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Background: Gastric cancer is one of the common malignant tumors of the

digestive system worldwide, posing a serious threat to human health. A

growing number of studies have demonstrated the important role that lipid

droplets play in promoting cancer progression. However, few studies have

systematically evaluated the role of lipid droplet metabolism-related genes

(LDMRGs) in patients with gastric cancer.

Methods: We identified two distinct molecular subtypes in the TCGA-STAD

cohort based on LDMRGs expression. We then constructed risk prediction

scoring models in the TCGA-STAD cohort by lasso regression analysis and

validated the model with the GSE15459 and GSE66229 cohorts. Moreover, we

constructed a nomogram prediction model by cox regression analysis and

evaluated the predictive efficacy of the model by various methods in STAD.

Finally, we identified the key gene in LDMRGs, ABCA1, and performed a

systematic multi-omics analysis in gastric cancer.

Results: Twomolecular subtypes were identified based on LDMRGs expression

with different survival prognosis and immune infiltration levels. lasso regression

models were effective in predicting overall survival (OS) of gastric cancer

patients at 1, 3 and 5 years and were validated in the GEO database with

consistent results. The nomogram prediction model incorporated additional

clinical factors and prognostic molecules to improve the prognostic predictive

value of the current TNM staging system. ABCA1 was identified as a key gene in

LDMRGs and multi-omics analysis showed a strong correlation between

ABCA1 and the prognosis and immune status of patients with gastric cancer.
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Conclusion: This study reveals the characteristics and possible underlying

mechanisms of LDMRGs in gastric cancer, contributing to the identification

of new prognostic biomarkers and providing a basis for future research.
KEYWORDS

lipid droplet metabolism, gastric cancer, tumor immunity, subtypes,
prognostic model
Introduction

Gastric cancer is one of the most commonmalignant tumors of

the digestive tract worldwide, with the fifth highest incidence and

the fourth highest mortality rate (1). Early gastric cancer is mainly

treated with surgery, adjuvant chemotherapy and radiotherapy,

while chemotherapy remains the main treatment for advanced

gastric cancer. Although, with the development of molecular

biology of tumors, molecular targeted therapy and

immunotherapy have achieved some success in the treatment of

advanced gastric cancer (2), only a small percentage of patients can

benefit from them and most patients with advanced gastric cancer

still have a poor prognosis. Therefore, there is an urgent need to find

new biomarkers to construct clinical prediction models for risk

stratification and outcome prediction in patients with gastric cancer.

Lipid droplets are an evolutionarily highly conserved organelle

consisting of a single phospholipid membrane wrapped around a

core of neutral lipids involved in the storage and utilization of lipids

(3). Recent studies have shown that in addition to adipocytes, lipid

droplets have also been found in various cells such as hepatocytes,

smooth muscle cells and glial cells. These findings clarify that lipid

droplets do not only serve as storage sites for neutral lipids, but also

have various functions such as inhibition of metabolism and

regulation of gene expression (4, 5). In addition to their lipid and

cholesterol storage functions, lipid droplets have recently been

found to be associated with inflammatory responses, obesity,

atherosclerosis and cancer (6–8).

A growing number of studies have demonstrated that the

gradual accumulation of lipid droplets is a distinctive feature of

many types of cancer (9–11). These lipid droplets store excess

lipids to avoid lipotoxicity and can provide sufficient raw

material for biofilms for the proliferation of cancer cells. In

addition, lipid droplets provide a sufficient source of energy for

tumor invasion and are associated with chemotherapy resistance

(12, 13). In addition, lipid droplets can be used as a controlled

and biocompatible vehicle for the delivery of anticancer drugs

(14). Therefore, targeting altered lipid droplet metabolic

pathways is a promising anti-cancer strategy (15).

The development of gastric cancer is closely related to lipid

droplet metabolism. A study has shown that inhibition of DGAT2

expression enhances the sensitivity of gastric cancer to anoikis in
02
vitro and inhibits peritoneal metastasis in vivo by disrupting lipid

droplet formation in a lipid-rich environment (16). Furthermore,

studies have confirmed the accumulation of lipid droplets that do

exist in gastric epithelial tumors, further demonstrating the close

relationship between lipid droplet metabolism and gastric cancer

(17). Nevertheless, the expression patterns and functions of

LDMRGs in STAD remain to be systematically analyzed.

In this study, we systematically analyzed multi-omics data

from LDMRGs and identified 2 subtypes of STAD with different

survival prognostic and immunological features. In addition,

lasso regression models and nomogram prediction models were

constructed based on the expression profiles of LDMRGs, which

have reliable predictive efficacy for OS of patients with STAD by

risk score. Moreover, we took the intersection of hub genes and

the results of multivariate cox regression analysis to identify the

key gene of LDMRGs, ABCA1. Finally, we performed a

systematic multi-omics analysis of ABCA1 in STAD, and the

results demonstrated that ABCA1 can predict outcomes in

patients with STAD and has the potential to be a new

therapeutic target for STAD.
Materials and methods

Data collection and process

RNA-sequence data (375 tumors and 32 normal, TPM

value), genetic mutation and corresponding clinical

information of stomach adenocarcinoma (STAD) were

downloaded from The Cancer Genomics Atlas (TCGA)

dataset (https://portal.gdc.com) (18). The GSE15459 cohort,

GSE66229 cohort and GSE26253 cohort were downloaded

from Gene Expression Omnibus (GEO) database (http://www.

