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computed tomography
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anterior mediastinal cysts from
thymomas and low-risk from
high-risk thymomas: A multi-
center study
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Background: This study aimed to investigate the diagnostic value of machine-

learning (ML) models with multiple classifiers based on non-enhanced CT

Radiomics features for differentiating anterior mediastinal cysts (AMCs) from

thymomas, and high-risk from low risk thymomas.

Methods: In total, 201 patients with AMCs and thymomas from three centers

were included and divided into two groups: AMCs vs. thymomas, and high-risk

vs low-risk thymomas. A radiomics model (RM) was built with 73 radiomics

features that were extracted from the three-dimensional images of each

patient. A combined model (CM) was built with clinical features and

subjective CT finding features combined with radiomics features. For the RM

and CM in each group, five selection methods were adopted to select suitable

features for the classifier, and seven ML classifiers were employed to build

discriminative models. Receiver operating characteristic (ROC) curves were

used to evaluate the diagnostic performance of each combination.

Results: Several classifiers combined with suitable selection methods

demonstrated good diagnostic performance with areas under the curves

(AUCs) of 0.876 and 0.922 for the RM and CM in group 1 and 0.747 and 0.783
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for the RM and CM in group 2, respectively. The combination of support vector

machine (SVM) as the feature-selection method and Gradient Boosting Decision

Tree (GBDT) as the classification algorithm represented the best comprehensive

discriminative ability in both group. Comparatively, assessments by radiologists

achieved amiddle AUCs of 0.656 and 0.626 in the two groups, whichwere lower

than the AUCs of the RM and CM. Most CMs exhibited higher AUC value

compared to RMs in both groups, among them only a few CMs demonstrated

better performance with significant difference in group 1.

Conclusion: Our ML models demonstrated good performance for

differentiation of AMCs from thymomas and low-risk from high-risk

thymomas. ML based on non-enhanced CT radiomics may serve as a novel

preoperative tool.
KEYWORDS

computed tomography, radiomics, thymoma, mediastinal cyst, machine learning
(ML), classifier
1 Introduction

With the increasing application of chest CT imaging in

clinical practice and lung cancer screening, the incidental

detection of anterior mediastinal lesions among asymptomatic

patients has become more frequent, with a reported prevalence

of 0.73 – 0.9% (1, 2). The most common anterior mediastinal

lesions are thymomas and anterior mediastinal cysts (AMCs),

including thymic, bronchogenic, and pericardial cysts. Surgery

or tissue acquisition is required for thymomas, while AMCs

usually do not require treatment unless complications occur (3).

However, AMCs are often misdiagnosed as thymomas, and the

rate of non-therapeutic thymectomy is 22 – 68% (3–5). This

results in a waste of medical resources and may expose patients

with AMCs to surgical risks that could be avoided. Therefore,

accurately distinguishing AMCs from thymomas before

treatment is critical.

According to the World Health Organization (WHO) 2015

classification, thymomas can be subdivided into low-risk (types

A, AB, and B1) and high-risk (types B2 and B3) groups

depending on prognosis (6). Compared to the low-risk group,

the high-risk group of thymomas is more likely to invade locally,

has a smaller opportunity for complete surgical resection, may

require multimodal therapy, and has higher tumor recurrence

rates and mortality rates (7). Hence, it is crucial to accurately

distinguish thymomas subtypes before treatment.

Contrast-enhanced CT (CECT) is the standard modality for

diagnosis of anterior mediastinal lesions (8). The diagnostic

accuracy of CECT for AMCs is 46% (9) because AMCs may

also exhibit high attenuation (9) and pseudo-enhancement (10),

especially in small lesions. The value of CT features for
02
predicting the histologic subtype of thymomas remains unclear

(9, 11, 12), which could be due to different enhancement time,

with reported scan times of 30 – 90 seconds. Further, artifacts of

contrast media may cause unstable and different image quality.

CECT may also result in additional radiation dose and risk of

contrast agent allergy. MRI is another option for AMCs and

thymomas (13) but is expensive, requires long scanning times,

and is not readily available, precluding its widespread use. In

addition, CECT and MRI rely on the experience of the

radiologist. In contrast, non-enhanced CT (NECT) image

quality is stable and lacks artifacts and risk of contrast media.

NECT is easily and widely available in clinical and screening at

most hospitals. Therefore, there is a need to build radiomics-

based ML models based on NECT images to identify AMCs and

thymomas and to distinguish between subtypes of thymomas.

Radiomics has the potential to detect specific disease

characteristics that cannot be visualized with current medical

imaging modalities by quantitatively analyzing digital images.

Qualitative CT radiomics analysis and radiomics-based ML have

been applied for differential diagnosis of AMCs and thymomas

in several studies (14, 15) and in risk prediction for thymomas

(16–21), highlighting their potential for use in clinical practice to

facilitate diagnosis and guide decision-making. However,

previous studies have several limitations. First, no study to

date has analyzed AMCs and thymomas, and the subtypes of

thymomas were analyzed using the same ML model

concurrently, with a focus on distinguishing the two types of

lesions. This may lack applicability due to the complex and

elusive conditions in clinical practice. Further, these studies were

conducted based on images from one center, the sample sizes in

several studies were small (14, 16), and the results lacked
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generalizability. Of note, radiomics studies generally extract a

large number of features. Redundant features are more easily

prone to over-fitting, and the choice of model classifiers should

be a trade-off between computational burden and model efficacy

(22–24) such that the appropriate feature section algorithm and

model classifier are critical for ML model performance. Multiple

image-based ML models have been used for diagnostic

prediction of lesions located in the anterior skull (25).

