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Deep learning radiomic analysis
of DCE-MRI combined with
clinical characteristics predicts
pathological complete response
to neoadjuvant chemotherapy
in breast cancer
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Objective: The aim of this study was to develop and validate a deep learning-

based radiomic (DLR) model combined with clinical characteristics for

predicting pathological complete response (pCR) to neoadjuvant

chemotherapy (NAC) in breast cancer. For early prediction of pCR, the DLR

model was based on pre-treatment and early treatment dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) data.

Materials and methods: This retrospective study included 95 women (mean

age, 48.1 years; range, 29–77 years) who underwent DCE-MRI before (pre-

treatment) and after two or three cycles of NAC (early treatment) from 2018 to

2021. The patients in this study were randomly divided into a training cohort

(n=67) and a validation cohort (n=28) at a ratio of 7:3. Deep learning and

handcrafted features were extracted from pre- and early treatment DCE-MRI

contoured lesions. These features contribute to the construction of radiomic

signature RS1 and RS2 representing information from different periods. Mutual

information and least absolute shrinkage and selection operator regression

were used for feature selection. A combined model was then developed based

on the DCE-MRI features and clinical characteristics. The performance of the

models was assessed using the area under the receiver operating characteristic

curve (AUC) and compared using the DeLong test.

Results: The overall pCR rate was 25.3% (24/95). One radiomic feature and

three deep learning features in RS1, five radiomic features and 11 deep learning

features in RS2, and five clinical characteristics remained in the feature

selection. The performance of the DLR model combining pre- and early
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treatment information (AUC=0.900) was better than that of RS1 (AUC=0.644,

P=0.068) and slightly higher that of RS2 (AUC=0.888, P=0.604) in the

validation cohort. The combined model including pre- and early treatment

information and clinical characteristics showed the best ability with an AUC of

0.925 in the validation cohort.

Conclusion: The combined model integrating pre-treatment, early treatment

DCE-MRI data, and clinical characteristics showed good performance in

predicting pCR to NAC in patients with breast cancer. Early treatment DCE-

MRI and clinical characteristics may play an important role in evaluating the

outcomes of NAC by predicting pCR.
KEYWORDS

dynamic contrast-enhanced magnetic resonance imaging, breast cancer,
pathological complete response, radiomics, deep learning
1 Introduction

The global cancer statistics 2020 reported that breast cancer

has become the first cause of cancer worldwide, with over 2.26

million new cases (1). With the number of patients with breast

cancer increasing annually, comprehensive breast cancer treatment

has become increasingly crucial. Neoadjuvant chemotherapy

(NAC) for breast cancer is a systemic chemotherapy conducted

before surgery or radiotherapy and is an essential component of

the overall treatment for breast cancer. Its main purpose is to

decrease tumor load before surgery, reduce tumor stage, and

convert inoperable tumors into operable ones. As a result, female

patients with breast cancer who require total mastectomy may

manage to preserve their breasts and improve their overall

treatment outcomes and their quality of life (2). Furthermore,

studies have shown a strong association between pathological

complete response (pCR), overall survival, and disease-free

survival (3). Therefore, early prediction of pCR has become the

focus of clinical attention.

Numerous studies have proposed various methods,

including mammography, digital breast tomography,

ultrasonography, and magnetic resonance imaging (MRI), to

assess the response to NAC in patients with breast cancer. MRI is

effective in predicting pCR after the completion of NAC (4), and

the dynamic contrast-enhanced MRI (DCE-MRI) technology is

more reliable than other methods. In addition, a growing body of

research has shown that DCE-MRI can reflect tumor

microvascular perfusion and vascular permeability, providing

the possibility of quantitative evaluation and is thus helpful in

predicting the final outcome after completion of NAC for breast

cancer (5, 6).

Radiomics was first proposed by Lambin (7) and involves

extracting massive features from segmented medical images. By
02
transforming medical images into mineable data for quantitative

and qualitative analyses of tumor heterogeneity, radiomics is

widely used to provide effective references for the management

of various oncological diseases, particularly in differential

diagnosis, subtype analysis, treatment option selection,

prognosis evaluation, and efficacy assessment (8–10).