ncbi.nih.gov/geo) (19).
Gene expression analysis

Lipid droplet metabolism-related genes were obtained from

the GeneCards (https://www.genecards.org/) database (20) by

searching for the keyword “Lipid droplet metabolism” and
frontiersin.org
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filtering for “relevance score>40”. The detailed information on

LDMRGs can be found in Supplementary Table 1. We analyzed

the differential expression and correlation of 21 LDMRGs in

TCGA-STAD. In addition, we analyzed the differential

expression of ABCA1, a hub gene in LDMRGs, in STAD by

combining the TCGA-STAD cohort and the Genotype-Tissue

Expression (GTEx) database (21). These analyses were

performed statistically using the R software (version 3.6.3) and

the ggplot2 package (version 3.3.3) was mainly used for

visualization. Moreover, we analyzed the differential expression

of ABCA1 in gastric cancer of gene chip data from GEO using

TNMplot platform (https://tnmplot.com/analysis/) (22).
Unsupervised clustering for 21 lipid
droplet metabolism-related genes

Con s i s t e n c y a n a l y s i s w a s p e r f o rm e d u s i n g

ConsensusClusterPlus R package (v1.54.0) with a maximum

number of clusters of 6 and 100 replicates to extract 80% of the

total sample, clusterAlg = “hc”, innerLinkage = “ ward.D2” (23).

The clustering heatmaps were all analysed by the R software

package complex heatmap (v2.2.0), and gene expression

heatmaps were retained for genes with variance above 0.1. PCA

plots were plotted using the ggord package and OPLS-DA analysis

was performed using the Metware Cloud, a free online platform for

data analysis (https://cloud.metware.cn).
Construction of lasso regression models
and nomogram models

The least absolute shrinkage and selection operator (LASSO)

regression algorithm was used for feature selection, 10-fold cross-

validation was used, and the glmnet package (version 4.1-2) and the

survival package (version 3.2-10) were used for the analysis. Log-

rank test was used to compare differences in survival between two

groups. The univariate Cox regression analysis was conducted to

identify proper terms for the construction of the nomogram. The

multivariate Cox regression analysis was performed to further

identify independent prognostic factors for STAD. The rms

package (version 6.2-0) and survival package (version 3.2-10)

were used to create nomogram to predict the total recurrence rate

in 1, 3, and 5 years. The timeROC(version 0.4) analysis was used to

compare the predictive accuracy of risk score. The survival package

(version 3.2-10) and stdca.R files (24) were used to create DCA

curves to assess the clinical utility value of the model.
The protein-protein interactions analysis

We analyzed the protein-protein interactions between

LDMRGs through the STRING (https://cn.string-db.org/)
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database (25). Moreover, we used cytoscape’s cytoHubba

plugin to obtain the top five hub genes in LDMRGs by the

MCC scoring method. Finally, we obtained two important

functional modules through the MCODE plug-in in the

cytoscape software.
Gene function enrichment analysis

GO and KEGG analyses were performed using R software

with a cutoff p value <0.05 and an adjusted p value <0.1. The

clusterProfiler (26) package (version 3.14.3) was used for

enrichment analysis and the org.Hs.eg.db package (version

3.10.0) was used for ID conversion. Gene Set Enrichment

Analysis (GSEA) was performed using CAMOPI (https://www.

camoip.net/) database (27).
Analysis of differentially expressed genes

The differential expression of mRNAwas identified using the

limma package for R software (version 3.14.3). “ adjusted p value

< 0.05 and log2 (fold change) > 1.5 or log2 (fold change) < -1.5”

was defined as the threshold for the differential expression

of mRNAs.
Analysis of genetic alterations

LDMRGs alterations were analyzed using the cBioPortal

(28) database (http://www.cbioportal.org/). ABCA1 mutation

analysis was performed primarily using the maftools package

in R software to download and visualize somatic mutations in

patients with STAD.
Correlation between LDMRGs mRNA
expression levels and clinical
characteristics, prognosis, copy number
variation, and methylation in STAD

The relationship between ABCA1 mRNA expression level

and clinical characteristics in TCGA-STAD cohort was analyzed

using a dichotomous logistic model constructed with R software.

The diagnostic value of ABCA1 mRNA expression level for

gastric cancer was analyzed by the receiver operating

characteristic (ROC) curves using the R packages mainly the

pROC package (version 1.17.0.1) and the ggplot2 package. The

relationship between LDMRGs mRNA expression levels and

prognosis was mainly analysed statistically and visualised using

the survminer package (version 0.4.9) and the survival package

(version 3.2-10) for survival data. Correlation of LDMRGs

mRNA expression levels with CNV and methylation was
frontiersin.org
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analyzed by the Gene Set Cancer Analysis (GSCA) (29) database

(http://bioinfo.life.hust.edu.cn/GSCA/#/).
Analysis of immune infiltration and
immune checkpoint blockade treatment

The correlation between LDMRGs mRNA expression levels

and immune infiltration was mainly analyzed using the GSCA

database. The comparison of immune cell infiltration levels between

different subgroups was analysed using the immunedeconv

package, which integrates six state-of-the-art algorithms including

TIMER, xCell, MCP-counter, CIBERSORT, EPIC and quanTIseq.

Then, the results were visualised using the ggplot2 package.