However, no study to date has used multiple ML models for

distinguishing AMCs and thymomas, which may underestimate

ML performance.

Therefore, this study aimed to investigate the value of

multiple ML models (combinations of five feature selection

algorithms and seven model classifiers) in preoperative

differentiation of thymomas between AMCs and subtypes of

thymomas based on multi-center NECT images.
2 Methods

2.1 Patient allocation

This study was approved by the local ethics committee of the

three participating hospitals, and the requirement for informed

consent was waived. We included patients who underwent

surgical resection and were pathologically confirmed with

AMCs and thymomas between January 2016 and March 2022.

Three different institutions (Center 1: Sichuan Provincial

People’s Hospital, Center 2: Ningxia Hui Autonomous

Prefecture People’s Hospital, and Center 3: The First People’s

Hospital of Liangshan Yi Autonomous Prefecture) provided the

cases, in consideration of better validation of the built model.

Inclusion criteria were as follows (1): pathologically diagnosed

with AMCs and thymomas; and (2) underwent NECT imaging
Frontiers in Oncology 03
within 4 weeks before surgery; and (3) available clinical data and

surgical records. Exclusion criteria were: (1) poor image quality

due to artifacts or other reasons; (2) previous biopsy or

treatment before CT scans because the biopsies had the

potential to cause incorrect typing due to the specificity of

thymomas (19). A final total of 201 patients were enrolled in

our study, and 22 patients were excluded. A flow diagram of the

patient selection process is shown in Figure 1.

Clinical information assessment included the following: age;

sex; symptoms including myasthenia gravis (MG), chest pain,

respiratory symptoms (cough and dyspnea); and other

symptoms. This information was collected by a junior

radiologist based on clinical records.
2.2 Image acquisition and interpretation

CT was performed with three dual-source CT scanners

(Somatom Definition Flash, Drive, and Force; Siemens

Medical Solutions, Germany). All three institutions used the

same scanning protocols. The acquisition parameters were

0.5 mm, 0.5 mm, and 0.625 mm detector collimation; 120 kVp

tube voltage; 0.5 s gantry rotation time; 1 mm, 1 mm, and

1.5 mm reconstructed section thickness; and 0.8 mm, 0.8 mm,

and 1 mm reconstruction intervals.

The area from the thoracic inlet caudally, including the

adrenal glands, was scanned. Chest NECT images were obtained

from the Picture Archiving and Communication Systems (PACS)

database of the three centers. All NECT images were reviewed by

two thoracic radiologists, who had more than 10 years of

experience in chest CT study interpretation and were blinded to

the histopathological results and clinical information. If there was

variation in the results, the two radiologists reviewed the CT

images together. Any discrepancies were resolved by discussion
FIGURE 1

Flow diagram of subject inclusion.
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until consensus was reached. Subjective image findings included

average CT value, lesion size (maximum, minimum, and average

diameter on axial images, maximum diameter on sagittal or

coronal images, and ratio of maximum to minimum diameter),

density uniformity, calcification, shape (round, oval, and

irregular), and margin (circumscribed, lobulated, and

spiculated), vascular invasion, pericardial effusion, plural

effusion, lymph node enlargement (short diameter >1 cm).

Given the difference in recommended treatments for the

cases, we divided the lesions into two groups: group 1 for

discrimination of AMCs from thymomas, and group 2 for

discrimination of low-risk from high-risk thymomas. Two

thoracic radiologists recorded their first diagnosis for each

patient in two groups, that is, AMCs or thymomas in group 1

and low-risk or high-risk thymomas in group 2.
2.3 Segmentation and feature extraction

Segmentation of the entire lesion was performed using

LIFEx software (version 6.3, http://www.lifexsoft.org) by two

experienced thoracic radiologists (readers 1 and 2, with 15 and

13 years of experience in chest CT study interpretation,

respectively) who were blinded to pathology results. The 3D

volume-of-interest (VOI) manual segmentation was performed

separately for 40 randomly chosen images by both readers.

A total of 73 features were obtained from two orders,

including first-order features from shape-based matrix and

histogram-based matrix, and second-order/higher-order

features from gray-level co-occurrence matrix (GLCM), gray-

level zone length matrix (GLZLM), neighborhood gray-level

dependence matrix (NGLDM), and gray-level run length
Frontiers in Oncology 04
matrix (GLRLM). A flowchart of radiomics feature extraction

is shown in Figure 2.