Moreover, radiomics can be combined with clinical

information, histopathological and molecular features, and

multiple imaging features to provide more comprehensive

information. Previous studies have shown that radiomic

features obtained using DCE-MRI have good predictive ability

for pCR after the completion of NAC in breast cancer (11). With

the rapid development of deep learning and radiomic theories, a

new technology that combines information from both deep

learning and radiomic features has emerged. The radiomic

method adopting deep learning-based radiomic (DLR) features

has shown the first advanced performance in medical image

analysis (12). Liang et al. (13) constructed a DLR nomogram to

evaluate whether there were metastatic lesions in other organs in

patients with soft tissue sarcoma before surgery. In the external

validation cohort, the DLR nomogram model demonstrated

better predictive power than either the radiomic or clinical

model, with areas under the receiver operating characteristic

curve (AUCs) of 0.833, 0.799, and 0.664, respectively. Li et al.

(14) established a model for predicting the prognosis of stage II

colorectal cancer by combining the deep learning and radiomic

features of primary lesions and peripheral lymph nodes based on

computed tomography images. The AUCs of disease-free

survival and total survival of the model increased to 0.76 and

0.91, respectively.

Recent studies (15) have used DLR based on DCE-MRI to

predict pCR to NAC in breast cancer, but the predictive power of

the models was found to be unsatisfactory. In addition, models
frontiersin.org

https://doi.org/10.3389/fonc.2022.1041142
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.1041142
that comprehensively incorporate pre-treatment and early

treatment DCE-MRI data, as well as clinical information, are

almost non-existent. As the pre-treatment image features and

clinical features are related to the characteristics of the primary

tumor, the post-treatment images can reflect the tumor response

to NAC drugs. Here, we hypothesized that improved

performance could be achieved by constructing a model

combining these three elements. As a result, we retrospectively

included women with breast cancer who received NAC and

obtained radiomic and deep learning semantic segmentation

features based on pre-treatment and early treatment DCE-MRI

data. We aimed to develop a model combined multi-period

images information with clinical characteristics to predict pCR

in female patients with breast cancer treated with NAC.
2 Materials and methods

2.1 Patient population

This retrospective study was conducted in accordance with

the tenets of the Declaration of Helsinki and was approved by

the ethics committee of Dongguan People’s Hospital, with the

requirement for informed consent waived.

Ninety-five patients with breast cancer who underwent NAC

and breast DCE-MRI from 2018 to 2021 were enrolled in the

study. The following criteria were required for inclusion: (i)

primary breast cancer confirmed using core needle biopsy before

the start of the treatment; (ii) availability of pre-treatment and

post-treatment histopathologic information; and (iii) absence of

any treatment before NAC. Patients meeting the following criteria

were excluded: (i) lack of pre-treatment or early treatment DCE-
Frontiers in Oncology 03
MRI data; (ii) incomplete NAC for more than four cycles; and (iii)

absence of surgical treatment in our hospital or having received

surgical treatment outside our hospital after NAC. The study

population enrollment pathway is shown in Figure 1.

To guarantee improved generalization performance, the

dataset was divided into training and validation cohorts (70/30

divisions). The training cohort contained 67 patients (16 pCR,

51 non-pCR; mean age 47.8 years), and the validation cohort

contained 28 patients (8 pCR, 20 non-pCR; mean age

48.9 years).

