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Glioblastoma is a high-grade aggressive neoplasm characterised by significant

intra-tumoral spatial heterogeneity. Personalising therapy for this tumour

requires non-invasive tools to visualise its heterogeneity to monitor

treatment response on a regional level. To date, efforts to characterise

glioblastoma’s imaging features and heterogeneity have focussed on

individual imaging biomarkers, or high-throughput radiomic approaches that

consider a vast number of imaging variables across the tumour as a whole.

Habitat imaging is a novel approach to cancer imaging that identifies tumour

regions or ‘habitats’ based on shared imaging characteristics, usually defined

using multiple imaging biomarkers. Habitat imaging reflects the evolution of

imaging biomarkers and offers spatially preserved assessment of tumour

physiological processes such perfusion and cellularity. This allows for

regional assessment of treatment response to facilitate personalised therapy.

In this review, we explore different methodologies to derive imaging habitats in

glioblastoma, strategies to overcome its technical challenges, contrast

experiences to other cancers, and describe potential clinical applications.
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Introduction

Glioblastoma is the most common form of primary brain

cancer with a median survival of just 15 months (1). The

treatment outcome of this tumour has not changed in decades

and there are increasing efforts to personalize care for

glioblastoma patients. This includes novel strategies that

deliver intensified upfront treatment around the time of

diagnosis, such as preoperatively, to prevent the phenomenon

of rapid early progression, a strongly negative prognostic factor

(2, 3). These approaches could improve the treatment outcome

and require robust non-invasive tools to monitor treatment

response. For glioblastoma, this should be on a regional basis

given its significant spatial heterogeneity (4).

Intra-tumoral spatial heterogeneity is a well-recognised

phenomena in glioblastoma, especially at the genomic and

transcriptomic levels (5, 6). Studies utilising multiple regional

sampling have described spatially distinct expression of key driver

mutations including Epithelial Growth Factor Receptor (EGFR),

TP53 and neurofibromatosis type 1 (NF1), and also the presence

of at least two transcriptomic Verhaak classes within the same

tumour in up to 60% of cases (5). At the microscopic level, spatial

heterogeneity can also be appreciated by the presence of distinct

tumour niches, which are groups of cells localising to particular

regions within the tumour microenvironment. The perivascular

niche for example, includes endothelial cells in close proximity to

glioblastoma cancer stem cells (7). Tumour niches are

characterised by distinct gene expression patterns that could

influence response to treatment (8). On a macroscopic level,

there is currently no robust method to detect glioblastoma’s

spatial heterogeneity, which could otherwise aid patient

stratification for early time-point clinical trials for example.

Magnetic resonance imaging (MRI) is used to guide

glioblastoma treatment including surgery and radiotherapy,

and could be used to monitor treatment response on a

regional basis. To date, most efforts utilising MRI data in

glioblastoma have focussed on radiomic approaches to extract

innumerable quantitative imaging metrics with less emphasis on

spatially relating these to the tumour microenvironment.

Habitat imaging is an emerging imaging technique to delineate

the tumour into distinct spatial regions with shared imaging

characteristics. These regions can be visualised and interrogated

longitudinally to characterise tumour regions and monitor their

treatment response (Figure 1).

Traditional approaches to delineating imaging habitats in

glioblastoma have considered regions based on their location on

structural MRI sequences (optimised for visualising brain

anatomy). For example, at least five habitats could be defined

by considering just two structural imaging sequences – T1 with

gadolinium and Fluid Attenuated Inversion Recovery (FLAIR):

the necrotic core, peri-necrotic enhancing rim, enhancing core,

enhancing rim and the ‘infiltrative zone’ defined by FLAIR
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hyperintensity in the absence of contrast enhancement (9, 10).

However, these regions are not always easy to segment and their

size is defined by arbitrary and subjective thresholds. The regions

themselves are also inherently heterogeneous – for example, the

non-enhancing FLAIR hyperintensity is a mixture of oedema

and infiltrative tumour with no clear delineation between them.

There is therefore a need for alternative methods of deriving

imaging habitats in glioblastoma.

In this review, we will provide an overview of the current status

of habitat imaging in glioblastoma, highlighting its potential use as a

non-invasive tool for more personalised treatment. We will explore

different methodologies to derive imaging habitats, strategies to

overcome its technical challenges, contrast experiences to other

cancers, and describe potential clinical applications.
Imaging biomarkers

A biomarker is defined as a characteristic that is measured as an

indicator of normal biological processes, pathogenic processes or

responses to an exposure or intervention, including therapeutic

interventions (11). Imaging biomarkers are biomarkers that are

derived from clinical imaging sequences such as MRI. Examples of

conventional imaging biomarkers used in glioblastoma derived

from diffusion and perfusion MRI are listed in Table 1.

In addition to conventional imaging biomarkers, it is

possible to apply data-mining approaches to imaging data to

yield quantifiable data, under the theme of radiomics. Radiomics

typically produces a vast set of imaging features that are derived

from the tumour as a whole. This feature set is a distinct imaging

biomarker in its own right that is useful for aiding in diagnosis,

prognostication and predicting treatment response (13).