Moreover, we analyzed the differential expression of 8 immune

checkpoint-related genes in different subgroups using the ggplot2

package. Finally, we used the Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm (30) to predict the responsiveness of

different subtypes to immune checkpoint inhibitors based on gene

expression profiling data. The results of the analysis were visualized

using the ggplot2 package and the ggpubr package (0.4.0). In

addition, we analyzed the differences in the level of infiltration of

different immune cells between the high and low ABCA1

expression groups using the ssGSEA algorithm built into the

GSVA package (version 1.34.0), and also calculated the

differences between the stromal score, immune score and estimate

score between the different groups using the estimate package

(version 1.0.13) (31). The relationship between ABCA1

expression levels and different molecular subtypes and

immunological subtypes was analyzed by the TISIDB (32)

database (http://cis.hku.hk/TISIDB/). The relationship between

ABCA1 expression levels and TMB, MSI and Neoantigen Loads

was analyzed using the CAMOIP database.
Comparison of differences in m6A-
related gene expression levels and
differences in stemness scores in
different subgroups

Them6A-relatedgeneswerederived frompast study (33) and the

heatmapofm6A-relatedgeneexpressionbetweendifferentsubgroups

intheTCGA-STADcohortwasvisualizedusingthecomplexheatmap

package.Furthermore, theOCLRalgorithmconstructedbyMaltaetal.

was used to calculatemRNAsi and to assess the degree of stemness of

samples in different subgroups (34, 35).
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Correlation analysis of ABCA1 expression
levels and drug sensitivity

Correlation analysis of mRNA expression levels of ABCA1

and CTRP drug sensitivity was performed using the drug

module of the GSCA database.
Statistical analysis

T test was used when the two groups met normal

distribution and homogeneity of variance; Wilcoxon rank sum

test was used when the two groups did not meet normal

distribution. Kaplan-meier method was used for survival curve

analysis of prognosis. and median gene expression level was used

for grouping. Logrank test or Cox regression was used for

differences between groups. The ROC curve was used to

evaluate the predictive effectiveness of the model. Two-tailed p

< 0.05 was considered statistically significant (ns: p > 0.05, *: p ≤

0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001).
Results

LDMRGs expression and functional
enrichment analysis in STAD

We explored the differential expression of LDMRGs in the

TCGA-STAD cohort and as shown in Figure 1A, 10 LDMRGs

were highly expressed in STAD, including PPARG, AUP1,

CETP, CYP2D6, LDAH, ABCA1, HILPDA, APOE BSCL2, and

MTR. 5 LDMRGs were lowly expressed in STAD, including

PLIN1, MTTP, APOB, ACADM, and APOA1. We then

performed a correlation analysis based on the expression levels

of LDMRGs and the results showed a general positive

correlation between the expression levels of LDMRGs in

STAD (Figure 1B). Moreover, we performed GO and KEGG

pathway enrichment analysis on LDMRGs. As shown in

Figure 1C, these genes were mainly involved in lipid storage

and transport, fat digestion and absorption, and cholesterol

metabolism. To further explore the interactions between these

genes, we constructed a PPI network using the STRING database

(Figure 1D) and then identified the top 5 hub genes using

cytoscape, including: INS, LPL,APOB,APOE, and ABCA1

(Figure 1E). Then 2 key sub-networks were identified through

the MCODE plugin (Figures 1F, G).
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A B

D
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C

FIGURE 1

The differential expression and functional enrichment analysis of LDMRGs in STAD. (A) Differential expression analysis of LDMRGs in STAD. (B)
Correlation analysis of the expression of LDMRGs in STAD. (C) GO and KEGG pathway enrichment analysis of LDMRGs. (D) Construction of PPI
interaction network for LDMRGs using the STRING database. (E) Identification of the top 5 hub genes in the PPI Interaction network of LDMRGs
by cytoscape software. (F, G) Identification of key network modules in PPI interaction network for LDMRGs via cytoscape software. (ns: p > 0.05,
*: p ≤0.05, **: p ≤ 0.01, ***: p ≤ 0.001).
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Analysis of genetic alterations and
correlation between mRNA expression of
LDMRGs and CNV, methylation and
immune infiltration in STAD

We analyzed genetic alterations in the TCGA-STAD,

PanCancer Atlas cohort using the cBioPortal database. As

shown in Figure 2A, the total frequency of genetic alteration

was 36% (157/434), with the top 3 genes most frequently altered

being APOB (12%), MTR (6%), and ABCA1 (5%). The types of

genetic alterations were mainly missense mutation,

amplification, and truncating mutation. Furthermore, we

noted that TMB and MSI were significantly higher in the

genetically altered group than in the unaltered group, implying

that patients in the genetically altered group may be more
Frontiers in Oncology 06
effective in immunotherapy for STAD (Figure 2B). In addition,

we explored that LDMRGs mRNA expression was generally

positively correlated with CNV, negatively correlated with

methylation levels, and strongly correlated with multiple

immune cell infiltrations (Figures 2C–E). These results

indicated that LDMRGs may be involved in the progression of

STAD through genetic alterations and immune regulation.
Identification of two clusters by
consensus clustering of LDMRGs in STAD

Based on the expression levels of LDMRGs, the TCGA-

STAD samples can be classified into 2 molecular subtypes,

cluster1 (C1) and cluster2 (C2), using an unsupervised
A

B

D E

C

FIGURE 2

Multi-omics analysis of LDMRGs in STAD. (A) Landscape analysis of genetic alterations of LDMRGs in STAD using the cBioPortal database. (B)
Differential analysis of TMB, MSI in different genetic alteration groups in STAD using the cBioPortal database. (C–E) Correlation analysis of mRNA
expression levels of LDMRGs and CNV, methylation, and immune infiltration levels in STAD. (****: p ≤ 0.0001).
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clustering method (Figures 3A–E). In addition, we performed a

supervised OPLS-DA analysis, as shown in Supplementary

Figure 2, which also distinguished C1 and C2 subtypes better.