By reviewing medical records, clinically relevant information,

including age, body mass index, menstrual status, NAC cycle,

NAC regimen, genetic testing results, molecular typing, and

clinical staging, was obtained from the patients with breast

cancer. All patients obtained NAC (more than four cycles) and

underwent surgical resection. The following NAC regimens were

included in this study: (i) 15 cases of EC-T (epirubicin,

cyclophosphamide, sequential docetaxel); (ii) 13 cases of AC-T

(doxorubicin, cyclophosphamide, sequential docetaxel); (iii) 7

cases of EC-TH (epirubicin, cyclophosphamide, sequential

docetaxel, and trastuzumab); (iv) 5 cases of EC-THP

(epirubicin, cyclophosphamide, sequential docetaxel,

trastuzumab, and pertuzumab); (v) 4 cases of AC-THP

(doxorubicin, cyclophosphamide, sequential docetaxel,

trastuzumab, and pertuzumab); (vi) 7 cases of TA (docetaxel,

doxorubicin); (vii) 21 cases of TEC (docetaxel, epirubicin,

cyclophosphamide); (viii) 11 cases of TAC (docetaxel,

doxorubicin, cyclophosphamide); (ix) 8 cases of TCH

(docetaxel, carboplatin, trastuzumab); and (x) 4 cases of TCHP

(docetaxel, carboplatin, trastuzumab, and pertuzumab).

Immunohistochemical (IHC) results, including the expression

of Ki67, progesterone receptor (PR), estrogen receptor (ER), and
FIGURE 1

Flowchart of patient enrollment in the study.
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human epidermal growth factor receptor 2 (HER2), were obtained

from a lesion biopsy conducted before NAC. According to the

immunohistochemical index evaluation criteria (16), ER and PR

positivity was defined as ≥1% of tumor cells with positive nuclear

staining. Tumors with IHC staining of 3 were considered HER2

positive. IHC 2+ tumors require further confirmation via

molecular testing (in situ hybridization (17) testing). The ISH-

amplified results were determined to be HER2 positive. The cutoff

value for Ki67 was 14% (16). The molecular subtype of the tumor

was defined as follows (18): patients with ER and/or PR (+), HER2

(−), and Ki67<14% were grouped into luminal A; patients with ER

and/or PR (+), HER2 (+) or ER, and/or PR (+), HER2 (−), and Ki-

67≥14% were grouped into luminal B; patients with ER and PR

(−) and HER2 (+) were grouped into the HER2 overexpression

type; and patients with ER and PR (−) and HER-2 (−) were

grouped into the triple-negative type.

No remaining cancer in the breast and axillary lymph nodes

confirmed using lesion biopsy of the surgical specimen (residual

ductal carcinoma in situ could be acceptable) was defined as

pCR (19).
2.2 MRI acquisition

DCE-MRI data of the female patients with breast cancer

were retrospectively collected. These examination data were

generated when the patients underwent MRI before NAC and

after two or three cycles of NAC. Patients were scanned using a

3.0-T scanner (Skyra, SIEMENS) with a dedicated 16-channel

phased-array breast coil.

All DCE-MRI examinations were carried out using fast, low-

angle shot fat-suppressed three-dimensional spoiled gradient-

echo T1-weighted imaging. The following acquisition settings

were applied: repetition time, 4.78 ms; echo time, 1.77 ms;

matrix size, 256×256; resolution, 0.75 mm; flip angle, 10

degrees; field of view, 320 mm×320 mm; slice thickness,

1.70 mm; and slice gap, 50% of slice thickness. The contrast

agent gadopentetate dimeglumine (produced by Hengrui

Company, Jiangsu, China) at a dose of 0.15 mmol/kg was

injected through the median elbow vein at a rate of 3–4 ml/s,

followed by flushing 15 ml of saline. The contrast agent was

injected at the end of the first scanning phase, and six phases

were scanned, each lasting 72 s.
2.3 Region of interest segmentation

Two experienced radiologists (radiologist one who had

worked in the areas of breast disease diagnosis for three years,

and radiologist two who had worked in the areas of breast

disease diagnosis for ten years) were invited. They were unaware
Frontiers in Oncology 04
of the pathology results and used the ITK-SNAP software

(http://www.itksnap.org/) to delineate a region of interest layer

by layer along the tumor margin on DCE-MRI images. As tumor

enhancement was obvious in the third scanning phase, we chose

to sketch the enhanced high-signal area in this image phase and

attempted to sketch the burr at the edge of the tumor as

completely as possible.
2.4 Feature extraction and selection

We used the pyradiomics toolkit (https://pyradiomics.

readthedocs.io/en/v3.0.1/) to extract 1130 handcrafted radiomic

features automatically. To speed up the network convergence and

improve generalization, we resampled the image at a uniform

scale and performed min-max normalization on the extracted

features. As a result, 512 deep-learning semantic segmentation

features were extracted based on the UCTransNet network

structure (20), which was a semantic segmentation network

based on U-Net and Transformer. The semantic segmentation

network was first trained by using the segmentation dataset (70%

of the training dataset in the classification task) to capture the

characteristics of the lesions. Secondly, semantic features are

extracted from the segmentation dataset and then used to

construct the feature library for the feature similarity adaptation.