The consistency of features from different machines and

inter-observer reproducibility of texture features were assessed

using intra- and inter-class correlation coefficients (ICCs). An

ICCs > 0.75 is considered good agreement.
2.4 Feature selection and
model classifiers

In consideration of the high-dimensional nature of the

features that may contain non-informative or redundant

predictors, optimal features were first selected for the

predictive mode. Different feature selection methods, including

Least Absolute Shrinkage and Selection Operator (LASSO)

regression (17, 19, 21) and Gradient Boosting Decision Tree

(GBDT) have been reported to be appropriate for high-

dimensional data analysis (18). To address this issue, five

supervised feature selection methods were separately

employed, including GBDT, Extreme Gradient Boosting

(Xgboost), Random Forest (RF), Distance Correlation, and

LASSO. The methods were performed separately with the

same aim of identifying a subset of predictors to increase

accuracy and simultaneously reduce model complexity. A

similar problem also required resolution with regard to the

selection of model classifiers. After selecting the five subsets of

predictors, we separately used seven model classifiers with each

of the subsets as inputs based on our data. These seven classifiers

included Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), Linear Discriminant Analysis (LDA), GaussianNB,

Adaboost, Logistic Regression (LR), and Decision Tree (DT).
B C DA

FIGURE 2

Radiomics flowchart. (A) After importing images (AMCs, low-risk thymomas, and high-risk thymomas), (B) automated settings of radiomics
feature parameters were performed. (C) Tumor segmentation contours were manually drawn in the 3D VOI. (D) First- and second-order
features were extracted.
frontiersin.org

http://www.lifexsoft.org
https://doi.org/10.3389/fonc.2022.1043163
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shang et al. 10.3389/fonc.2022.1043163
2.5 Model construction and validation

We contrasted two models based on the enrolled factors: a

radiomics model (RM) based on NECT image radiomics features

alone, and a combined model (CM) based on the combination of

clinical information, NECT subjective findings, and image

radiomics features together for the classification tasks. Models of

both types, comprising 35 discriminative ML models with RM and

CM, were used for group 1 and group 2 discrimination tasks.

Patients were randomly divided into training and testing

groups at a ratio of 9:1. We used resampling methods and 10-

fold cross-validation to estimate the performance and

generalization ability of the models using our training cohorts.

The discriminative performance of different models was

quantified as area under the receiver operating characteristic

(ROC) curve (AUC), accuracy, sensitivity, and specificity.
2.6 Statistical analysis

Statistical analyses of clinical characteristics and subjective

CT findings were performed using SPSS (Version 22.0, IBM

Corp. Armonk, NY, USA). Continuous variables were

summarized using the mean ± standard deviation, and

categorical variables were presented as counts or percentages.

Comparisons between groups was used a student’s t-test, Mann-

Whitney U test and Chi-square test as required. ML algorithms

were programmed with Python Programming Language and

scikit-learn packages. Receiver operating characteristic (ROC)

curve was used to evaluate the performance of the ML model,

and the area under the curve (AUC), accuracy, sensitivity and

specificity were calculated. The DeLong test was used to compare

the AUCs of the RMs and CMs with 35 ML models in both

groups. All statistical tests were two-sided. P-values < 0.05 were

considered statistically significant.
3 Results

3.1 General patient characteristics

In total, 82 patients with AMCs and 119 patients with

thymomas were included in the study. The 82 cases of AMCs

comprised 20 thymic, 32 bronchogenic, and 30 pericardial cysts.

The 119 patients with thymomas comprised 72 patients with low-

risk thymomas (13 type A, 35 type AB, and 24 type B1) and 47

patients with high-risk thymomas (26 type B2 and 21 type B3).

Between the AMCs and thymomas group, we observed

significant differences in symptoms (more cases of MG in

patients with thymomas, P=0.001), average CT value (higher

in patients with thymomas, P<0.001), maximum and minimum

diameter on axial images (longer in patients with thymomas,
Frontiers in Oncology 05
P<0.001 and P<0.001, respectively), and ratio of max to min

diameter (longer in patients with AMCs, P=0.007). Significantly

more patients with density uniformity, calcification, round

shape, spiculated margin, pleural effusion, and lymph node

enlargement was observed in patients with thymomas than in

patients with AMCs (P<0.001, P=0.023, P=0.014, P<0.001,

P=0.017, and P=0.039, respectively). No significant differences

were observed in sex, age, long size on sagittal or coronal images,

pericardial effusion, and vascular invasion (P>0.05). Between

low-risk and high-risk thymomas, we observed significant

differences in maximum and minimum diameter on axial

images (longer for low-risk thymomas, P=0.01, P<0.001,

respectively); Significantly more patients with spiculated

margin and lymph node enlargement were observed for high-

risk than for low-risk thymomas (P<0.001, P=0.024,

respectively). No significant differences were noted in sex, age,

symptoms, average CT value, long size on sagittal or coronal

images, ratio of long diameter to short diameter, density

uniformity, calcification, and shape, vascular invasion,

pericardial effusion, pleural effusion (P>0.05). The

characteristics of patients and lesions of two groups are

compared in Table 1.

Of the 82 patients with AMCs, radiologists made a correct

first-choice diagnosis in 29 (35.4%) cases based on NECT

images, however, 53 (64.6%) cases of AMCs were misdiagnosis

as thymomas. Of the 119 patients with thymomas, 5 (4.2%)

patients, including 3 patients with type B1 and 2 patients with

type B2 thymomas, were misdiagnosed as having AMCs by

radiologists, and underwent surgical resection as these patients

presented with clinical symptoms. The radiologists correctly

diagnosed 42 (58.3%) of the 72 low-risk thymoma cases, and

31 (66%) of the 47 high-risk thymomas. The AUC, accuracy,

sensitivity, and specificity of radiologist were 0.656, 0.716, 0.966,

and 0.354 for thymomas in group 1, and 0.626, 0.613, 0.660, and

0.583 for high-risk thymomas in group 2.
3.2 Inter-operator and inter-
machine consistency

Two chest radiologists defined the lesions by VOIs. Each

feature was calculated twice for each lesion. The ICCs ranged

from 0.814 to 0.923, indicating high inter-operator consistency

in obtaining the features. Finally, we randomly selected one of

the results for ML analysis. The reproducibility of the radiomics

features by the different machines was satisfactory (ICCs ranged

from 0.786 to 0.912).
3.3 ML model performance

In total, 35 discriminative ML models through the

combination of five selection methods and seven classifiers for
frontiersin.org
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TABLE 1 Clinical characteristics of the patients and features of the lesions.