Then, we analyzed the survival prognosis between the 2 different

molecular subtypes by kaplan-Meier (KM) curve, as shown in

Figure 3F, subtype C2 had worse OS prognosis, progression-free

survival (PFS) prognosis and disease-specific survival (DSS)

prognosis compared with subtype C1. Interestingly, we found

that most LDMRGs were expressed at higher levels in C2

subtype compared with C1 subtype, including PNPLA2,

APOE, APOB, ACADM, LPL, BSCL2, ABHD5, MTR, PLIN1,
Frontiers in Oncology 07
CETP, MTTP, PPARA, LDAH, LEP, and ABCA1 (Figure 3G).

This could mean that high expression of these LDMRGs may be

associated with a poorer prognosis for patients in STAD.

To further analyze the molecular functional differences

between the 2 subtypes, we performed differential gene

analysis on the 2 subtypes and obtained a total of 2257

differentially expressed genes that were up-regulated and 22

differentially expressed genes that were down-regulated in STAD

(Figures 4A, B). The GO and KEGG pathway enrichment

analysis revealed that these differentially expressed genes were

mainly involved in immune regulation, inflammatory response,
A B

D E

F

G

C

FIGURE 3

Identification of subtypes associated with LDMRGs in STAD. (A–C) The optimal number of clusters (K=2) was determined for classification based
on the cumulative distribution function (CDF) curve. (D) Heat map of the expression of LDMRGs in different subgroups, red represents high
expression and blue represents low expression. (E) Principal component analysis (PCA) of 375 patients with STAD, with each point representing
one sample. (F) Survival analysis between different subgroups in the TCGA-STAD cohort, including OS, PFS, and DSS. (G) Differential expression
analysis of LDMRGs between different subgroups in the TCGA-STAD cohort. (ns: p > 0.05, *: p ≤0.05, **: p ≤ 0.01, ***: p ≤ 0.001).
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and glutathione metabolism. The up-regulated differential genes

were mainly involved in cell adhesion, extracellular matrix

composition, and PI3K-Akt signalling pathway (Figures 4C,
Frontiers in Oncology 08
D). We speculated that differences in immunomodulation and

cell adhesion led to different survival prognosis between these 2

subgroups in STAD.
A B

D

C

FIGURE 4

Functional enrichment analysis of DEGs between the two subgroups. (A, B) Volcano and heat maps of differentially expressed genes between
the two subgroups in the TCGA-STAD cohort. (C) GO and KEGG pathway enrichment analysis of differentially expressed genes that were dwon-
regulated. (D) GO and KEGG pathway enrichment analysis of differentially expressed genes that were up-regulated.
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Correlation analysis between subtypes
and immune infiltration, ICB treatment,
m6A methylation modification, and
tumour stemness

To further evaluate the immune status of the different

subgroups, we compared the differences in the infiltration

levels of immune cells in the 2 subgroups by the TIMER and

MCP-counter algorithms. As shown in Figures 5A, B, the level of

infiltration of multiple immune cells was significantly higher in

the C2 subgroup than in the C1 subgroup. Furthermore, we

assessed the expression levels of immune checkpoint-related

genes in different subgroups. Interestingly, we also found that

the expression levels of immune checkpoint-associated genes

were significantly higher in the C2 subgroup than in the C1

subgroup (Figure 5C). TIDE algorithm was used to predict the

response of the two subgroups to ICB treatment, and the results

showed that C2 subgroup had a lower TIDE score, indicating

that C2 subgroup had a better effect on ICB treatment

(Figure 5D). Past studies have shown that m6A methylation

modifications (36, 37) and tumour stemness (38, 39) are

involved in the progression of a variety of tumours. Our study

showed that the expression levels of most key genes associated

with m6A methylation modifications were higher in the C2

subgroup than in the C1 subgroup. However, the stemness index

of the C2 subgroup was lower than that of the C1 subgroup

(Figures 5E, F). The relationship between lipid droplet

metabolism and m6A methylation modifications and tumour

stemness in STAD needs to be further investigated.
Construction and validation of the lasso
regression model

To further investigate the relationship between LDMRGs

and prognosis, we screened 8 key genes by lasso regression

analysis and constructed a prognostic model in STAD

(Figures 6A, B). Risk score = (-0.099 * ACADM) + (0.070 *

LPL) + (0.255 * INS) + (0.032 * APOA1) + (0.009 * MTTP) +

(-0.084 * PPARA) + (0.144 * ABCA1) + (0.025 * HILPDA).

Then, we divided the patients in the TCGA-STAD cohort into

high-risk and low-risk groups based on risk scores from the

prognostic model and showed that patients in the high-risk

group had a worse overall survival prognosis (Figures 6C, D).

The ROC curves showed that the model had certain predictive

efficacy for 1, 3, and 5-year survival of patients in the TCGA-

STAD cohort (Figure 6E). In addition, to demonstrate the

reliability and applicability of the model, 2 gastric cancer

cohorts (GSE15459, GSE66229) from the GEO data were used

to validate the prediction model, which also proved to be able to

differentiate well between the high-risk and low-risk groups of

patients with gastric cancer. The ROC curves showed that the
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model was effective in predicting survival at 1,3, and 5 years

(Figures 6F–K).
Construction and evaluation of
nomogram model

To further explore the clinical factors related to the OS

prognosis of patients with STAD, we included the 7 key genes

screened by the above lasso regression analysis (due to the

expression level of INS in more than half of the samples in

TCGA-STAD cohort was 0, it was not possible to separate the

high and low expression groups for the next cox regression

analysis) and a variety of clinical characteristics in the univariate

and multifactorial cox regression analysis. As shown in Table 1,

age, T-stage, N-stage, M-stage, pathological stage, LPL, APOA1,

and ABCA1 were associated with the OS prognosis of patients in

the TCGA-STAD cohort. In addition, age, M-stage, and ABCA1

were independent risk factors affecting the OS prognosis of

patients with STAD.