We used K-means clustering to divide the features of each patient

into two clusters. Afterward, we calculate the similarity between

the two clusters and the feature library to select the optimal

combination of effective features. The relevant information of the

feature extraction process is described in Supplementary Material

S1. Interclass correlation coefficients (ICCs) were employed to

assess the intra- and inter-observer consistency of the feature

extraction, and an ICC >0.80 was considered acceptable.

To ensure that the features most relevant to the prediction of

pCR were retained, we adopted a coarse-to-fine feature selection

method. The first step was to use the mutual information feature

selection method in the scikit-learn toolkit (https://www.scikit-

learn.org/) for initial screening. In the second step, the least

absolute shrinkage and selection operator (LASSO) method was

introduced to screen features obtained from the initial screening.

LASSO involves the parameter l in controlling the number of

selected features. We used the 10-fold cross-validation method

during the training process to select the optimal parameter l to

obtain the optimal number of features and to avoid overfitting.

The relevant information of the feature selection process is

described in Supplementary Material S2. Finally, from the pre-

treatment DCE-MRI data, we retained one radiomic feature and

three deep-learning features as RS1. From the DCE-MRI at early

treatment data, we retained five radiomic features and 11 deep

learning features as RS2. More details on these features are

provided in the Supplementary Materials in Table S1, and the
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clinical features included in the model comprised expression of

ER, PR, and HER2; clinical N stage; and clinical TNM stage.
2.5 Model development and validation

The study group was randomly divided into training and

validation cohorts at a ratio of 7:3. The model parameters were

then optimized in the training cohort using a five-fold cross-

validation scheme. In the cross-validation process, the four-fold

data were used as the training dataset, and the one-fold data were

used as the validation dataset, which was repeated five times, and

then the predicted probability of the five-fold validation data was

used as a whole to evaluate the performance of the model. During

independent testing, we evaluated model performance with the

mean of the predicted probabilities of all models produced by cross-

validation. A flowchart of the DLR method is shown in Figure 2.

Six models were built to explore the performance differences

of models constructed with various features over different

periods. First, we constructed the corresponding models using

traditional radiomics, deep learning and clinical features,

respectively. Second, we combined the radiomics and deep

learning features and feed them into the classifier to construct

the DLR model. Then, we developed the models that composed

of clinical information and single-epoch image features. To

completely use all information from the traditional radiomic

features, deep-learning semantic segmentation features and

clinical characteristics, we spliced these data to construct a

combined model. The prediction results of the two models

(constructed from the three features of pre-treatment and

early treatment, respectively) were integrated. The output

probability of the two models averaged the final probability of

each patient. Finally, a logistic regression classifier was used to

build our model from the selected best radiomic features, deep

learning features, and clinical characteristics.
Frontiers in Oncology 05
2.6 Performance of the model

The calibration curve and Hosmer–Lemeshow test were

adopted to calibrate the model. The AUC was used to evaluate

the discrimination ability of the model. The sensitivity, specificity,

positive predictive value, negative predictive value, and accuracy of

the model were calculated according to the optimal cut-off value

that maximized the Youden index. The AUC values of the various

models were compared using the Delong test.
2.7 Statistical analysis

All statistical analyses in this study were performed using

MedCalc software (V.20.0.19.7; 2011 MedCalc Software Bvba,

Mariakerke, Belgium) and Python 3.6.12 (https://www.python.