Although this may have advantages to histopathological

analysis by decreasing the likelihood of intraoperative under-

sampling by considering the tumour as a whole (14), it does not

typically relate imaging metrics to individual tumour regions.

Tumour subregion radiomic analyses have also focused on

relating radiomic features to patient related outcomes, relaying

little about the underlying tumour microenvironment limiting

its use in guiding novel treatment strategies (15). This limitation

of assessing regional response may be overcome by enhanced use

of conventional imaging biomarkers used in isolation/together.

Imaging biomarkers provide information about tumour

biological characteristics with varying specificity. In current

practice, imaging biomarkers are largely used in isolation,

which is advantageous given the simplicity of this approach.

However, there may be benefit in combining different

biomarkers using the additional and differential information

provided by considering their overlapping areas. In one study for

example, the positive predictive value (PPV) of relative cerebral

blood volume (rCBV; defined in Table 1), apparent diffusion

coefficient (ADC; defined in Table 1) and the FLAIR signal, to
frontiersin.org
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predict disease recurrence in glioblastoma was evaluated. The

PPV for recurrence was improved by considering the overlap of

high FLAIR, rCBV and low ADC (PPV = 31.9%), versus

individual biomarkers alone (PPV for rCBV = 21.6%) (16).
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Habitat imaging utilises imaging biomarkers to delineate

distinct spatial regions with homogenous biological and physical

characteristics within an individual tumour (17). This has specific

applications in glioblastoma as identification of more aggressive/
FIGURE 1

Clinical utility of habitat imaging in glioblastoma: assessment of changes pre and post-radiotherapy. This figure demonstrates the clinical utility
of habitat imaging in glioblastoma pre and post-radiotherapy. Top row – structural imaging (T1 with contrast) demonstrates no significant
changes in tumour anatomy. Middle two rows – diffusion and perfusion MRI scans demonstrate changes in tumour physiology with treatment
with a decrease in rCBV for example (red to yellow represents low to high values for each biomarker). Bottom row – imaging habitats map
where each voxel is labelled according to both rCBV and ADC values. This method produced 16 different habitats for this patient. After
radiotherapy, the biggest increase was in a habitat defined by low rCBV and low ADC (10.5% increase). The biggest decrease was in a habitat
defined by high rCBV and medium ADC (5.7% decrease). Habitats that are more resistant to treatment can be spatially visualised and offered
targeted therapy. RT, radiotherapy; T1C, T1 with contrast; rCBV, relative cerebral blood volume normalised to contralateral white matter; ADC,
apparent diffusion coefficient.
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treatment resistant habitats could enable locally targeted treatment,

such as targeted resection for hypoxic areas for example, that

correlate with a shorter survival (18). Habitat imaging could also

overcome limitations in the sensitivity of individual imaging

biomarkers in assessing and monitoring multiple physiological

processes, and provide a more accurate representation of the

tumour molecular profile non-invasively (19, 20).
Habitat imaging definition

Cancer exhibits marked spatial heterogeneity at the

anatomical, physiological and molecular levels (21). Imaging can
Frontiers in Oncology 04
be interrogated to visualize this spatial heterogeneity and identify

imaging habitats (17). Imaging habitats are tumour regions with

distinct imaging characteristics that arise from their unique

intrinsic cell populations and/or local environmental conditions.

Although individual imaging biomarkers could be used in theory

to define habitats, based on analysis of voxel signal intensity

distributions for example, it is more conventional to use the

term when tumour regions are defined using multiple imaging

biomarkers. Thus, for the purposes of this review, imaging habitats

will refer to tumour regions defined using multiple imaging

biomarkers. As each imaging biomarker assesses a different

aspect of tumour biology, a multiple biomarker approach also

increases the degree of tissue heterogeneity that can be assessed.
TABLE 1 Conventional imaging biomarkers in glioblastoma (12).

Imaging
biomarker

Details

Apparent
diffusion
coefficient
(ADC)

Measurement of inferred (‘apparent’ rather than actual) water diffusion with DWI. It is a measure of the relative decrease in the transverse
magnetization induced by additional dephasing and rephasing magnetic field gradients. Net dephasing and therefore signal loss is greater in freely
diffusive tissue. Quantitatively, the ADC is the slop of a line plotting the natural logarithm of the MRI signal (y-axis) per unit of applied magnetic field
strength (b-value plotted on x-axis; units mm2/s).

Mean diffusivity
(MD)

This is the magnitude of mean diffusion in a given voxel obtained with diffusion tensor imaging (DTI). ADC may not be uniform at all orientations.
MD is the average diffusivity from the three eigenvalues of the diffusion tensor. It is often regarded as an approximation of the overall ADC (units
mm2/s).

Fractional
anisotropy (FA)

DTI provides FA values which indicate the overall directionality of water diffusion within a voxel. FA is a scalar value between 0-1 that describes the
degree of anisotropy of the diffusion process. A value of zero means that diffusion is isotropic (i.e. equal in all directions, and the diffusion ellipsoid is
a sphere). A value of one means that diffusion is totally anisotropic (i.e. diffusion occurs only along one axis and is fully restricted along all other
directions).