Patients AMC group,
N=82

Thymomas,
N=119

P-
value

Low risk thymomas,
N=72

High risk thymomas,
N=47

P-
value

Sex, (％) 0.935 0.247

Male 37 (45.1%) 54.02 (44.5%) 29 (40.3%) 24 (51.1%)

Female 45 (54.9%) 66 (55.5%) 43 (59.7%) 23 (48.9%)

Age, years 0.831 0.839

Mean ± SD 53.66 ± 10.57 54.02 ± 12.43 55.14 ± 12.38 52.30 ± 12.43

Range 31-77 21-73 19-78 22-71

Symptoms, (％) 0.001 0.398

Myasthenia gravis 2 (2.4%) 24 (20.2%) 13 (18.1%) 11 (23.4%)

Chest pain 4 (4.9%) 13 (10.9%) 10 (13.9%) 3 (6.4%)

Respiratory symptoms (cough,
dyspnea)

11 (13.4%) 12 (10.1%) 9 (12.5%) 3 (6.4%)

Other symptom 9 (11%) 13 (10.9%) 6 (8.3%) 7 (14.9%)

NO symptom 56 (68.3%) 57 (47.9%) 34 (47.2%) 23 (48.9%)

Average CT value, HU, mean ± SD, 26.83 ± 20.94 41.33 ± 11.15 < 0.001 40.38 ± 12.57 42.79 ± 8.46 0.130

Size, mean ± SD,

maximum diameter on axial image
(cm)

3.44 ± 2.23 4.83 ± 2.32 < 0.001 4.99 ± 2.61 4.60 ± 1.80 0.010

minimum diameter on axial image
(cm)

2.35 ± 1.46 3.25 ± 1.54 < 0.001 3.44 ± 1.749 2.96 ± 1.09 < 0.001

Long size on sagittal or coronal
image (cm)

4.62 ± 2.66 5.43 ± 2.38 0.943 5.71 ± 2.57 5.00 ± 2.01 0.051

Ratio of max to min diameter
*

2.07 ± 0.58 1.84 ± 0.61 0.007 1.82 ± 0.63 1.87 ± 0.58 0.624

Density uniformity, (％) < 0.001 0.098

yes 66 (80.5%) 41 (34.5%) 29 (40.3%) 12 (25.5%)

no 16 (19.5%) 78 (65.5%) 43 (59.7%) 35 (74.5%)

Calcification, (％) 0.023 0.174

yes 10 (12.2%) 30 (25.2%) 15 (20.8%) 15 (31.9%)

no 72 (87.8%) 89 (74.8%) 57 (79.2%) 32 (68.1%)

Shape, (％) 0.014 0.619

round 13 (15.9%) 40 (33.6%) 26 (36.1%) 14 (29.8%)

oval 28 (34.1%) 37 (31.1%) 23 (31.9%) 14 (29.8%)

irregular 41 (50%) 42 (35.3%) 23 (31.9%) 19 (40.4%)

Margin, (％) < 0.001 < 0.001

Circumscribed 43 (52.4%) 25 (21%) 22 (30.6%) 3 (6.4%)

Lobulated 28 (34.1%) 35 (29.4%) 24 (33.3%) 11 (23.4%)

Spiculated 11 (13.4%) 59 (49.6%) 26 (36.1%) 33 (70.2%)

Vascular invasion, (％) 0.238 0.078

yes 0 (0%) 2 (1.7%) 0 (0%) 2 (4.3%)

no 82 (100%) 117 (98.3%) 72 (100%) 45 (95.7%)

Pericardial effusion, (％) 0.217 0.702

yes 7 (8.5%) 17 (14.3%) 11 (15.3%) 6 (12.8%)

no 75 (91.5%) 102 (85.7%) 61 (84.7%) 41 (87.2%)

Pleural effusion, (％) 0.017 0.905

yes 0 (0%) 8 (6.7%) 5 (6.9%) 3 (6.4%)

no 82 (100%) 111 (93.3%) 67 (93.1%) 44 (93.6%)

Lymph node, (％) enlargement 0.039 0.024

yes 0 (0%) 6 (5%) 1 (1.4%) 5 (10.6%)

no 82 (100%) 113 (95%) 71 (98.6%) 42 (89.4%)
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two types of RMs and CMs were used for two group

discrimination tasks. Among two group

3.3.1 Group 1: ML model performance for
discriminating AMCs from thymomas

Among 35 RMs, 32 RMs had AUCs > 0.7, and 16 RMs had

AUCs > 0.8. In particular, QBDT, Xgboost, and RF as the

feature selection method with SVM, LDA, KNN, and

GausiannNB as classifiers exhibited higher value of ROCs.