org). Differences in the menstruation status; PR, ER, HER2, and

Ki-67 expression; molecular subtypes; and clinical T, N, and

TNM stages were compared between the pCR and non-pCR

groups using the chi-square test or Fisher’s exact test. The t-test

or Mann–Whitney U test was used to compare differences in age

and body mass index. The AUC values of the models were

compared using the DeLong method. All statistical tests were

two-sided, and the statistical significance level was set at P<0.05.
3 Results

3.1 Clinical characteristics

A total of 95 female patients (mean age, 48.1 years; range,

29–77 years) were included in this study. The baseline clinical

characteristics of the patients are listed in Table 1. Twenty-four

patients (25.3%) achieved pCR, and 71 patients (74.7%) did not

achieve pCR. No significant differences were found in the
FIGURE 2

The workflow for building DLR models.
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menstruation status; ER, HER2, and Ki-67 expression; molecular

subtype; and clinical T, N, and TNM stages between the pCR

and non-pCR groups, except for the PR status (P=0.007).
3.2 Reproducibility and interpretability
of features

To investigate inter- and intra-observer feature reproducibility,

20 patients (10 with pCR and 10 without pCR) were randomly

selected, and their regions of interest were reassessed by readers 1

and 2. A two-way random effects model was used to calculate ICCs

to determine inter- and intra-observer reliability. The median ICCs

for intra- and inter-observer consistency evaluation of radiomic

features extracted before chemotherapy were 0.966 (interquartile

range [IQR], 0.907–0.987) and 0.969 (IQR, 0.911–0.989),

respectively. The median ICCs for intra- and inter-observer

consistency evaluation of radiomic features extracted from two

to three cycles of chemotherapy were 0.953 (IQR, 0.892–0.978) and

0.952 (IQR, 0.886–0.978), respectively.

As shown in Figure 3, lesions in patients with pCR did not

invade adjacent muscle tissue, but those in patients with non-

pCR did. The Grad-Cam (21) heat maps showed that the

adjacent regions between breast cancer lesions and adjacent

tissues were activated, indicating that our model correctly

identified the target area and the extracted features effectively

reflected the relevant information of pCR. This is consistent with

the current literature reports (22) that tumor staging is related to

pCR rate. The segmentation results of the DL model with an

average DSC of 0.77 for pretreatment breast cancer lesion

segmentation and 0.74 for early treatment. We think that the

CNN network achieves appropriate segmentation performance,

thus extracting semantic information about segmented regions

from the hierarchical convolutional layers of the network, and

good classification performance can prove that the extracted

features are effective.
3.3 Comparison of the radiomic, deep
learning, DLR, and clinical models based
on the pre- or early-treatment images

The predictive performance comparison of the radiomic,

deep learning, and DLR models based on the DCE-MRI data at

pre-treatment is presented in Table 2 and Figures 4A, B. In the

training cohort, the DLR model (AUC=0.700) performed better

than the radiomic model (AUC=0.537, P=0.046), but no

difference was found between the DLR and deep learning

models (AUC=0.653, P=0.332). Significant differences were not

observed among the DLR (AUC=0.644), radiomic (AUC=0.525,

P=0.333), and deep learning (AUC=0.669, P=0.577) models in

the validation cohort. The predictive performance comparison

of the radiomic, deep learning, and DLR models at early
Frontiers in Oncology 06
treatment is presented in Table 3 and Figures 4C, D. The DLR

model achieved an AUC of 0.902 and performed better than the

radiomics model with an AUC of 0.779 (P=0.050) and the

clinical model with an AUC of 0.691 (P=0.023). A significant

difference was not found between the DLR and deep learning

models (AUC=0.849, P=0.141) for the training cohort, and the

same trend was observed for the validation cohort.
3.4 Combined model combining multi-
period images and clinical information

The combined model integrated multi-period images with

clinical information. The AUC of the model according to the

DeLong test was not significantly different between the training

and validation cohorts (P=0.878), indicating that our model

showed good validity and stability (Figure 5A). The calibration

curve (Figure 5B) and the chi-squared values of the Hosmer–

Lemeshow test of the training (c2 = 4.402, P=0.819) and

validation (c2 = 6.087, P=0.638) cohorts indicated that the

model fit the data well.

The performance of the DLR model combining multi-period

images in predicting pCR in the training and validation cohorts

was AUC of 0.908 and 0.900, respectively. The combined model

combining multi-period images with clinical information

showed better performance than the model combining single-

period images with clinical information (Table 4; Figures 6A, B).