Cerebral blood
volume (CBV)

CBV is the volume of blood in a given amount of brain tissue, most commonly millilitres of blood per 100 g of brain tissue. CBV can be calculated by
assessing the area under the concentration-time curve, which in turn can be generated from signal intensity-time curves generated using Dynamic
Contrast Enhanced (DCE) MRI (measuring T1 signal recovery) or Dynamic Susceptibility Contrast (DSC) MRI (measuring T2 signal loss),
respectively (units ml/100g).

Cerebral blood
flow (CBF)

Cerebral blood flow is the volume of blood passing through a given amount of brain tissue per unit of time, most commonly millilitres of blood per
minute per 100 g of brain tissue. Alternatively, one may express CBF in terms of flow per unit volume of brain tissue, thus in ml blood/min/100 ml
tissue.

Mean transit
time (MTT)

Mean transit time is the average period of time that blood spends within the blood vessels in a particular part of the brain (units seconds).

Volume transfer
constant (Ktrans)

Ktrans is the volume transfer constant for contrast agent between blood plasma and the tissue extravascular extracellular space (EES). Ktrans is derived
from a pharmacokinetic model and represents a mix of flow and permeability. It most commonly serves as a measure of permeability/vascular leak
under permeability-limited conditions (units min-1).

Rate constant
(kep)

kep determines the washout rate of contrast agent from the extravascular extracellular space back into the blood plasma (kep = Ktrans/ve; units min-1).

Extravascular
extracellular
space fractional
volume (ve)

ve is defined as the volume of the extravascular extracellular space (EES) per unit volume of tissue, and thus is a dimensionless number between 0 and
1. The parameter ve reflects the amount of “room” available within the tissue interstitium for accumulating contrast agent. Note that ve is different
from Ve, which represents the total volume of extravascular extracellular space in ml.

Fractional
plasma volume
(vp)

Represents the volume of blood plasma per unit volume of tissue (therefore unitless). It is derived from a pharmacokinetic model.

Native
longitudinal
relaxation rate
(R1N)

R1 is the longitudinal relaxation rate of the protons of tissue water (R1 = 1/T1). R1N is the baseline tissue R1 in the absence of the contrast agent. The
R1N measurement inversely reflects the free water content of tissue (units s-1).
This table provides an overview of the most commonly cited imaging biomarkers used in glioblastoma patients. Note that the prefix of ‘r’ before these imaging biomarkers represents
comparison to a reference region, that is usually the contralateral normal appearing brain parenchyma, but defined differently from study to study.
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Habitat imaging in glioblastoma:
Status and potential

Current experience

Several studies have investigated the potential of habitat

imaging for predicting relevant clinical endpoints in glioblastoma

(Table 2). Supplementary Figure 1 outlines the search strategy and

methodology used for this section. In general, there are two main

approaches to habitat imaging (Figure 2). The first (‘one step’)

involves using bioinformatics to cluster multi-dimensional imaging

biomarker datasets. In this approach, data from multiple imaging

biomarkers is combined into a common data table and clustering

methods such as hierarchical clustering are used to identify groups

(27, 30). The second approach involves two steps, in which data

from each individual biomarker is firstly split into data clusters and

multiple combinations of those clusters can be used to define

habitats (26).

The one step approach to deriving habitats is akin to clustering

across a genomic dataset. You et al. derived habitats using

hierarchical clustering in 21 glioblastoma patients and were able

to relate these to survival and tumour biology descriptively. They

found three main biomarker clusters that were named based on the

most clinically relevant biomarker of the group: ‘FLAIR’ cluster –

FLAIR, quantitative T1 and T2 signal, and ADC; MET cluster -

methionine positron emission tomography (MET PET; methionine

is an amino acid PET tracer that localises to metabolically active

tumour), CBV and KTrans (marker of permeability; defined in

Table 1); and diffusion-weighted imaging (DWI) cluster – DWI

and fractional anisotropy (FA; defined in Table 1). The necrotic

core was represented by the FLAIR cluster, surrounded by the core

cellular component represented by both the FLAIR and DWI

clusters, in turn encircled by a metabolically active rim

represented by the methionine cluster. This method was therefore

able to capture a degree of glioblastoma’s heterogeneity. The clinical

utility of their method was limited in detecting tumour recurrence,

localised to the methionine cluster in only 5 out of 10 cases (27).

Other studies have also found utility in applying the one-step

approach. Juan-Albarracı́ n et al. developed an automated

method of habitat generation using gaussian mixture

modelling applied to rCBV and relative cerebral blood flow

(rCBF; defined in Table 1) to produce four habitats – two in the

enhancing core (high/low angiogenic) and two in the oedema

(infiltrated and vasogenic). They demonstrated that the median

rCBVmax or rCBFmax values in the high and low angiogenic

habitats were predictive of survival (35). These findings were

subsequently validated in a multi-centre study (30). This group

has made their technique to generate habitats into a standardised

and adaptable pipeline for other centres (36).

