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Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment

failure, disease relapse and ultimately poorer outcomes in multiple myeloma

(MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3

ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is

imperative to understand the mechanisms behind the inevitable emergence of

IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate

receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins

for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3,

key MM survival transcription factors which sustain the expression of myeloma

oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also

stimulate T/NK cell activation by their CRBN-mediated effects, and therefore

enhance anti-MM immunity. Thus, their benefits in myeloma are directed against

tumor and immune microenvironment – and in considering the mechanisms by

which IMiD resistance emerges, both these effects must be appraised. CRBN-

dependent mechanisms of IMiD resistance, including CRBN genetic aberrations,

CRBN protein loss and CRBN-substrate binding defects, are beginning to be

understood. However, only a proportion of IMiD-resistant cases are related to

CRBN and therefore additional mechanisms, which are currently less well

described, need to be sought. These include resistance within the immune

microenvironment. Here we review the existing evidence on both tumor and

immune microenvironment mechanisms of resistance to IMiDs, pose important

questions for future study, and consider how knowledge regarding resistance

mechanism may be utilized to guide treatment decision making in the clinic.
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Introduction

Immunomodulatory drugs (IMiDs) are a major class of drugs

in the treatment of multiple myeloma (MM) that have radically

improved patient survival. Both a direct anti-proliferative effect on

MM cells and modulation of the immune microenvironment

contribute to their efficacy. However, MM eventually relapses

during IMiD-based combination therapies due to the emergence

of drug resistance. Understanding resistance mechanisms to

IMiDs is therefore a vital step toward developing novel

therapeutics and improving outcomes for MM patients.

Thalidomide was the first IMiD to show clinical efficacy in

MM (1, 2). The first analogue of thalidomide to be approved,

lenalidomide, showed superior clinical effectiveness and toxicity

profiles in frontline (3), relapse (4) and maintenance settings (5).

Pomalidomide, another thalidomide derivative, has shown

efficacy in around one-third of lenalidomide-resistant patients

and is predominantly utilized in the relapsed-refractory setting

(6, 7). Newer derivatives of IMiDs, CRBN E3 ligase modulators

(CELMoDs) bind target protein cereblon (CRBN) with greater

affinity, leading to faster substrate degradation and therefore

more potent anti-proliferative effects. Recent data suggests

CELMoDs iberdomide (CC-220) and mezigdomide (CC-

92480) may have efficacy in lenalidomide and pomalidomide-

resistant patients in ongoing clinical trials (8–10).
IMiDs act via cereblon

CRBN was identified as the primary target of thalidomide in

2010 (11). CRBN is the substrate adaptor of the CRL4CRBN E3

ubiquitin ligase, a cullin-ring ligase composed of damaged DNA-

binding protein 1 (DDB1), cullin 4a (CUL4A), and regulator of

cullins 1 (ROC1). Subsequent pivotal studies demonstrated that

IMiD-bound CRBN recruits novel substrates ikaros (IKZF1) and

aiolos (IKZF3) to the CRL4CRBN E3 ubiquitin ligase complex for

ubiquitination and subsequent proteosome-mediated

degradation (12, 13). A third transcription factor, zinc finger

(ZnF) protein 91 (ZFP91), was identified as an IMiD-bound

CRBN target (14). Lack or loss of ability to fully degrade ZFP91

may mediate resistance to IMiDs (15), although this has not

been reported in myeloma cells (14). The Zn2 and Zn4 domains

of ZFP91 and IKZF1/3 respectively share a common motif; it is

likely that other ZnF-containing substrates susceptible to IMiD-

induced CRL4CRBN binding and degradation exist. The protein

specificity of the CRL4CRBN complex is modified by IMiDs with

great precision (12). For example, lenalidomide can recruit

casein-kinase 1 alpha (Ck1a) in addition to IKZF1 and IKZF3,

whereas thalidomide cannot (16).

IKZF1 and IKZF3 are zinc finger transcription factors which

regulate normal lymphopoiesis and B-cell development. IKZF1 is

required for pro-B cell to pre-B cell differentiation and is essential

for VDJ recombination (17). IKZF1 regulates IRF4 expression,
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critical for plasma cell differentiation via the IRF-BLIMP-1

feedback loop. Knockdown of either IKZF1 or interferon

regulatory factor 4 (IRF4) results in blockade of plasma cell

differentiation (18). IKZF3 is specifically responsible for the

differentiation of long-lived high affinity plasma cells in the bone

marrow (19).