In the training cohort (Figure 6A), the predicted performance

with an AUC of 0.914 for the model combining multi-period

image information and clinical information. The AUCs of pCR

predicted using the combined model with RS1 and clinical

information only and the combined model with RS2 and

clinical information only were 0.779 and 0.906 (P=0.030 and

0.767), respectively. For the validation cohort (Figure 6B), the

AUC of the combined model was 0.925. Its performance

somewhat improved compared with that of the combined

model with RS1 and clinical information only, with an AUC

of 0.738 (P=0.079), and that of the combined model with RS2

and clinical information only, with an AUC of 0.912 (P=0.769).
Discussion

In the present study, we used pre-treatment and early

treatment DCE-MRI data to evaluate tumor heterogeneity

during NAC to predict pCR in female patients with breast

cancer. A combined model that integrates multi-period image

features and clinical information was developed. The results

showed that the model yielded the highest AUCs of 0.914 and

0.925 in the training and validation cohorts, respectively. The

good performance of the combined model showed that the

combination of the model containing multi-period images and

clinical characteristics can effectively predict the response to
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NAC before surgery and provide valuable information to assist

doctors in making clinical decisions.

Radiomics has been successfully used to predict pCR after

NAC in patients with breast cancer (23, 24). Eun et al. (25) used

texture analysis for early prediction of pathological response in
Frontiers in Oncology 07
breast cancer, and achieved an AUC of 0.82 with mid-treatment

contrast-enhanced T1-weighted MRI. They compared the

difference of pretreatment and mid-treatment MRI images in

texture features. However, a comprehensive analysis combining

pre- and mid-treatment MRI features was not performed. In our
TABLE 1 Patient characteristics.

Characteristics Non-pCR (n=71) pCR (n=24) P value a

Age, mean ± SD, years 48.6 ± 10.6 46.8 ± 9.4 0.467

BMI, mean ± SD 23.6 ± 3.1 24.5 ± 4.8 0.791

Menstruation 0.105

Premenopausal 40 (56.3) 18 (75.0)

Postmenopausal 31 (34.7) 6 (25.0)

ER status 0.111

Positive 56 (78.9) 15 (62.5)

Negative 15 (21.1) 9 (38.5)

PR status 0.007

Positive 58 (81.7) 13 (54.2)

Negative 13 (18.3) 11 (45.8)

HER2 status 0.069

Positive 21 (29.6) 12 (50.0)

Negative 50 (70.4) 12 (50.0)

Ki-67 status 0.383

≥14% 53 (74.6) 20 (83.3)

<14% 18 (25.4) 4 (16.7)

Molecular subtypes 0.184

Luminal A 7 (9.9) 1 (4.2)

Luminal B 55 (77.4) 16 (66.7)

HER2 overexpression 2 (2.8) 3 (12.5)

Triple-negative 7 (9.9) 4 (16.6)

Clinical T stage 0.340

T1-T2 49 (69.0) 19 (79.2)

T3-T4 22 (31.0) 5 (20.8)

Clinical N stage 0.381

N0-N1 59 (83.1) 18 (75.0)

N2-N3 12 (16.9) 6 (25.0)

Clinical TNM stage 0.682

I-II 41 (57.7) 15 (62.5)

III-IV 30 (42.3) 9 (37.5)

Unless otherwise specified, the data are the number of patients, with percentages in parentheses.
BMI, body mass index; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2; SD, standard deviation
aComparison between pCR cohort and non-pCR cohort. Bold indicates p<0.05, the difference is statistically significant.
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B CA

FIGURE 3

Grad-Cam heat maps (A) calculated by the UCtransNet network, segmentation results (B) and DCE-MRI (C). The red line in the segmentation
result represents the prediction result, and the green line represents the ground truth. The red and yellow regions in the heat maps represent
areas with higher activation, while the blue and green regions represent lower activation.
TABLE 2 Performance of pre-treatment image-based radiomics, deep learning and DLR models.