The two step approach to generating habitats is more

commonly used in the literature (16, 22–26, 28, 29, 34). The

first step of biomarker clustering itself can be done using simple
Frontiers in Oncology 05
methods, such as by dividing intensity values based on average

values/quartiles, or using machine learning methods. Habitats

are then visualised as the overlaps of individual biomarker

clusters. For example, Lee et al. used this approach in 74

glioblastoma patients from The Cancer Genome Atlas

(TCGA), using Gaussian mixture modelling to cluster

biomarkers (enhancement on T1 with contrast and FLAIR),

which were then used to produce four habitats. Spatial features

of these habitats were predictive of survival and had a high

sensitivity for predicting glioblastoma transcriptomic subtype –

highest for the proneural subtype with an area under curve value

of 93% (22).

Only few studies have attempted to relate habitats to specific

histological or molecular signatures (Table 2) (25, 26, 28, 29).

Dextraze et al. analysed 85 glioblastoma patients from TCGA,

and reported that the volume of a habitat localised to necrotic

regions was positively correlated with an upregulation in

Nuclear factor kappa B signaling, for example (26). Bailo et al.

is the only study that attempted to directly sample characterised

habitats (34). They studied 17 high grade glioma patients and

used the two step approach with three biomarkers: vp - plasma

volume (a DCE-MRI biomarker; defined in Table 1), mean

diffusivity (defined in Table 1) and uptake of a PET tracer that

localizes to hypoxic regions. They undertook multi-regional

tumour sampling and related habitats to histopathological

features. Although conclusions were difficult to draw in view

of the sample size, they identified habitats correlated with more

aggressive histological features such as high cellularity and

neovascularization (34).

In summary, current experience with habitat imaging in

glioblastoma has mostly focused on the prognostic value of the

technique applied to preoperative imaging and, in general,

correlating habitat frequencies with global tumour biological

features/molecular pathways. Existing studies have not explored

technical considerations that are of critical importance to habitat

imaging and its validation, including derivation method,

biomarker selection, imaging acquisition parameters and tissue

sampling. These will be explored in the following sections to

provide a framework for future studies.
Technical considerations

There are several technical considerations of relevance to

habitat imaging.

One versus two step approach. Habitat generation has been

described using two main methods (Figure 2). The one step

approach clusters data from multiple imaging biomarkers

directly, whereas the two step approach has an intermediate

clustering step for each imaging biomarker selected. Both

techniques are dependent on accurate image registration,

which refers to the process of aligning different MRI scans.

Quantitative maps represent imaging biomarker values on each
frontiersin.org
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TABLE 2 Continued

Paper Patients Imaging habitats Survival/progression Histopathology Molecular

Biomarker
clustering

Habitat
generation

Otsu thresholding
to identify high/
low regions of
each biomarker in
enhancing tumour
or oedema

Multiple overlaps between
clusters – 8 habitats
possible

Habitats with high Vp/high FAZA
uptake (regardless of MD)
correlated with hyperplastic vessels
and cellularity with low rate of
necrosis.
Largest volumetric representation
was by ‘less aggressive’ habitats
comprising low Vp/low FAZA
uptake. These correlated with low
cellularity and no signs of
necrosis/angiogenesis.

Investigated oedema region only. Determined
optimal number of K-means clusters using
elbow plot method. Performed K-means
clustering and produced 4 habitats.

Defined high risk habitat in
oedema region based on
radiomic features. This habitat
improved performance of cox
regression model of overall
survival.

High risk habitat not
correlated with MGMT
methylation status

oblastoma. T1 + C, T1 with contrast; FLAIR, Fluid Attenuated Inversion Recovery; ADC, Apparent Diffusion Coefficient; DWI, Diffusion Weighted Imaging; FA,
ission tomography; FAZA PET, 8F-labeled fluoroazomycinarabinoside PET, localises to hypoxic regions; EPT, Electrical Properties Tomography imaging.
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Bailo 2022
Milan, Italy
(34)

High grade
gliomas
(including 12
glioblastomas)

Preoperative Vp
MD
FAZA PET

NR

Yang 2022
Xi’an,
China
(9)

Glioblastoma
(test cohort of
122,
validation
cohort of 65
patients)

Preoperative T1
T1+C
T2
FLAIR

Yes

This table summarises data from 15 studies that have performed habitat imaging in gl
Fractional Anisotropy; CBV, cerebral blood volume; MET PET, methionine positron em
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pixel (instead of signal intensity) and are produced from MRI

sequences to which they are inherently aligned (e.g. an ADC/

rCBV image is aligned to the DWI/dynamic susceptibility

contrast MRI from which it was derived, respectively). When

biomarker values are extracted from a three-dimensional image

to a two-dimensional table of data for clustering, they are done

so in pixel-order (i.e. from one edge of the image to the other),

which will differ from sequence to sequence due to differences in

resolution and therefore the number of potential ‘rows of data’.