IMiD-induced CRBN-mediated effects independent of the

CRL4CRBN E3 ligase have also been proposed. CRBN was shown

to bind and stabilize the CD147-monocarboxylate transporter 1

(MCT1) transmembrane protein (TP) complex in a ubiquitin-

independent manner (20), and similarly the amino acid

transporter complex LAT1/CD98hc (21). CRBN has a ‘co-

chaperone’ function in membrane delivery of these TPs,

stabilizing their interaction with the heat shock protein of 90

kDa (HSP90)- ATPase activity 1 (AHA1) chaperone complex.

IMiD binding to CRBN, or CRBN loss, abrogates its HSP90

binding so reversing its stabilizing effect on client TPs during

maturation. The relative contribution to IMiD efficacy of TP

destabilization vs CRL4CRBN E3 ligase-mediated activity

remains unclear.
Effects of IMiD-induced substrate
degradation in MM

Anti-proliferative effect via
downregulation of IRF4 and
myc proto-oncogene

In physiological B-cel l development, MYC is a

transcriptional target of IRF4, and the MYC-IRF4 axis is

transiently active during active B-cell expansion before MYC is

downregulated (22, 23). However, in MM, IRF4 also becomes a

transcription target of MYC, resulting in an aberrant

autoregulatory network that drives sustained MYC expression

and MM cell proliferation. MM cells are ‘addicted’ to both IRF4

and MYC as proliferation-inducing oncogenes, and independent

IRF4 or MYC inhibition has been shown to be toxic in MM cell

lines (24, 25). In normal B-cell development, IKZF1 negatively

regulates MYC. By contrast in MM, due to transcriptional

regulation rewiring that is incompletely understood, IMiD-

mediated IKZF1 and IKZF3 degradation causes sequential

downregulation of MYC and IRF4 proteins, breaking the

aberrant oncogenic proliferative drive of the MYC-IRF4 axis

to induce cell cycle arrest and eventual apoptosis (26, 27).
Enhancing anti-tumor immunity

The immunostimulatory effect of thalidomide on T cells was

first discovered several decades ago as part of an effort to

understand its anti-inflammatory properties in erythema

nodosum leprosum (28). Subsequent studies have demonstrated
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that IMiDs not only activate T cells but have varying modulatory

effects on a range of immune cells, including natural killer (NK)

cells, dendritic cells and macrophages (Figure 1).

The best studied immunomodulatory effect of IMiDs is the

enhancement of T and NK cell-mediated anti-MM cytotoxicity.

Immune dysfunction occurs as part of MM pathogenesis: in

untreated MM patients an abnormal Th1/Th2 ratio, increased

T cell senescence and exhaustion and reduced NK cell levels are

seen (29–31). This is partly due to elevated levels of transforming

growth factor beta (TGF-b), an immunosuppressive cytokine,

secreted by plasma cells and MM microenvironment cells (30).

IMiDs help to overcome this T and NK cell dysfunction to restore

a degree of anti-MM immune clearance. In vitro studies have

demonstrated that IMiDs trigger T cell production of cytokines

including interferon-g (IFN-g) and interleukin-2 (IL-2), which

drive T cell clonal expansion (32, 33), and NK cell activation (34).

IMiDs also activate CD4+ and CD8+ T cells by inducing increased

dendritic cell (DC) antigen presentation (35), facilitating immune

recognition and killing of MM cells. In keeping with in vitro

studies, T cell profiling studies in IMiD-treated MM patients

consistently demonstrate a shift towards activated, proliferative,

and cytotoxic T cell profiles (36, 37). Clinical studies also

demonstrate an association between strength of T/NK cell

activation and degree of clinical anti-myeloma response,

implying it is an important mechanism of IMiD efficacy (38,

39). Interestingly, NK cell levels do not correspond to response

rates in patients with myelodysplastic syndrome (MDS) on

lenalidomide, suggesting that MM cells may be particularly

vulnerable to NK cell-mediated cytotoxicity (40).
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In addition to promoting T and NK cell-mediated anti-

tumor immunity, IMiDs may synergize with immune

checkpoint blockade to reduce MM immune tolerance.