Among models, RF+SVM had the highest AUC of 0.878, but

the sensitivity of this model was only 0.586. GBDT+SVM had a

high AUC and good balance between sensitivity and specificity;

thus, this model was considered the best discriminate model.

The AUC, accuracy, sensitivity, and specificity of GBDT+SVM

were 0.876, 0.806, 0.670, and 0.90 in the testing group, and

0.909, 0.818, 0.70, and 0.90 in the training group, respectively.

RF+KNN, Xgboost + LDA, and GBDT+GaussianNB had

AUCs ≥ 0.847 in the testing group, indicating reliable

diagnostic performance. Details of model performance are

presented in Table 2.

Among 35 CMs, 34 CMs had AUCs > 0.7, and 19 CMs had

AUCs > 0.8. The combination of QBDT and Xgboost as the

feature selection method with SVM and GausiannNB as

classifiers exhibited better diagnostic performance, similar to

RMs. Among them, GBDT+SVM demonstrated the best

diagnostic performance, with the highest AUC and a good

balance between sensitivity and specificity. The AUC,

accuracy, sensitivity, and specificity of this model were 0.922,

0.850, 0.81, and 0.882 in the testing group and 0.963, 0.903, 0.87,

and 0.92 in the training group, respectively. Other models

including GBDT+GausiannNB, GBDT+KNN, GBDT+LR, and

Xgboost+SVM also demonstrated reliable diagnostic

performance in CMs in group 1, with AUCs ≥ 0.894 in the

testing group. Moreover, of 35 CMs, 28 had higher value of

AUCs than those for RMs in the testing group, with statistically

significant differences for the combination of GBDT+KNN
Frontiers in Oncology 07
(P=0.015), GBDT+GausiannNB (P=0.0328), and Xgboost+LR

(P=0.0389). Details of model performance are presented in

Table 3. The ROC curve of the best RM and CM models in

group 1are presented in Figure 3.

3.3.2 Group 2: Model performance
for discriminating low-risk from
high-risk thymomas

Among 35 RMs, 14 models had AUCs > 0.7. Among them,

GBDT+LR and GBDT+SVM had the highest AUCs of 0.763 and

0.760, respectively, but with sensitivities of 0.41 and 0.46,

respectively. Hence, these models were unable to meet the

thresholds for clinical application. The GBDT+GaussianNB

model exhibited a good balance between sensitivity and

specificity and was considered the best discriminate model.

The AUC, accuracy, sensitivity, and specificity for this model

were 0.747, 0.638, 0.580, and 0.679 in the testing group and

0.818, 0.724, 0.688, and 0.747 in the training group, respectively.

Details of model performance are presented in Table 4.

Among 35 CMs, 19 of all 35 models had AUCs > 0.7, and 2

models had AUCs > 0.8. Among models, the combination of

GBDT+GaussianNB, GBDT+SVM, and RF+SVM had the

highest AUCs of 0.808, 0.802, and 0.797, respectively, but the

sensitivities were only 0.520, 0.58, and 0.55, respectively, in the

testing group. The Distance correlation+KNN model had a good

balance between sensitivity and specificity; thus, this model was

considered the best discriminate model. The AUC, accuracy,

sensitivity, and specificity of this model were 0.783, 0.774, 0.665,

and 0.848 in the testing group and 0.891, 0.815, 0.70, and 0.89 in

the training group, respectively. Distance Correlation+LDA with

an AUC of 0.783 also exhibited reliable diagnostic performance

in group 2. Moreover, Of all 35 CMs, 28 had higher value of

AUCs than those of RMs in the testing group, but the difference

was not statistically significant (P=0.09-1.0, P>0.05). Details of

model performance are presented in Table 5. The ROC curve of

the best RM and CMmodels in group 1are presented in Figure 3.
TABLE 2 Results of discriminative RMs in group 1 in the testing group.

QBDT Xgboost RF Distance correlation LASSO

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

SVM 0.806 0.876 0.761 0.841 0.761 0.878 0.761 0.779 0.722 0.787

KNN 0.776 0.823 0.766 0.832 0.771 0.853 0.761 0.804 0.731 0.751

LDA 0.771 0.814 0.772 0.849 0.781 0.829 0.767 0.730 0.752 0.819

GausiannNB 0.761 0.847 0.746 0.824 0.721 0.831 0.756 0.799 0.601 0.740

Adaboost 0.731 0.828 0.761 0.819 0.716 0.769 0.701 0.740 0.711 0.786

LR 0.771 0.829 0.757 0.791 0.751 0.796 0.757 0.715 0.697 0.775

DT 0.711 0.706 0.756 0.746 0.721 0.714 0.672 0.658 0.682 0.668
frontiers
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear
Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.
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3.4 Feature selection

The selection method of integrated GBDT exhibited higher

value of AUCs compared to the others for the same model
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algorithms in both groups. The features selected by the best

discrimination models in the two groups are presented in

Table 6. LASSO as a feature selection method did not select

any clinical information and subjective CT findings for analysis
BA

FIGURE 3

The ROC curves of the best ML models. (A) NECT-based RM and CM with(GBDT+SVM) in the testing sets in group1, mean AUC of 0.876 and
0.922 were presented; (B) NECT-based RM with (GBDT+GaussianNB) and CM with (DT+KNN) in the testing tests in group 2, mean AUC of 0.747
and 0.783 were presented.
TABLE 3 Results of discriminative CMs in group 1 in the testing group.