To better assess the OS prognosis of clinical patients with

STAD, we constructed nomogram prognostic model based on

the results of cox regression analysis (Figure 7A). The

Calibration curve and the ROC curve showed that the

nomogram model had certain prediction efficiency for 1 -, 3 -

and 5-year survival rate of patients with STAD (Figures 7B, C).

Finally, the DCA curves demonstrated that the model also had

good clinical utility in STAD (Figures 7D–F).
Correlation analysis of The expression
and clinical characteristics of ABCA1, A
key gene in lipid droplet metabolism

The Venn diagram showed that we took the intersection of

hub genes of LDMRGs and independent prognostic risk factors

to identify a key gene associated with lipid droplet metabolism in

STAD, ABCA1 (Figure 8A). By combining TCGA,GTEx and

GEO data sets, we found that ABCA1 expression was

significantly up-regulated in gastric cancer tissues compared

with normal gastric tissues (Figures 8B–E). As shown in

Figure 8F, the ROC curve showed that the expression level of

ABCA1 had certain diagnostic value for STAD (AUC = 0.765;

CI: 0.682 - 0.848). Furthermore, we found that ABCA1

expression was closely related to pathological stage and

histologic grade by logistic regression analysis (Figure 8G). In

addition, we explored that patients with gastric cancer in the

ABCA1 high expression group had a worse prognosis in the

TCGA-STAD cohort, the GSE15459 cohort and the GSE26253

cohort (Figures 8H–L). These results suggested that ABCA1 may

promote gastric cancer progression.
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Functional enrichment analysis and
correlation analysis of ABCA1 expression
and immune infiltration and ICB
treatment response in STAD

To further explore the molecular functions played by

ABCA1 in STAD, we divided the samples in the TCGA-STAD

cohort into high and low expression groups based on the
Frontiers in Oncology 10
expression levels of ABCA1 and analyzed the DEGs between

the two groups, including 2241 genes with up-regulated

expression and 59 genes with down-regulated expression

(Figures 9A, B). We then performed GO and KEGG pathway

enrichment analysis as well as GSEA. The GO and KEGG

pathway enrichment results showed that these differentially

expressed up-regulated genes were mainly enriched in cell

adhesion, T cell activation, and PI3K-Akt signaling pathways.
A B

D

E

F

C

FIGURE 5

Characteristic analysis of different subgroups in the TCGA-STAD cohort. (A, B) Analysis of differences in the level of immune infiltration between
the two subgroups. (C) Differential expression analysis of immune checkpoint-related genes between the two subgroups. (D) Analysis of the
differences in TIDE scores between the two subgroups. (E) Heat map of differential expression of m6A methylation-related genes between
the two subgroups. (F) Analysis of differences in tumor stemness scores between the two subgroups. (*: p ≤0.05, **: p ≤ 0.01, ***: p ≤ 0.001,
****: p ≤ 0.0001).
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Differentially expressed down-regulated genes were mainly

enriched in cytoskeleton composition (Figures 9C, D). The

GSEA results indicated that the KEGG pathway was mainly

enriched in ECM-receptor interactions, cell adhesion, neutrophil

extracellular trap formation, and PI3K-Akt signaling pathways

(Figures 9E, F). These results suggested that ABCA1 may
Frontiers in Oncology 11
mediate cell adhesion through the PI3K-Akt signaling pathway

and thus promote tumor metastasis, and further experiments are

needed to verify the results.

In addition, immune cell infiltration analysis showed that high

expression of ABCA1 correlated with high levels of infiltration of

multiple immune cells (Figures 10A, B). As shown in
A B
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FIGURE 6

Construction and validation of the Lasso regression model. (A) Trajectory plots of variables for Lasso regression analysis. (B) Screening of
coefficients for Lasso regression analysis variables. (C–E) Construction and evaluation of a risk prediction scoring system in the TCGA-STAD
cohort. (F–H) Validation and evaluation of risk prediction scoring systems in the GSE15459 cohort. (I–K) Validation and evaluation of risk
prediction scoring systems in the GSE66229 cohort.
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Supplementary Figure 1, we also assessed the correlation between

ABCA1 expression and immune infiltration by the CIBERSORT

algorithm, which showed that ABCA1 expression was associated

with a variety of stromal cells, including M2-type macrophages,

myeloid dendritic cells, and mast cells. The expression of ABCA1 is

closely related to a variety of immune and molecular subtypes in

STAD (Figures 10C, D). These results indicated that the high

expression of ABCA1 may contribute to the progression of

gastric cancer by mediating the body’s immune regulation. To
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assess the relationship between ABCA1 expression and

immunotherapy response, we explored the correlation between

ABCA1 expression and TMB, MSI, and Neoantigen Loads. As

shown in Figures 10E–G, the group with high ABCA1 expression

had lower TMB, MSI, and Neoantigen Loads, suggesting that these

patients may not respond well to ICB therapy. Also, our TIDE

algorithm showed that the ABCA1 high expression group had

higher TIDE scores, indicating that these patients were less effective

on ICB treatment (Figure 10H).
TABLE 1 Univariate and multivariate cox regression analyses were based on multiple clinical characteristics and LDMRGs in the TCGA-STAD cohort.