Variable AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV P value a

Training cohort (n = 67)

Radiomic model 0.537 (0.417-0.656) 0.388 1.000 0.196 0.281 1.000 .636

Deep learning model 0.653 (0.527-0.765) 0.716 0.563 0.765 0.429 0.696 .072

DLR model 0.700 (0.575-0.806) 0.701 0.625 0.725 0.417 0.861 .007

Validation cohort (n = 28)

Radiomic model 0.525 (0.329-0.716) 0.464 1.000 0.250 0.348 1.000 .836

Deep learning model 0.669 (0.467-0.834) 0.679 0.750 0.650 0.462 0.867 .167

DLR model 0.644 (0.442-0.814) 0.679 0.750 0.650 0.462 0.867 .236

CI, confidence interval; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; DLR, deep learning radiomic.
aP value is the significance level of comparison of AUC with that of random case (AUC = 0.5). Bold indicates p<0.05, the difference is statistically significant.
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study, we demonstrated that this combination improved the

model performance. Fan et al. (26) fused molecular subtype

information and radiomic features from pre- and early-

treatment MRI images to predict breast cancer response to

neoadjuvant chemotherapy, achieving an AUC of 0.809. In our
Frontiers in Oncology 09
study, we not only developed the traditional radiomics models,

but also established the deep learning models. Our results

showed that the deep learning method based on either pre-

treatment or early treatment images was better than the

traditional radiomics method. Peng et al. (15) also applied the
B

C D

A

FIGURE 4

Diagnostic performance of DLR model in the training and validation cohorts. Receiver operating characteristic (ROC) curves for performance
comparison of radiomics, deep learning and DLR model based on the pretreatment DCE-MRI in the training (A) and validation cohorts (B). ROC
curves for performance comparison of radiomics, deep learning, clinical model and DLR model based on the early treatment DCE-MRI in the
training (C) and validation cohorts (D).
TABLE 3 Performance of early treatment image-based radiomics, deep learning, clinical and DLR models.

Variable AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV P value a

Training cohort (n = 67)

Radiomic model 0.779 (0.661-0.872) 0.776 0.750 0.784 0.522 0.909 <.001

Deep learning model 0.849 (0.741-0.925) 0.791 0.813 0.784 0.542 0.930 <.001

Clinical model 0.691 (0.566-0.798) 0.657 0.875 0.588 0.400 0.938 .012

DLR model 0.902 (0.805-0.961) 0.896 0.750 0.941 0.800 0.923 <.001

Validation cohort (n = 28)

Radiomic model 0.769 (0.572-0.906) 0.714 0.875 0.650 0.500 0.929 .004

Deep learning model 0.875 (0.695-0.969) 0.821 0.875 0.800 0.636 0.821 <.001

Clinical model 0.637 (0.435-0.809) 0.643 0.750 0.600 0.429 0.857 .220

DLR model 0.888 (0.711-0.975) 0.893 0.875 0.900 0.778 0.947 <.001

CI, confidence interval; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; DLR, deep learning radiomic.
aP value is the significance level of comparison of AUC with that of random case (AUC = 0.5). Bold indicates p<0.05, the difference is statistically significant.
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deep learning method to predict the pathological response to

NAC for breast cancer and found that its performance was better

than that of the traditional radiomics method.

DLR has emerged in recent years. The DLR method showed

good performance in predicting axillary lymph-node metastasis

in early-stage breast cancer (27) and in identifying ocular

adnexal lymphoma and idiopathic orbital inflammation (28).

In addition, it has been successfully used in ultrasonography to

predict the pCR of breast cancer to NAC (29, 30). Gu et al. (30)

successfully applied DLR in ultrasound to predict the response to

NAC in breast cancer patients in early treatment. The DLR

models in these studies focused on using the deep learning

classification network to automatically extract the high-

dimensional features, however ignored the phenotypic features,

such as shape and texture, which potentially reflect biologic

properties like intra- and intertumor heterogeneities (31). In

contrast, we applied a semantic segmentation network to extract

deep learning features because this network structure can
Frontiers in Oncology 10
successfully extract useful information on tumor boundary,

shape and texture (32). Therefore, the number of useful

features in the segmentation network can be large even with

relatively few training samples (33). Moreover, the segmentation

results can be used as a visualization to provide some

interpretability for the model. We further assumed that the

handcrafted radiomic features and the deep learning radiomics

feature could complement each other. Thus, we proposed a

DLR model combining both deep learning features with

traditional radiomics, and showed that the performance of

DLR model was better than that of the deep learning and

traditional radiomics models.

