0.973

ResNet101 0.992 0.972 0.974

ResNet152 0.991 0.969 0.974

DenseNet121 0.990 0.970 0.969

DenseNet169 0.983 0.968 0.970

DenseNet201 0.991 0.970 0.971

DenseNet161 0.983 0.969 0.971

Bold font indicates best result obtained for predictions.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1044026
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1044026
proposed method was evaluated by analyzing histopathological

images for tumor segmentation and subtype classification.

Experimental results show that our Semi-His-Net achieved the

best analysis performance, and it is adapted to transfer learning

owing to the spatial behavior shared between tumor types.
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