QBDT Xgboost RF Distance Correlation LASSO

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

SVM 0.850 0.922 0.821 0.894 0.815 0.882 0.751 0.777 0.722 0.787

KNN 0.835 0.908 0.810 0.882 0.840 0.882 0.746 0.778 0.731 0.751

LDA 0.884 0.825 0.869 0.806 0.867 0.791 0.732 0.737 0.752 0.819

GausiannNB 0.830 0.913 0.815 0.872 0.736 0.848 0.752 0.785 0.601 0.740

Adaboost 0.811 0.882 0.721 0.807 0.776 0.822 0.721 0.753 0.711 0.786

LR 0.845 0.903 0.811 0.886 0.791 0.860 0.757 0.715 0.697 0.775

DT 0.801 0.798 0.826 0.818 0.761 0.759 0.722 0.708 0.682 0.668
frontiers
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear
Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.
TABLE 4 Results of discriminative RMs in group 2 in the testing group.

QBDT Xgboost RF Distance correlation LASSO

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

SVM 0.695 0.760 0.645 0.702 0.636 0.684 0.655 0.699 0.605 0.570

KNN 0.628 0.658 0.639 0.634 0.611 0.669 0.654 0.655 0.545 0.502

LDA 0.705 0.730 0.679 0.721 0.611 0.702 0.696 0.740 0.620 0.663

GausiannNB 0.638 0.747 0.689 0.717 0.628 0.733 0.604 0.721 0.546 0.576

Adaboost 0.687 0.666 0.630 0.638 0.595 0.598 0.637 0.599 0.605 0.582

LR 0.696 0.763 0.680 0.732 0.670 0.722 0.688 0.720 0.664 0.587

DT 0.613 0.602 0.637 0.630 0.608 0.570 0.561 0.532 0.546 0.524
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, Least absolute shrinkage and selection operator; LDA, Linear
Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.
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in CMs in both groups. As a result, the diagnostic ability of RMs

and CMs did not change.
4 Discussion

In this study, we proposed ML discriminative models based

on a multi-center dataset of NECT images to differentiate AMCs
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from thymomas and low-risk from high-risk thymomas.

Further, we aimed to identify the optimal discriminative

models from the combination of five feature selection methods

and seven classifiers. Since the features we selected were based on

multi-center NECT images and clinical findings, these ML

models have the potential to be used as a convenient and non-

invasive discrimination tool to predict the risk of AMCs and

thymomas, which has implications for treatment decisions.
TABLE 5 Results of discriminative CMs in group 2 in the testing group.

QBDT Xgboost RF Distance correlation LASSO

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

SVM 0.721 0.802 0.723 0.799 0.721 0.797 0.731 0.761 0.605 0.570

KNN 0.730 0.756 0.656 0.726 0.730 0.777 0.774 0.783 0.545 0.502

LDA 0.687 0.785 0.637 0.686 0.687 0.778 0.755 0.793 0.620 0.663

GausiannNB 0.705 0.808 0.723 0.774 0.688 0.772 0.680 0.752 0.546 0.576

Adaboost 0.637 0.676 0.688 0.697 0.596 0.610 0.645 0.612 0.605 0.582

LR 0.705 0.774 0.714 0.783 0.730 0.780 0.705 0.787 0.664 0.587

DT 0.640 0.629 0.631 0.616 0.630 0.621 0.630 0.597 0.546 0.524
frontiers
AUC, Area under curve; Decision tree, DT; GBDT, Gradient boosting decision tree; KNN, K-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LDA, Linear
Discriminant analysis; LR, Logistic regression; RF, Random forest; SVM, Support vector machine; Xgboost, Extreme gradient boosting.
TABLE 6 Features selected by the GBDT in the two groups.

Group 1: AMCs to thymomas Group 2: Low-risk to high-risk thymomas

NECT-based RM; NECT-based CM; NECT-based RM; NECT-based CM;
N=8 N=11 N=15 N=12

CONVENTIONAL_HU min CONVENTIONAL_HUQ2 CONVENTIONAL_HU min CONVENTIONAL_HUQ2

CONVENTIONAL_HU max SHAPE_Sphericity onlyFor3DROI) CONVENTIONAL_HUQ2 SHAPE_Sphericity only For 3D ROI)

CONVENTIONAL_HUQ2 GLCM_Correlation DISCRETIZED_HUQ2 SHAPE_Surface (mm2) only For 3D
ROI

CONVENTIONAL_HUQ3 GLRLM_LGRE SHAPE_Sphericity only For 3D ROI) SHAPE_Compacity onlyFor3DROI

SHAPE_Sphericity only For 3D ROI) CONVENTIONAL_HUmin SHAPE_Surface(mm2) only For 3D ROI GLCM_Correlation

SHAPE_Surface (mm2) only For 3D
ROI

Symptoms SHAPE_Compacity only For 3D ROI GLRLM_SRLGE

GLCM_Correlation Average CT value GLCM_Energy =Angular Second
Moment

GLZLM_HGZE

GLZLM_LZLGE Maximum diameter on axial image
(cm)

GLCM_Correlation GLZLM_GLNU

Ratio of max diameter to min diameter GLRLM_SRLGE Average CT value

Density uniformity GLRLM_SRHGE Minimum diameter on axial image(cm)