In order to correct for this, image registration is performed to

spatially align and transform two images, but this results in

distortion of individual values. The newly aligned images will

include pixel values that were not present in the original data-set

but derived from neighbouring values through interpolation

(37). It is not ideal to register the whole quantitative map

therefore as it creates artificial data values and can amplify

artifacts, but this has been universally done in studies utilising

the one step approach to habitat imaging (34). A workaround is

to use multiple imaging biomarkers from the same MRI

sequence – such as with dynamic contrast enhanced (DCE)

MRI (demonstrated in Figure 2 – top panel). DCE-MRI offers a
Frontiers in Oncology 09
multitude of imaging biomarkers that can assess several aspects

of brain tumour physiology including vessel permeability

(KTrans), vascularity (vp - plasma volume), blood flow and cell

density (ve - extravascular extracellular space) (38). These have

been validated for use in other brain tumours such as vestibular

schwannomas (38), though DCE-MRI is under-utilised in

glioblastoma literature (39). Another solution is to use the two

step approach, which clusters each biomarker individually prior

to habitat generation. Registration is done on clustered data

which minimises the effect of extreme/artifactual values (which

would otherwise be present in the up-scaled, registered data at a

higher frequency). It is also predominantly the edge voxels

between different clusters that are affected by spatial

transformation steps. A comparison between the one and two

step techniques is required in future studies.

Biomarker choice. A significant limitation of most existing

studies is their reliance on imaging biomarkers derived from

non-quantitative, structural MRI sequences (e.g. T1- and T2-

weighted MRI). These sequences were developed for

visualisation of gross anatomy and for this purpose, there is a

high degree of consistency in brain structural morphology (40).
FIGURE 2

Habitat imaging methods in glioblastoma. This figure provides an overview of the two main approaches to deriving imaging habitats utilising
local preoperative data from 12 patients with glioblastoma undergoing surgery. (A) one step approach: a multi-dimensional dataset can be
produced utilising multiple imaging biomarkers from the same MRI acquisition (to avoid interpolation/registration errors), in this case Dynamic
Contrast Enhanced (DCE) MRI. Data from R1N – defined in Table 1 and three DCE-MRI imaging biomarkers (Ktrans, vp and ve) were input into a
machine learning K-means clustering algorithm to produce four distinct imaging habitats, that were distinct on Principal Component Analysis
(PCA; right). A disadvantage of this approach is its ‘black-box’ nature, such that it is not straightforward to define each habitat for prospective
validation. (B) Two step approach: this step first requires clustering of individual imaging biomarkers, in this case ADC and rCBV (left). Each pixel
is then assigned to a habitat based on its ADC/rCBV cluster, with multiple cluster combinations defining each habitat (grey box). The advantage
of this approach is that imaging biomarkers from different MRI acquisitions (e.g. diffusion and perfusion MRI) can be utilised. It is also easier to
define each habitat as the definition of each is derived from its individual ADC/rCBV cluster composition. This approach therefore allows for
prospective validation with pre-defined cluster thresholds.
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However, their signal intensity values are affected by hardware

factors, such as magnetic field strength inhomogeneity, head

placement within the receiver coil, image intensity scaling

factors and image acquisition parameters (41). It is difficult to

completely negate these effects or correct them using a

normalisation step (41). Habitats derived from functional MRI

sequences (e.g. diffusion/perfusion) have demonstrated the

greatest external validity and this approach should therefore be

favoured (30). The functional imaging biomarkers to consider

for habitat generation depend on the purpose of the exercise. If

this is a clinical aim, such as the identification of treatment-

resistant habitats, then robust biomarkers of cellularity and

perfusion are important. The imaging biomarkers should also

be readily available across centres to allow external validation/

adoption. In this case, we hypothesise that ADC, rCBV and

KTrans are good candidates to further explore, given their

sensitivity to treatment-related change and widespread use (42).

Biomarker calculation. The calculation method is an

important consideration for functional imaging biomarkers.

For example, the numerical value of DCE-MRI biomarkers

such as KTrans can vary in the same dataset depending on the

pharmacokinetic model used, due to different underlying

physiological assumptions (43). For DCE-MRI analysis in

glioblastoma, an extended Toft’s model is usually employed

that models contrast leakage between intra/extravascular tissue

compartments, modified ( ‘extended ’) for appropriate

contribution of the intravascular compartment (44). This can

be combined with new processing techniques such as the Legatos

method, described and validated by our group, which combines

high temporal and high spatial resolution DCE-MRI data, to

facilitate habitat imaging (used for Figure 2 top panel) (38, 45).

Different model assumptions also also apply to diffusion-derived

biomarkers such as ADC, which can be defined using a mono-

exponential model (fits a straight line through a graph of signal

intensity versus b-values - usually 0 and 1000 s/mm2; b-values

denote the strength of the magnetic field gradient applied in

diffusion MRI studies) and more complex exponential models

(fits a more complex function involving multiple b-values), with

the latter typically producing more accurate results (46).

However, to date, studies using ADC for habitat imaging have

used monoexponential models (16, 27). The Quantitative

Imaging Biomarkers Alliance (QIBA) is an ongoing effort that

aims to produce standards for use of specialist imaging such as

diffusion/perfusion MRI in clinical and research environments

(47). This work could help to standardise biomarker calculation

methods, which are currently diverse, poorly understood and

not robustly validated (47). As an example, although rCBV is

frequently cited in glioblastoma literature, the variation in how it

is derived is often not acknowledged. Indeed, it can be derived

from dynamic susceptibility contrast enhanced MRI (DSC-MRI)

using almost any major imaging analysis software package

(including FMRIB Software Library, 3D slicer©, Matlab© and

Osirix©) and each uses a different calculation method (48). In
Frontiers in Oncology 10
general, we recommend utilisation of robust biomarker

calculation methods that are amenable to external uptake and

therefore validation.