Characteristics Total(N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 367

<=65 163 Reference

>65 204 1.620 (1.154-2.276) 0.005 1.979 (1.353-2.894) <0.001

Gender 370

Female 133 Reference

Male 237 1.267 (0.891-1.804) 0.188

T stage 362

T1&T2 96 Reference

T3&T4 266 1.719 (1.131-2.612) 0.011 1.247 (0.731-2.128) 0.419

N stage 352

N0&N1 204 Reference

N2&N3 148 1.650 (1.182-2.302) 0.003 1.175 (0.719-1.918) 0.520

M stage 352

M0 327 Reference

M1 25 2.254 (1.295-3.924) 0.004 2.133 (1.068-4.260) 0.032

Pathologic stage 347

Stage I&Stage II 160 Reference

Stage III&Stage IV 187 1.947 (1.358-2.793) <0.001 1.370 (0.765-2.455) 0.290

Histologic grade 361

G1&G2 144 Reference

G3 217 1.353 (0.957-1.914) 0.087 1.267 (0.849-1.891) 0.246

ACADM 370 0.858 (0.673-1.094) 0.217

LPL 370 1.179 (1.038-1.339) 0.011 1.032 (0.887-1.200) 0.683

APOA1 370 1.067 (1.009-1.129) 0.023 1.034 (0.965-1.108) 0.337

MTTP 370 1.094 (0.989-1.210) 0.080 1.061 (0.939-1.198) 0.342

PPARA 370 0.865 (0.677-1.105) 0.246

ABCA1 370 1.303 (1.086-1.563) 0.004 1.283 (1.020-1.612) 0.033

HILPDA 370 1.108 (0.953-1.288) 0.184

Bold values are used to highlight p-values less than 0.05.
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A
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FIGURE 7

Construction and evaluation of nomogram prediction models in the TCGA-STAD cohort. (A) Construction of a nomogram prediction model. (B)
Evaluation of calibration curve on the predictive value of the nomogram model. (C) Evaluation of ROC curve on the predictive value of the
nomogram model. (D–F) Evaluation of DCA curve on the clinical utility value of the nomogram model.
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FIGURE 8

Expression and prognostic analysis of ABCA1 in gastric cancer. (A) Identification of the key gene, ABCA1, in LDMRGs in STAD. (B–E) Differential
expression analysis of ABCA1 in gastric cancer using TCGA and GEO databases. (F) The diagnostic value of ABCA1 expression in gastric cancer
was analyzed by ROC curve in STAD. (G) The correlation between ABCA1 expression and clinical characteristics was analyzed by logistic
regression in STAD. (H–J) Correlation analysis of ABCA1 expression and survival prognosis in the TCGA-STAD cohort, including OS, DSS, and
PFI. (K, L) Correlation analysis of ABCA1 expression and OS prognosis in the GSE15459 and GSE26253 cohorts. (*: p ≤0.05, ***: p ≤ 0.001).
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Mutation analysis of ABCA1 and
correlation analysis of ABCA1
mRNA expression levels and
drug sensitivity in STAD

Past research has shown that the accumulation of genetic

mutations and tumour development are closely related (40). Our

analysis showed a somatic mutation rate of 4.3% for ABCA1 and

demonstrated the distribution of ABCA1 mutations in the

genome in STAD. We noted that the somatic mutation type of

ABCA1 was predominantly missense mutation (Figure 11A). As

shown in Figure 11B, we analyzed the somatic landscape of the

TCGA-STAD cohort and demonstrated the top 10 genes with

the highest mutation frequency in the tumor samples by
Frontiers in Oncology 15
waterfall plots, including TTN, TP53, MUC16, LRP1B,

SYNE1, CSMD3, ARID1A, FLG, PCLO, and FAT4 (Figure 11B).

In addition, we found a positive correlation between the

mRNA expression levels of ABCA1 and the sensitivity of

multiple drugs, suggesting that these chemotherapeutic agents

may be more effective in patients with higher levels of ABCA1

expression (Figure 11C).
Discussion

Gastric cancer has long been a worldwide public health

problem with its high morbidity and mortality rates (2, 41).

Especially for patients with advanced gastric cancer,
A B

D

E

F

C

FIGURE 9

Gene function enrichment analysis of ABCA1 in STAD. (A, B) Volcano and heat maps of DEGs in the ABCA1 high and low expression groups in the
TCGA-STAD cohort. (C, D) GO and KEGG pathway enrichment analysis of DEGs in STAD. (E, F) GSEA analysis based on ABCA1 expression in STAD.
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chemotherapy-based monotherapy or combination therapy

regimens have limited effect. In recent years, emerging

targeted therapies have benefited only a small proportion of

gastric cancer patients (42). Therefore, the identification of

biomarkers that promote gastric cancer progression and the

search for more effective therapeutic targets has been an ongoing

clinical challenge.

Metabolic reprogramming, the ability of tumor cells to

regulate energy metabolism to accelerate cell growth and

proliferation, is also a characteristic of tumors (43). Tumor

cells will choose the best mode for their own survival

according to the microenvironment, and constantly change in
Frontiers in Oncology 16
the process of tumor development. Warburg effect is the starting

point of the study of metabolic reprogramming in cancer.