Margin NGLDM_Contrast Lymph node enlargement

GLZLM_HGZE Margin

GLZLM_SZHGE

GLZLM_GLNU

GLZLM_ZLNU

DISCRETIZED_HUQ2
CM, combined model; GLCM, gray-level co-occurrence matrix; GLZLM, gray-level zone length matrix; GLRLM, gray-level run length matrix; NGLDM, neighborhood gray-level
dependence matrix; RM, radiomics model.
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4.1 Discrimination of AMCs
and thymomas

In our study, the diagnostic performance of radiologists was

unsatisfactory towards distinguishing AMCs from thymomas,

with an AUC of 0.656 and low specificity. Almost 2/3 patients

with AMCs were misdiagnosed as thymomas, and the possibility

of thymomas was not ruled out for the remaining 1/3 AMCs.

Hence, the surgeons adopted more aggressive surgical resection

for all AMCs patients, who should avoid unnecessary surgeries.

This highlights the need to identify radiomics tools to improve

the diagnostic accuracy of AMCs, despite the benign nature and

low incidence of these lesions.

Few studies have aimed to distinguish AMCs and thymomas

using CT imaging radiomics features (14, 15). Yasaka et al. (14)

reported that solid anterior mediastinal masses could be

differentiated from cysts using quantitative CT texture analyses

with AUC of 0.869 in 76 patients with NECT. However, the

sample size of the study was small. Liu et al. (15) reported that

the combined models, including radscore and CT value,

exhibited better diagnostic performance compared to radscore

models for distinguishing AMCs and type B1 and B2 thymomas,

with AUCs of 0.928 and 0.856 based on NECT, and 0.938 and

0.899 based on CECT in the testing group, respectively.

However, in clinical practice, the subtypes of thymomas

cannot be easily distinguished from each other, and this study

used only one ML model.

Our study demonstrated that both RMs and CMs based on

NECT had outstanding diagnostic performance for

distinguishing AMCs and thymomas. 80% CMs had higher

value of AUC than RMs, however only several CMs exhibited

significant differences. Then using the combination of GDBT

+SVM, which was the optimal comprehensive performance ML

model, the AUCs for RM and CM were 0.876 and 0.922,

respectively, but the difference between RM and CM was not

statistically significant. These results were similar to the findings

of Liu et al. (15).

The RMs based on NECT could improve diagnostic accuracy

of AMCs from thymomas compared to the radiologist’s

diagnosis based on CT images. This suggests that radiomics

has the potential to detect specific characteristics of AMCs and

thymomas that cannot be visualized by radiologists. Moreover,

CMs based on NECT slightly improved the diagnostic

performance using few combinations. The results indicate that

clinical and CT subjective features are important for the

differential diagnosis. However, CT findings are determined by

subjective judgment and may be influenced by the radiologist’s

diagnostic experience, and clinical and CT subjective features

played a limited role in the differential diagnosis of AMCs and

thymomas. In contrast, Radiomics features objectively reflect the

internal structural heterogeneity of lesions, so that RMs based on
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NECT showed the potential to be a relatively simple, objective,

and efficient diagnostic tool.
4.2 Discrimination of low-risk and
high-risk thymomas

The diagnostic performance of radiologists to distinguish

high-risk from low-risk thymomas had an AUC of 0.626.

GBDT+GaussianNB in RM and Distance correlation+KNN

in CM exhibited good diagnostic performance for

discriminating low-risk and high-risk thymomas, with AUCs

of 0.747 and 0.783, respectively. GBDT+SVM also had good

AUCs of 0.760 and 0.802 in RM and CM, respectively. But no

significant differences were found between RMs and CMs.

Several studies (16–19) have attempted to identify subtypes

of thymomas using imaging radiomics and ML models. Liu et al.

(18) established triple-classification RMs, corresponding clinical,

and clinical-semantic RMs, based on NECT images with TETs.

The AUCs of the RM, clinical model, and clinical-sematic RM

were 0.686, 0.787, and 0.770 for low-risk thymomas; 0.601,

0.699, and 0.689 for high-risk thymomas; and 0.632, 0.689,

and 0.783 for thymic carcinoma, respectively, in the validation

set, using Sperman + GBDT as feature section method and LR as

ML classifier. The AUCs for low-risk thymomas and high-risk

thymomas in our study were higher than those reported by Liu

et al. (18). We speculated that these differences may be mainly

due to the different classifications. In this regard, the results of

three classifications RM are lower than those of two

classifications RM, which is shown in Yin et al’s study (26).

Another reason may be that we used multiple ML models and

identified the optimal ML models for our data, while Liu’s study

used only one ML classifier, which may have underestimated

the efficiency.

Chen et al. (19) built three RMs and CMs based on venous-

phase CECT images and reported high diagnostic performance

for predicting the invasiveness of thymic epithelial tumors, with

AUCs of 0.944 and 0.953, respectively. However, no significant

difference was observed between RM and CM. The AUCs in our

study were lower than those in Chen et al.’s study. Several

reasons may underpin these differences. One reason is

differences in study subjects, whereby thymic carcinoma was

included in the high-risk group in Chen et al.’s study. It has been

reported that thymic carcinoma has obvious infiltration

characteristics on CT and is easy to identify (27). The ML

models in Chen et al.’s study was based on CECT venous-

phase images, which has the potential to provide more

feature information.