Reduced Programmed death-1 (PD-1) expression in T and NK

cells was seen in MM patient immune cells after lenalidomide

treatment (41, 42). Whilst clinical trials of PD-1/PDL-1

inhibitors have been halted in MM following mixed results on

safety and efficacy, IMiDs have also been shown to synergize

with the widely-used anti-CD38 MM therapies, Daratumumab

and Isatuximab. In addition to direct plasma cell toxicity,

Daratumumab depletes CD38-positive immunosuppressive

regulatory T cells (Tregs) and expands effector CD4 and CD8

T cells as a mode of action (43), but also depletes NK cells. IMiD-

daratumumab combinations show enhanced cytotoxic T cell

activity and reduced immunosuppressive cells (44). IMiDs may

also overcome daratumumab resistance through upregulation of

CD38 (45).

The mechanism by which IMiDs activate T and NK cells

remains incompletely understood. However, there is evidence that

CRBN-mediated IKZF1/3 degradation in immune cells causes

much of the immunostimulatory effect. IKZF1 is a known

transcriptional repressor of IL-2 and IFN-g, whilst IKZF3

specifically represses the IL-2 promoter (46, 47); therefore,

degradation of IKZF1/3 derepresses IL-2 and IFN-g leading to T

and NK cell activation (48). Studies demonstrate that higher

potency IMiDs such as pomalidomide, which bind CRBN with

greater affinity, can produce a stronger immunostimulatory effect

than less potent IMiDs (38, 49). IKZF1 degradation has also been

implicated in polarization of macrophages toward a tumoricidal
FIGURE 1

IMiD drug modulation of anti-myeloma immunity. IMiDs de-repress IL-2 transcription via CRBN-mediated IKZF3 degradation. IL-2 production
stimulates further cytokine release (including IFNg and TNFa) leading to T/NK cell expansion and enhanced immune-mediated destruction of
myeloma cells. IMiDs further increase anti-myeloma immunity through polarization of macrophages towards an M1 tumoricidal phenotype,
stimulation of dendritic cell antigen presentation and depletion of Tregs. Antigen presenting cell (APC); Major histocompatibility complex (MHC);
T-cell receptor (TCR).
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M1 phenotype by IMIDs (50). CRBN-mediated degradation of a

different target, Ck1a, has been shown to modulate interferon

pathways (51). However, whether all immunomodulatory effects

of IMiDs are CRL4CRBN E3 ubiquitin ligase-dependent remains to

be elucidated.

The addition of steroids to IMiDs in MM regimes enhances

their anti-proliferative effects but inhibits their immunostimulatory

effects. Dexamethasone addition to lenalidomide caused increased

MM cell death but blunted IL-2 production by T-cells and reduced

NK cell activation (52, 53). Clinical studies in relapsed/refractory

MM (RRMM) showed higher response rates on adding

dexamethasone to lenalidomide (54), indicating the anti-

proliferative effect of IMiDs to be more significant than their

immunomodulatory effects. Studies in different disease contexts,

such as high-risk smoldering MM (SMM) have demonstrated

significant immune cell activation by IMiDs despite steroid use (55).
IMiD mechanisms of resistance

Resistance emergence to immunomodulatory drugs (IMiDs)

is a crucial barrier to prolonging relapse-free survival in MM.

Widespread use of IMiDs as maintenance therapy post-

autologous stem cell transplant (ASCT) further heightens the

need to clarify IMiD resistance mechanisms and the impact of

their long-term use on the biology of relapsed MM.
Cereblon-related IMiD
resistance mechanisms

Disruption of Cereblon activity is the best understood

mechanism of IMiD resistance in MM (Figure 2). As CRBN is

obligatory for IMiD activity (56), either quantitative or qualitative

CRBN defects may contribute to IMiD ineffectiveness or

resistance. Quantitative mass spectrometry studies testing the

activity and kinetics of CRL4CRBN E3 ubiquitin ligase

demonstrate three key factors that could affect its activity levels

and cause IMiD resistance: i) levels and stability of E3 ligase

components such as CRBN, ii) strength of ligase-substrate

interaction induced by the IMiD, and iii) expression level of

competing substrates (57). Aberrations to any or all of these

factors could cause CRBN-related IMiD resistance.