Current research has found that metabolic reprogramming is

also involved in amino acid and lipid metabolism, with lipid

metabolic reprogramming playing an important role in tumour

progression (44). A marked increase in the de novo synthesis of

fatty acids in tumour cells is accompanied by a marked

enhancement of fatty acid oxidation to meet the demands of

rapid tumour cell growth (45). In addition, many lipid signalling

molecules, including phosphatidylinositol-3,4,5-trisphosphate,

lysophospholipids, prostaglandins, and platelet-activating

factors, which contribute to tumour progression by
A

B D
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C

FIGURE 10

Correlation analysis of ABCA1 expression and immune characteristics in STAD. (A, B) Differential analysis of the level of immune infiltration
between high and low expression groups of ABCA1 was performed in STAD by the ssGSEA and estimate algorithms. (C, D) Differential analysis of
ABCA1 expression levels between different immunological and molecular subtypes in STAD using the TISIDB database. (E-G) Differential analysis
of TMB, MSI, and neoantigen loads between high and low ABCA1 expression groups was performed in STAD using the CAMOIP database. (H)
Differential analysis of TIDE scores between high and low ABCA1 expression groups in STAD. (ns: p > 0.05, *: p ≤0.05, **: p ≤ 0.01, ***: p ≤

0.001, ****: p ≤ 0.0001).
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participating in signal transduction cascade reactions, in turn,

contribute to tumour progression (46–48). Thus, the pathway

regulating lipid metabolic reprogramming has emerged as an

important potential target for tumour therapy (49).

Lipid droplets play an important role in the process of lipid

metabolism and are the central hub for processing lipids (48).

Lipid droplets are spherical monolayer organelles that primarily

regulate lipid metabolism, transport and signalling in cells and

tissues (50). Lipid droplet biogenesis is induced by nutritional

and oxidative stress, and cancer cells promote tumour

progression through the accumulation of lipid droplets to

ensure energy production, redox homeostasis, and drive

membrane synthesis (10). A study has constructed a risk

prediction scoring model based on genes related to lipid
Frontiers in Oncology 17
metabolism, which can effectively predict the prognosis of

patients (51). Lipid droplets are an important energy reservoir

for cancer cells and accumulation of lipid droplets can be found

in many cancer cells (52–55). Several studies have shown that

autophagy and lipid droplet synthesis are closely related and that

it can promote lipid droplet synthesis to increase the resistance

of cancer cells to stress, thus promoting cancer cell progression

(56). In gastric cancer, excess lipids are converted to triglycerides

and cholesteryl esters in the ER, and the rate of fat synthesis

increases, leading to the formation of lipid droplets. At the same

time, the increased level of mitochondrial fatty acid b-oxidation
not only provides sufficient energy for the growth and metastasis

of cancer cells, but also participates in the transduction of lipid

rafts and lipid modified signaling molecules, which further
A

B

C

FIGURE 11

Mutation analysis and drug sensitivity analysis of ABCA1 in STAD. (A) Lollipop plot of ABCA1 mutation distribution in the genome. (B) A waterfall
map of the somatic mutation landscape in the TCGA-STAD cohort, including the top 10 mutation-frequency genes and ABCA1. (C) Correlation
analysis of ABCA1 mRNA expression and drug sensitivity in pan-cancer using the GSCA database.
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promotes tumor progression. In addition, drug resistance in

gastric cancer may also be related to lipid metabolism (57, 58).

However, no article has yet reported on the construction of risk

models for genes related to lipid droplet metabolism in gastric

cancer to predict survival prognosis and immunotherapy

efficacy in patients with gastric cancer.

In this study, we first systematically analysed the multi-

omics data of the LDMRGs. We found that most LDMRGs were

differentially expressed in STAD and that there was generally a

positive correlation between their expression. We constructed

PPI interaction networks between LDMRGs and identified the

top 5 hug genes and 2 important sub-networks. The gene

function enrichment analysis revealed that LDMRGs are

primarily involved in the metabolism of lipid droplets,

including the storage, localization, and transport of lipids,

lipoproteins, celiac particles, and cholesterol. In addition, we

analyzed the genetic alteration landscape of LDMRGs and found

that TMB,MSI was significantly higher in the genetically altered

group of patients with STAD than in the genetically unaltered

group. This meant that patients with STAD in the genetically

altered group may be more sensitive to treatment with ICB.

Furthermore, we found that the expression levels of most

LDMRGs were positively correlated with CNV and negatively

correlated with methylation levels in STAD. Notably, the

expression levels of LDMRGs were strongly correlated with

the level of multiple immune cell infiltration, which suggested

that these genes were also involved in the regulation of immunity

in STAD.

Furthermore, we classified the samples in the TCGA-STAD

cohort into C1 and C2 subtypes based on the expression of

LDMRGs and found that the C2 subtype had a worse survival

prognosis. Gene functional enrichment analysis revealed that

DEGs in the 2 subtypes were mainly enriched in immune

regulation and cell adhesion. Differences in immune

infiltration levels, TIDE scores, m6A methylation, and tumour

stemness were also compared between the 2 subtypes. The

results showed that the C2 subtype had higher levels of

immune infiltration and expression of immune checkpoint-

related genes, but the TIDE score showed that the C2 subtype

had a higher score, suggesting that the C2 subtype was less

effective in ICB treatment. We speculated that the C2 subtype

may be more susceptible to tumour invasion and metastasis and

insensitivity to ICB treatment due to dysregulation of cell

adhesion and immune regulation, thus leading to a poorer

survival prognosis.