All three studies demonstrated that CMs have higher AUC

values than those of RMs, based on NECT or CECT images.

However, the differences were not statistically significant in our
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study or the study done by Chen et al. We could not make

comparisons to Liu’s study as the statistical analyses were

unavailable. We speculated that texture features are reflective

of the heterogeneity of lesions and play a dominant role in the

differentiation of subtypes of thymomas. Additionally, clinical

information and subjective CT findings may be helpful for

differential diagnosis of the different subtype of thymomas,

which should be verified with more studies.
4.3 Feature selection algorithms

Among five feature selection algorithms, GBDT exhibited

the best performance in both groups. GBDT is an iterative

decision tree algorithm consisting of multiple decision trees.

The conclusions of all trees cumulatively arrived at a final

answer. It was first proposed as an algorithm with greater

generalization (28). Liu et al. (18) demonstrated that the

GBDT algorithm performed stably in thymomas radiomics

feature extraction, although their study did not have the same

number of radiomics features as that in our study.

LASSO as a feature selection algorithm was most widely used

alone or combined with variance threshold, Select K Best in

imaging radiomics modeling (17, 19, 21). In our study, LASSO

performed well with moderate discrimination in both groups.

The same ROCs were observed between RMs and CMs because

no clinical information or subjective CT finding features were

selected by LASSO in CMs in both groups. LASSO is based on

the penalty method for variable selection of sample data.

Through compression of the original coefficients, the originally

small coefficients are directly compressed to 0, such that the

corresponding variables of these coefficients are regarded as

non-significant variables, and the insignificant variables are

directly discarded. In addition, among 34 CMs, only several

CMs performed significantly better than RMs in groups 1, no

CMs performed better than RMs in group 2. These results are

consistent with each other, and demonstrated that clinical

information and subjective CT finding features did not play a

significant role in differentiating AMCs and thymomas and

subtypes of thymomas.

The three other feature selection algorithms were first used

in diagnostic models of AMCs and thymomas and also exhibited

reliable performance, which can be applied and verified in bigger

sample data sets.
4.4 ML model classifiers

Among seven model classifiers (LDA, SVM, Adaboost,

KNN, Gaussian NB, LR, and DT), SVM was the top-

performing classifier in both groups. Gaussian NB, KNN, and

LR exhibited reliable discrimination efficiency. SVM is an

optimal boundary classification method based on VC
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dimension theory and structural risk minimization

criterion with maximum interval classifier in feature space.

The purpose of SVM is to find a compromise value that

minimizes the empirical risk and confidence interval. While

concurrently considering training error and model complexity, it

can obtain better classification effects when the number of

samples is small (29).

Another study (21) used six model classifiers to differentiate

high-risk from low-risk thymomas based on CECT images and

reported that the top three classifiers were KNN, LR and SVM,

with AUCs of 0.943, 0.943, and 0.857, respectively. These three

classifiers also performed reliably in our study. In previous

studies on ML for thymomas, LR as a model classifier was

most widely used in imaging radiomics modeling (18–20),

indicating stable diagnostic performance. Gausiann NB was

first used in diagnostic models of thymomas and also

exhibited reliable performance.

We can see from these studies. Because each classifier has its

own characteristics and application scope, it is necessary to select

the most appropriate classifier for different data sets. In order to

maximize the performance of ML, it is necessary to try multiple

classifiers for one data set.
4.5 Study limitations

Similar to other retrospective studies, there may have been

selection bias in this study. This study did not perform external

validation due to the low incidence of thymoma and small

sample size. In the future, we intend to collect data from more

centers for analysis. Further, this study did not build the ML

models with CECT images because of the different contrast time

(25-90 s) in the three centers. In this regard, CECT images may

provide more feature information. Future studies should

compare the NECT and CECT ML models with same

scanning parameters. Finally, due to the complex and elusive

conditions in clinical application, it is necessary to make three

classifications under the same subgroup to distinguish AMCs,

low-risk, and high-risk thymomas, which is one of our future

research intentions.
5 Conclusion

This study proposed ML predictive models based on NECT

radiomics and clinical parameters via multiple combinations of

selection algorithms and ML classifiers. Our study demonstrated

that ML models could distinguish thymomas from AMCs with a

high diagnostic performance and distinguish subtypes of

thymomas with a moderate performance. The combined

models of clinical information, subjective CT findings, and

radiomics features slightly improved performance compared to
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RMs alone. Our prediction model has the potential for

application in clinical practice as a new and convenient tool.
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AMC anterior mediastinal cyst

AUC area under the curve

CECT contrast-enhanced computed tomography

CM combined model

CT computed tomography

DT Decision Tree

GBDT Gradient Boosting Decision Tree

GLCM gray-level co-occurrence matrix

GLRLM gray-level run length matrix

GLZLM gray-level zone length matrix

KNN k-Nearest Neighbor

LASSO least absolute shrinkage and selection operator

LDA Linear Discriminant Analysis

LR logistic regression

NECT non-enhanced computed tomography

NGLDM neighborhood gray-level dependence matrix

PACS Picture Archiving and Communication Systems

RF random forest

RM radiomics model

ROC receiver operating characteristic

SVM Support Vector Machine

SD Standard Deviation

VOI volume-of-interest

WHO World Health Organization

Xgboost Extreme Gradient Boosting
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