Levels of CRBN protein or RNA have been demonstrated in

several studies to correlate to IMiD response in both MM

patients and cell lines (58–60). However, other studies have

shown no association between baseline CRBN levels and

responsiveness to IMiDs (61–63). The lack of standardized

and validated CRBN measurement assays, and the many other

factors that contribute to inter-patient variability in CRL4CRBN

E3 ubiquitin ligase activity, and indeed IMiD function overall,

likely contribute to this discrepancy (62). Over-expression of
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CRBN has been shown to successfully re-sensitize IMiD-

resistant MM cell lines to IMiDs (57, 64), which supports the

hypothesis that loss of functional CRBN is a major mechanism of

IMiD resistance.

CRBN genetic aberrations are the best-validated IMiD

resistance mechanism to-date. Although CRBN mutations

occur infrequently in newly diagnosed (<1%) (65) and IMiD-

treated patients (12%) (66), our recent comprehensive whole-

genome (WGS) and RNA sequencing analysis revealed a

spectrum of genomic and transcriptomic abnormalities beyond

single nucleotide variants (SNVs), that may underpin reduced

CRBN function in clinical IMiD resistance (67). SNVs, structural

variants, exon 10 splicing and gene copy loss were all noted to

increase in incidence between newly diagnosed, lenalidomide-

and pomalidomide-refractory MM patients, to an incidence of

almost one-third in pomalidomide-refractory patients. Such

genetic alterations appear to undergo therapeutic selection

during IMiD exposure. Lenalidomide-refractory patients with

these CRBN aberrations were less likely to respond to

pomalidomide and had a worse progression-free survival (PFS)

irrespective of CRBN gene expression levels. Further studies are

required to understand the relationship between CRBN genetic

disruption, its protein level/function, and differential efficacy

between IMIDs.

Genome-wide CRISPR-Cas9 knock out screens in MM have

recently highlighted the role of CRL4CRBN E3 ligase associated

proteins, including COP9 signalosome (CSN) members and

certain E2 ubiquitin-conjugating enzymes, in mediating IMiD

sensitivity and resistance through their regulation of CRBN-

mediated substrate degradation (68, 69). The CSN complex

deactivates the CRL4CRBN E3 ligase through de-neddylation

(Figure 2), to regulate its activity level. Loss of CSN function

therefore increases ligase activity, meaning CRBN may be auto-

ubiquitiated and degraded. All CSN subunits are required for its

deneddylating activity, and loss of even one subunit can lead in

turn to cellular CRBN loss. We have recently used WGS datasets

comparing newly diagnosed to lenalidomide- and pomalidomide-

refractory MM patients to identify copy loss of chromosome

region 2q37, containing CSNmembers COPS7B and COPS8, as an

increasingly common feature usually occurring exclusively to

genetic CRBN loss in IMiD-refractory patients. Thus defective

CSN regulation of CRBN degradation may be a clinically-relevant

mechanism of CRBN-mediated IMiD resistance (70).

Relative affinity of IMiD-induced CRBN-substrate binding

contributes to the development of IMiD resistance. CELMoDs

have a 20-fold higher binding affinity for CRBN compared to

lenalidomide, and consequently result in faster IKZF1/3

degradation and improved efficacy (57). Consequently, CELMoDs

can overcome IMiD resistance in MM cell lines (8, 71). Iberdomide

has demonstrated a 30% overall response rate in IMiD-exposed

patients in phase 1b/2a studies (9). This reversal of IMiD resistance

with better kinetics of CRBN-IKZF1/3 binding and degradation
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suggests that further study of ligase-substrate interactions as

resistance mediators is warranted. The ordering of such agents in

patient treatment regimes should also be considered, as IMiDs with

lower affinity are less likely to have efficacy after resistance to

CELMoDs has been acquired. Levels of competitors for substrate

binding may also reduce drug efficacy; for example, RUNX1 and

RUNX3 transcription factors have been shown to compete with

CRBN to bind IKZF1/3, thereby reducing CRBN-IKZF1/3 binding

and degradation (72). Inhibition of RUNX proteins inMM cell lines

was able to reverse IMiD resistance. In MM cell lines, 244 different

CRBN E3 ligase substrates were identified and of these, 46 were able

to bind IMiD-bound CRBN, suggesting that they could in theory

compete with IKZF1/3 in binding CRBN (73). In one in vitro study,

overexpression of a substrate known to bind CRBN tightly induced

lenalidomide resistance due to reduced degradation of other

competing substrates including IKZF1 (57). Other substrates of
Frontiers in Oncology 05
IMiD-bound CRBN-mediated degradation may contribute to

efficacy or resistance; for example, ARID2 is a target of CRBN

degradation in pomalidomide-treated patients and may regulate

MYC independently of IKZF1/3 (74). Whether ARID2 actively

competes with IKZF1/3 for CRBN binding remains unclear. The

hypothesis that MM cells could upregulate unrelated CRL4CRBN E3

ligase substrates to compete with IKZF1/3 as a mechanism of

resistance to IMiDs requires further interrogation.