To further explore the relationship between LDMRGs

expression and prognosis of patients with STAD, we

constructed lasso regression model based on the expression

profiles of LDMRGs in STAD. Moreover, we validated the risk

prediction scoring system with the GSE15459 and GSE66229

datasets and the results showed that the prediction model has
Frontiers in Oncology 18
reliable predictive efficacy for the OS prognosis of patients with

gastric cancer. We noted that 8 genes screened by lasso

regression analysis were associated with a variety of cancers in

past studies, including hepatocellular carcinoma (59), prostate

adenocarcinoma (60), chronic lymphocytic leukemia (61),

pancreatic adenocarcinoma (62), and colon adenocarcinoma

(63).To improve the clinical applicability of the model, we

incorporated the prognostic molecules screened by the lasso

regression analysis into the cox regression analysis and

constructed a nomogram prediction model in STAD. We then

evaluated the predictive efficacy of the model by a variety of

methods and the results demonstrated that the model has a

certain predictive efficacy for survival prognosis at 1, 3 and 5

years for patients with STAD.

Furthermore, we further identified a key prognostic

molecule in LDMRGs in STAD, ABCA1. Past studies have

shown that ABCA1 is a lipid transporter protein that plays an

important role in maintaining HDL biosynthesis and cellular

cholesterol homeostasis (64). Numerous studies have

demonstrated that ABCA1 was associated with the

development of a variety of cancers, including colon cancer

(65, 66), myeloproliferative neoplasms (67), ovarian cancer (68,

69), prostate cancer (70), and melanoma (71). ABCA1 may have

a dual role in cancer, with ABCA1 showing anti-cancer effects in

breast and prostate cancers, but pro-cancer effects in colorectal,

bladder and melanoma cancers (72). However, there are few

reports of ABCA1 being associated with gastric cancer. Our

results showed that the expression level of ABCA1 was closely

related to the survival prognosis, pathological stage and

histological grade of patients with STAD. The gene function

enrichment results showed that ABCA1 is mainly involved in

cell adhesion and PI3K-Akt signaling pathway. Past studies have

shown that the PI3K-Akt signaling pathway was involved in the

invasion and metastasis of a variety of cancers, including

hepatocellular carcinoma (73), gastric cancer (74, 75), lung

adenocarcinoma (76), colorectal cancer (77), and renal cell

carcinoma (78). We speculated that ABCA1 may be involved

in the invasion and metastasis of gastric cancer through the

PI3K-Akt signaling pathway. Moreover, previous studies

showed PI3K/Akt/mTOR signaling pathway as an important

signaling pathway in lipid metabolism in gastric cancer (57, 79).

In addition, our study revealed that ABCA1 expression in STAD

was closely associated with immune infiltration, MSI, TMB, and

neoantigen loads. Patients with STAD in the high ABCA1

expression group may be less effective in the treatment of ICB.

Finally, mutational landscape analysis showed that the somatic

mutation type of ABCA1 was mainly missense mutation and

ABCA1 expression was associated with mutations in TP53.

These results suggest that ABCA1 may promote gastric cancer

progression through immune regulation and mutations in TP53.

The expression level of ABCA1 was positively correlated with
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the sensitivity of most chemotherapeutic drugs, which meant

that patients with high expression of ABCA1 may respond better

to these chemotherapeutic drugs. Our study demonstrated that

ABCA1 was closely related to the prognosis and immune

regulation of patients with gastric cancer and could potentially

be a new therapeutic target for gastric cancer.

However, there are some limitations to our study. Firstly, our

analysis is mainly based on multiple online databases and lacks

validation from a large external clinical multicentre cohort of

gastric cancer. Secondly, our study was mainly conducted by

bioinformatics analysis and lacks validation from basic cellular

and animal experiments. Therefore, we will improve these

deficiencies and further explore the mechanism of LDMRGs in

gastric cancer in future studies.
Conclusion

In summary, we identified 2 molecular subtypes based on the

expression of LDMRGs and analyzed the survival prognosis,

functional enrichment analysis, and immune status between the

different molecular subtypes. In addition, we constructed lasso

regression models and performed iterative validation on the

GEO dataset with consistent results. A nomogram containing

the prognostic molecules screened by the lasso regression

analysis was generated, which improved the predictive value

and clinical applicability of the model. Finally, we identified a

key gene in LDMRGs, ABCA1, and analyzed the prognostic

value of ABCA1 in gastric cancer by multi-omics. The results

showed that ABCA1 was closely associated with multiple clinical

features, immune infiltration, and drug sensitivity in gastric

cancer patients. The present study provided evidence for the

prognostic value of LDMRGs in gastric cancer and contributes

to the development of diagnostic and prognostic biomarkers and

therapeutic agents for patients with gastric cancer.
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SUPPLEMENTARY FIGURE 1

The correlation of ABCA1 expression and immune cell infiltration assessed
by CIBERSORT in STAD. (A) Heat map of the correlation between ABCA1

expression and immune infiltration. (B) The percentage abundance of
each type of tumour-infiltrating cell in each sample in the STAD.

SUPPLEMENTARY FIGURE 2

OPLS-DA analysis based on the expression of LDMRGs in STAD. (A) Inertia
bar plot for OPLS-DA model. (B) Permutation test plot for OPLS-DA
model validation. (C) Score plot for the OPLS-DA model. (D) S-plot plot
for OPLS-DA model.

SUPPLEMENTARY TABLE 1

Screening of lipid droplet metabolism-related genes using the
GeneCards database.
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