Image acquisition. Habitat generation requires a relatively

high spatial resolution. This should be small enough with respect

to the size of the tumour to avoid partial volume effects, which

occur with larger voxel sizes (i.e. thicker MRI slices) that average

MR signal from multiple tissue components included in each

voxel (49). However, there is a trade-off between spatial

resolution and the signal-to-noise ratio (SNR) that is needed

for accurate estimation of imaging biomarker values on a voxel-

level, like ADC and Ktrans (47, 50). The SNR is proportional to

voxel volume as larger voxels contain a higher number of

protons that subsequently produce a greater MR signal (49).

The imaging time must also be considered, as longer durations

can result in motion artifacts. Initiatives like QIBA provide

guidance for the acquisition of quantitative imaging

biomarkers and the use of such MR acquisition parameters

would allow a more robust comparison of habitats across

centres, especially in the case of multi-centre tissue sampling

(47). Scan angulation is another important consideration for the

two step approach to remain consistent between functional and

anatomical sequences (50). Where data from multiple

acquisitions is being utilised, if scan angulations are not

aligned, then potentially all data will be resampled and

interpolated during image registration. In summary, habitat

imaging requires a relatively high spatial resolution (2-3.5mm

slice thickness in our experience) that preserves the SNR, and

utilises sequences with relatively consistent angulation to

structural sequences.

Individual versus group level data. This is of particular

relevance to glioblastoma given its significant inter-patient

heterogeneity. The techniques described above consider

imaging biomarker data on an individual patient level.

Biomarker clustering is performed using threshold values

defined per patient, rather than the larger group. This is

largely because they utilize structural MRI sequences alone,

which are not validated for scaled comparisons between

patients. However, for quantitative imaging biomarkers, this is

an important consideration for glioblastoma given its significant

inter-patient heterogeneity. In our previous meta-analysis for

example, the mean tumoral blood flow relative to normal

appearing white matter across glioblastoma patients in the

literature varied from 1.6-7.9 (39). To demonstrate the

importance of group-level data, Figure 3 demonstrates

differences in ADC thresholds when clustering is performed at

the individual patient versus group level. The advantage of

group-level definitions is that they allow for reproducibility

across both retrospective and prospective datasets. Group-level

definitions should therefore be utilised in future studies.

Machine learning. Unsupervised machine learning

techniques can be used for clustering purposes. Studies have

used two main approaches:
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• Imaging sciences approaches: Otsu thresholding

analyses the distribution of pixel intensity values to

de t e rmine thr e sho ld va lue ( s ) to max imi s e

discrimination between (usually two) pixel classes (51).

This has been utilised in studies using structural as well

as quantitative MRI sequences (25, 28, 34). Both

commercial and open-source software packages are

also capable of applying predetermined thresholds to

automatically segment a region of interest into different

classes. For example, the open-source FMRIB’s

Automated Segmentation Tool (‘FAST’) can segment

brain images into white matter, grey matter and

cerebrospinal fluid (52). Although this tool was used in

one study investigating glioblastoma habitats, it is not

designed to segment tumour regions (24). These

techniques are usually applied to individual MRI

sequences and do not therefore account for inter-

patient heterogeneity.

• Classical approaches: k-means clustering separates data

into clusters by iteratively allocating data points to
tiers in Oncology 11
cluster ‘centroids’ (numerical points that represent a

group of adjacent data points) and updating centroids

to minimise the sum of squared distances between data

points and corresponding cluster centroids to which

they are assigned. This algorithm is very simple and

efficient, but sensitive to extreme values, given its

reliance on the mean for centroids. It also requires the

user to specify the number of clusters required (53).

Most existing studies using k-means clustering to

generate habitats have not described how the number

of clusters (i.e. habitats) was determined (26). This

typically requires additional analysis such as the within

cluster sum-of-squared or ‘Elbow plot’ method (54).

This method plots the number of clusters (x-axis)

against the sum of squared distance between each

point and the centroid (y-axis). The optimal number

of clusters is the point of maximal ‘bend’ or ‘elbow’ (33,

54). Gaussian mixture modelling clusters data by

identifying gaussians (i.e. normal distributions) within

the data distribution and it can perform hard or soft
FIGURE 3

The importance of considering group level data during clustering. This figure demonstrates the necessity of combining patient data for
clustering. The top panel shows preoperative ADC data from 12 glioblastoma patients after clustering, demonstrating a histogram with a smooth
gaussian shape. The bottom panel shows the results of clustering when data from only one individual patient is considered, revealing a more
irregular histogram and different cut off values for each cluster. Corresponding cluster regions are displayed visually on the left of each panel.
This technical consideration is of particular importance as it has implications for prospective habitat generation in validation cohorts, which is
dependent on robust predefined cut offs.
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clustering of data to different gaussians (53). The

presence of multiple gaussians is therefore an

assumption of this technique, which may not be

accurate. For example, Figure 3 shows only one

smooth ADC gaussian when data from all patients is

considered. Hierarchical clustering groups together

datapoints based on local proximity (53). This method

has only been applied to individual patient data rather

than group-level data, for which it was designed (27).
In summary therefore, the use of machine learning

techniques to generate imaging habitats in glioblastoma

requires further evaluation using robust methodology. In

particular, studies should justify the number of clusters

selected, rather than basing this figure on an arbitrary value.