Loss of IKZF1 and IKZF3 has also been studied as a potential

mechanism for IMiD resistance, but results thus far are

inconclusive. In newly diagnosed lenalidomide-treated MM

patients, high IKZF1 expression was associated with improved

PFS (75, 76). In the pre-ASCT setting, IKZF1/3 protein levels were

non-prognostic, and c-MYC was the only downstream CRBN

target that impacted survival (76). Studies investigating IKZF1

expression levels in the microenvironment cells of lenalidomide-
A

B

C

FIGURE 2

Mechanisms of IMiD drug resistance. (A) Proteins involved in maintenance of the CRL4CRBN E3 ubiquitin ligase are required for IMiD drug
efficacy. The CRL4CRBN E3 ubiquitin ligase is maintained at an active level by a tightly controlled loop of neddylation and deneddylation,
regulators of which include the COP9 signalosome and various E2 ligases. If deneddylation is impaired, CRBN itself may be ubiquitinated in the
absense of substrate binding, and targeted for degradation. CRISPR screen evidence shows many of the proteins that regulate the CRL4CRBN E3
ubiquitin ligase are essential for IMiD and novel CRBN-targeting PROTAC agent activity, and their loss may therefore drive drug resistance.
Those identified as IMiD-essential in reported screens are marked with a red cross. (B) Some proposed CRBN-independent mechanisms of IMiD
resistance. (i) Upregulated IL-6/STAT3 signaling drives IKZF1s-independent IRF4 transcription. ii. Upregulated Wnt/b-catenin signaling drives
IKZF1/IKZF3 independent MYC transcription, plus CD44. iii. CDK6 overexpression regulates a set of protein targets associated with IMiD
resistance. CDK6 inhibition reverses this state. iv. Although mechanism is unknown, in IMiD-resistant states the transmembrane proteins which
require CRBN as a chaperone resist IMiD-induced destabilization. (C) Potential microenvironmental mechanisms of IMiD resistance. These may
include CD44- and extracellular vesicle (EV)-mediated MM cell adhesion to bone marrow (BM) stromal cells, and T cell exhaustion, which is
associated with increased checkpoint inhibitor expression, reduced IL2 expression and results in reduced anti-myeloma activity.
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treated MM patients, suggested a correlation with improved

survival (77). However, other studies have demonstrated no

significant role for IKZF1/3 levels in predicting sensitivity to

IMiDs (61), therefore contentions remain.
Cereblon-independent IMiD
resistance mechanisms

As a significant proportion of IMiD-refractory patients have

no detectable abnormalities of CRBN or substrates, CRBN-

independent mechanisms of IMiD resistance must exist. Drug

resistance emerges universally with currently-used MM therapies,

with intrinsic clonal heterogeneity of MM and selection of

resistant clones playing a major role (78). The mechanisms by

which resistant clones escape the effect of IMiDs may involve

aberrant persistence of oncogenic signals, rewiring of

transcription regulation to bypass dependence on IMiD-CRBN

targets, or immune escape mechanisms that are not yet

understood (57, 63). Ikaros-independent activation of the IRF4-

MYC axis to promote MM cell proliferation via several routes has

been described. Firstly, lenalidomide-resistant MM cells lacking

CRBN abnormalities show upregulated IL-6/STAT3 signaling,

leading to IRF4 persistence (79). Secondly, gene expression

profiling of IMiD-resistant MM cell lines and small numbers of

IMiD-resistant MM patients showed dysregulation of Wnt/b-
catenin activity, leading to upregulated cyclin D1 and MYC

(80). CD44, a known mediator of cell adhesion-mediated drug

resistance, is also a downstream b-catenin target and may mediate

IMiD resistance through enhancing MM cell adhesion to stromal

cells (81). Inhibition of CD44 using ATRA was able to re-sensitize

resistant MM cell lines to lenalidomide (80). These pathways, and

others, could sustain persistent IRF4 and MYC oncogenic

signaling to promote MM cell survival despite functional IMiD-

mediated target degradation. The transmembrane proteins which

CRBN co-chaperones (CD147-MCT1, LAT1/CD98hc) were

found to resist IMiD-induced destabilization in IMiD-resistant

MM cell lines, by an unknown mechanism (20, 21).