According to our results, our combined model’s performance

was better than that of other models, which improved the ability of

DCE-MRI to distinguish between pCR and non-pCR during NAC

and compensated for the limitations of traditional strategies in

predicting pCR. The major reason for the robustness of the

combined model is the integration of pre-treatment and early
BA

FIGURE 5

Receiver operating characteristic (ROC) curves (A) and calibration curves (B) of combined model in the training and validation cohorts.
TABLE 4 Performance of combined model combining multi-period image with clinical information and the model combining single-period
images with clinical information.

Variable AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV P value a

Training cohort (n = 67)

RS1 + Clinical model 0.779 (0.661-0.872) 0.686 0.875 0.627 0.424 0.941 <.001

RS2 + Clinical model 0.906 (0.809-0.963) 0.836 0.875 0.824 0.609 0.955 <.001

Combined model 0.914 (0.820-0.969) 0.791 0.938 0.745 0.536 0.974 <.001

Validation cohort (n = 28)

RS1 + Clinical model 0.738 (0.538-0.884) 0.750 0.750 0.750 0.546 0.882 .017

RS2 + Clinical model 0.912 (0.743-0.986) 0.964 0.875 1.000 1.000 0.952 <.001

Combined model 0.925 (0.760-0.990) 0.928 0.750 1.000 1.000 0.927 <.001

CI, confidence interval; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; RS1, pretreatment radiomic
signature; RS2, early treatment radiomic signature
aP value is the significance level of comparison of AUC with that of random case (AUC = 0.5). Bold indicates p<0.05, the difference is statistically significant.
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treatment DCE-MRI data in the analysis process. This

combination considered real-world clinical practice well and

could provide meaningful guidance that somewhat benefits the

patients. Notably, our results revealed that the performance of the

model based on early treatment DCE-MRI data was better than

that based on pre-treatment DCE-MRI data, proving the

significant predictive value of early treatment DCE-MRI. Jiang

et al. (29) used ultrasound images obtained before and after

treatment to predict the pathological response of locally

advanced breast cancer after NAC. Post-treatment images were

found to reflect the present condition of the tumor after NAC,

which was closer to the pathology after surgery. Therefore, the

reliability of the model for predicting pCR can theoretically be

improved by including post-treatment image features. The

combination of clinical characteristics and imaging features

allows for a more comprehensive description of breast tumors,

and the performance of the model combining clinical

characteristics with imaging features may be improved in some

ways (34). Therefore, we included clinicopathological factors in the

DLRmodel. According to the analysis of the LASSO algorithm, the

ER, PR, and HER2 states and clinical N and clinical TNM stages

differed from radiomics features and were incorporated into our

model. The ER, PR, and HER2 states and clinical N stage have been

proven to be associated with pCR after NAC in breast cancer (35–

38), and the results showed that adding clinical information

enables the DLR model to achieve greater predictive efficacy.

Our study also had several limitations. First, this was a

single-center study with an inadequate sample size, which

might have led to selection bias. Prior to future clinical

application, we need to obtain more evidence from multiple

centers to validate the model. Second, the study was

retrospective in nature; thus, conducting a well-designed

prospective study is necessary. Third, we only combined the

image features and clinical characteristics in the study.

Therefore, we will try more start-of-the-art methods to see if

the performance of model can be further improved. Finally, only
Frontiers in Oncology 11
the tumor region features of the images were extracted,

regardless of the model. To further refine the task, we need to

obtain peritumoral tissues (39) before and during early

treatment for comprehensive analysis.

In conclusion, based on pre-treatment and early treatment

DCE-MRI images and clinical characteristics, we established a

pCR prediction model using a DLR method that achieved good

performance in the training and validation cohorts. The model

can help clinicians evaluate whether the patient can reach pCR

after NAC and can provide an effective diagnostic reference for

accurate medical treatment of patients receiving NAC.
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