The role of machine learning techniques should also be clarified

through comparison to simpler techniques such as ‘binning’ of

data-values into clusters based on quartile or mean values.

Deep-learning. Deep learning (DL) is a subfield of machine

learning that is capable of learning which features are most

relevant for classification/clustering problems. It is classically

described in three stages (55, 56):
1. Input of labelled training data – this is high-dimensional

data, which has been assigned labels manually. For

example, for a tumour segmentation task, this may be

pixels assigned as tumour or brain.

2. Development of neural network – this comprises an

input layer, one or more hidden layers and an output

layer. In simple terms, the input is mathematically

mapped to the output by a series of functions

(contained in hidden layers) that try to model the

relationship between the two. In imaging research, a

‘convolutional’ neural network (CNN) is typically used

which applies an additional convolution function (also

referred to as a kernel) to the input to provide an

estimation of spatial relationships (55).

3. Validation of neural network – this step utilises an

additional validation dataset to validate the neural

network that has been developed.
DL can be implemented in habitat imaging pipelines in at

least three ways:
1. Tumour segmentation: habitat imaging requires

accurate three-dimensional delineation of the tumour

and/or peritumoral oedema, to allow precise monitoring

of longitudinal changes and treatment planning (57).

Manual segmentation is time consuming and subjective,

even in expert hands, with a high inter-rater variability.

This was best illustrated in the Multimodal Brain
tiers in Oncology 12
Tumour Image Segmentation Benchmark (BRATS)

challenge, which compared glioma segmentation

algorithms against expert labelling. The authors found

a high degree of disagreement between human raters

(58). Approaches utilising a CNN can achieve/exceed

performance of experts. For example, in habitat

imaging, the ONCOhabitats algorithm proposed by

Juan- Albarracı́ n et al. utilises an initial segmentation

step incorporating a CNN. The authors developed this

utilising 210 high grade glioma scans from the BRATS

dataset, basing segmentation on structural sequences

(T1 pre and post gadolinium, T2-weighted and FLAIR-

MRI). Their method achieved a high sensitivity of up to

87% for whole tumour, and very high specificity of 99%

for all tumour regions (enhancing tumour/oedema/

whole tumour) (36).

2. Pharmacokinetic model fitting: this is of relevance to

techniques such as DCE-MRI. Traditionally, a non-

linear least square (NLLS) method is used to fit

pharmacokinetic models to the four-dimensional data

obtained from DCE-MRI (i.e. 3D volumes acquired

serially with time). DL methods such as CNN can

produce more precise parameter estimates with less

noise, although they are also prone to systematic

errors (59).

3. Habitat generation: a difficulty in using DL for habitat

generation in glioblastoma is its reliance on labelled data

and as a result, DL has not yet been used for this

purpose. A comprehensive reference resource with

labelled habitats would facilitate the development of

robust DL methods for habitat generation (see

Discussion).
In summary, DL is an evolving and exciting field, whose

methodology could be incorporated into the first arm of habitats

pipeline to allow semi-automated tumour segmentation.

However, at present, experience with DL is limited and its role

remains to be defined.

Habitat volume and sampling. This factor is of particular
clinical relevance to validate habitat methodology. In theory, any

number of imaging biomarkers can be clustered and combined

to produce habitats. However, an increasing number of

biomarkers and biomarker clusters decreases the habitat

volume limiting the possibility to cross validate the habitat

with tumour sampling. Furthermore, the conceptual meaning

of habitats may decrease the more biomarkers are used to define

them. Bailo et al. utilised image-guided biopsies to sample

habitats derived from three biomarkers clustered into two

categories each (low/high). However, only 19/31 biopsies they

performed contained a single habitat, whereas others contained

multiple habitats (34). This would suggest that even fewer
frontiersin.org

https://doi.org/10.3389/fonc.2022.1037896
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Waqar et al. 10.3389/fonc.2022.1037896
biomarkers should be utilised to allow a large enough volume to

allow accurate histological sampling. In the context of

glioblastoma, this should be at least 1 mm3, which is the

minimum volume of a brain biopsy (60). In reality, the

sampled area is likely to be even larger than this and therefore,

without adjusting habitat size, sampling of tissue will include

multiple habitats that will confound results. Relating habitats to

autopsy specimens should be avoided as these may be obtained

several months after the imaging study and sampled areas can be

much larger than habitat (24). As habitat samples are likely to be

small, efforts must be taken to preserve tumour cell viability.

This includes transporting them on dry ice and fixing/snap

freezing samples at the earliest possible convenience (61). An

alternative strategy to validating habitats, as utilised in other

cancers, relates to correlation with metabolic imaging such as

PET, although this less widely available (62). In summary, for

heterogenous tumours like glioblastoma, habitat sampling and

validation is important to guide the development of

personalised therapy.

These technical considerations highlight the need for future

studies to evaluate divergent methodologies that are not fully

explored, to provide reproducible habitats across centres.
Clinical application

A robust and reproducible method of defining glioblastoma

habitats has several clinical applications.