Ng et al. recently combined proteomic and RNA-sequencing

approaches on longitudinal samples from relapsing MM patients

to identify several CRBN-independent proteins that were

aberrantly expressed (82). Of these, cyclin-dependent kinase

6 (CDK6) specifically impaired sensitivity of MM cell lines

to IMiDs. They identified a network of CDK6-specific protein

targets that were strongly associated with relapse, and proposed

CDK6 as a master regulator of a relapsed-protein signature and

driver of IMiD resistance. Future proteomic studies may provide

further insight into additional CRBN-independent proteins that

contribute to IMiD resistance, and assessment of the causality of

these mechanisms in clinical IMiD resistance is necessary.

Finally, it should be noted that prognostic markers of ‘high-

risk’ myeloma (e.g. translocations t(4;14), t(14;16), del17p, gain/

amp1q21 or gene expression signatures SKY92 and UAMS
Frontiers in Oncology 06
GEP70), are associated with early relapses after IMiD-based

induction regimes (83). This covers a wide range of biology, and

the drug resistance that emerges more rapidly in ‘high-risk’

patients is not specific to IMiDs. The interplay between the

drivers of a ‘high-risk’, early-relapsing myeloma phenotype and

specific mechanisms of IMiD resistance requires further study.
Tumor microenvironment IMiD
resistance mechanisms

Immune cell-mediated mechanisms of IMiD resistance are

likely to be important but are not well studied or understood.

Although IMiD drugs activate T cells, deep immune-profiling

studies on IMiD-resistant patients have demonstrated an

expansion of exhausted effector T cell populations with increased

lymphocyte activating 3 (LAG3) and T cell immunoreceptor with Ig

and ITIM domains (TIGIT) checkpoint inhibitor expression (84).

Increased LAG3 expression as a marker of T cell exhaustion

correlated with a worse PFS. This is consistent with other

evidence that T cell exhaustion is a feature of MM relapse (31,

85). Addition of daratumumab to IMiDs has successfully overcome

IMiD resistance via synergistic immune cell activation (86), and

more potent CELMoDs may revitalize anti-tumor immunity in

heavily pre-treated patients with prior IMiD resistance and features

of T cell exhaustion (87). In this study, large-scale mass cytometry

profiling of bone marrow tumor microenvironment of iberdomide

patients demonstrated significant expansion and activation of T and

NK cells, which was postulated to help overcome prior IMiD

resistance. Evidence therefore suggests a role for T cell exhaustion

and loss of anti-MM immunity in IMiD resistance. However, the

degree of importance of immune-mediated versus MM cell-specific

mechanisms of resistance is unclear, and interplay between IMiD-

resistant MM clones and exhausted immune cell populations

requires ongoing study.
Conclusion

IMiDshaverevolutionizedoutcomes forpatients, but theydonot

cure myeloma, and drug resistance consistently emerges. To target

IMiD-resistant MM with enhanced therapeutic combinations, and

so prolong patient survival, is a tantalizing goal.With the revolutions

in myeloma care that novel immunotherapies are bringing, the

optimal placement of IMiDs and their CELMoD derivatives in

therapeutic sequencing and combinations will be an ongoing

subject of research and debate. In order to achieve best outcomes

in this eraof ever-growingmyelomatreatmentchoices, genomicand/

or other biomarkers of drug efficacy or resistance will be needed to

guideclinical decisionmaking for individualpatients.Understanding

some of the genetic causes of IMID resistance, such as CRBN

disruption, will enable their incorporation into targeted sequencing

assays that are increasingly deployed in clinical practice. However,
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the contribution to IMiD resistance of immune cell suppression and

exhaustion is less clear, and more work is needed to understand

whether assays of immune cell number or function could contribute

clinically-relevant guidance on how and when to use this class of

drugs. Nonetheless, the scope for better precision in deployment of

cereblon targeting agents will no doubt be part of the evolving

approach to improving outcomes in myeloma.
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