Tumour sampling. Habitat guided tumour sampling is

possible as habitat maps can be imported into conventional

neuronavigation software used in neurosurgical planning (34).

This software is capable of image registration but is optimised

for structural and functional MRI sequences. To avoid registration

errors in this specialist setting, it is therefore important for the final

habitat output map to be registered to a structural MRI sequence

(typically T1 post gladolinium) prior to its export into

neuronavigation software. It can then be used to direct surgical

sampling. The location of intra-operative biopsies can be mapped

back to MRI scans using the FMRIB Software Library’s upcoming

Tensor Imaging Registration Library (TIRL) tool, which can act as

a bridge between imaging and histopathology (79). Habitat-guided

tumour sampling has the potential to reduce spatial heterogeneity

between acquired specimens. Furthermore, in glioblastoma

patients undergoing biopsy alone, which comprise around 40%

of all cases (63), the tumoral yield could be increased by targeting

more cellular habitats - with lower ADC values for example. This is

also potentially advantageous for genomic sequencing analyses.

Treatment resistant habitats could also be sampled, especially in

the case of multi-focal and ‘butterfly’ glioblastomas (that cross the

corpus callosum) where a surgical target for biopsy is not

always clear.
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Diagnostics. Habitat imaging provides an additional tool for

radiologists to define a lesion’s imaging signature, which could

aid diagnostics. This is of particular relevance at present given

the increasing emphasis on early time point interventions for

newly-diagnosed glioblastoma, including preoperative therapies,

which may require imaging diagnosis alone (2). As an example,

PreOperative Brain Irradiation in Glioblastoma (POBIG -

NCT03582514) is an ongoing phase I trial (led by the senior

author of this review) that will evaluate the safety and feasibility

of preoperative radiotherapy in newly-diagnosed glioblastoma

patients based on imaging diagnosis alone (64). Confirmation of

diagnosis is of critical importance in preoperative treatment

studies and some have implemented a first step of a pre-

resection tumour biopsy to offset the risk of a misdiagnosis (65).

Targeted treatment. The habitat profile of a tumour may

correlate with key molecular changes such as O6-methylguanine-

DNA methyltransferase (MGMT) promotor methylation, which

could non-invasively aid the selection of patients for future

neoadjuvant trials (2, 66). In addition, interventional approaches

would benefit from prior knowledge of habitats that have

associated aggressive histopathological tumour signatures such

hypoxia. Notably, this cancer hallmark is present both

microscopically in tumour niches around palisading necrotic

regions, but also macroscopically, in hypoperfused areas such as

the peri-necrotic rim (8, 67). Treatment-resistant habitats could be

targeted with regional dose-boost radiotherapy and/or surgical

resection, such as in the case of butterfly lesions where there is

discrepancy in surgical decision making (68). This is an important

area to explore given the negative results from dose escalation

based on structural imaging and the ongoing attempts to improve

the outcome by escalating the dose in tumour areas identified on

functional imaging (69–71). Habitat-guided radiotherapy dose

boost is already being prospectively evaluated in prostate cancer

(72). Dynamic assessment of habitat treatment response offers a

more personalised approach that allows intensification of

treatment only when required, on a regional basis (Figure 1).
Discussion

Habitat imaging in glioblastoma has several potential clinical

benefits and applications but there remain a number of technical

challenges. Based on the imaging biomarker roadmap, suitable

data does not currently exist to evaluate this strategy towards

validation and more robust data is required (11).

Existing studies that have derived imaging habitats in

glioblastoma patients and studied their associated histological/

molecular characteristics are not comprehensive or sufficiently

robust (26, 34). There are multiple technical considerations of

relevance to both the process of imaging habitat generation and

subsequent histological validation, that require further study.
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The methodology employed to generate imaging habitats should

offer low variation/high repeatability within the same patient in

the absence of clinical change when imaging is performed

longitudinally. Such repeatability depends on the underlying

imaging biomarkers selected and has been demonstrated for

quantitative imaging biomarkers derived from diffusion and

perfusion MRI (73, 74).

Habitat volume is a key challenge that should be overcome

prior to histological validation. Multiple habitat inclusion in image-

guided biopsies can lead to non-specific results. For example, the

usual inverse correlation between mean diffusivity and cellularity

was not observed in the study by Bailo et al., in which over one third

of biopsies contained multiple habitats (34). Better characterisation

of the biology of habitats could also pave the way for DL techniques

to optimize habitat generation. As reviewed above, DL techniques

depend on labelled data points. A comprehensive investigation that

spatially links histopathological features (e.g. cellularity, perfusion

and necrosis) to multi-modal imaging would allow a CNN to be

trained that can provide parameter maps relating to these features.

This step is of primary importance towards translation and clinical

use of habitat imaging, which is otherwise time consuming and

reliant on specialist software/expertise.

Habitat imaging in other cancer types including breast,

prostate and sarcoma has reached histological or preclinical

validation, and even clinical use (62, 72, 75). Some experiences

have utilised additional strategies to those reviewed above that

merit discussion. Xing et al. described an initial step of

qualitatively defining five habitats based on radiologists’

assessment of T2/diffusion weighted MRI in 18 patients with

biopsy-proven soft tissue sarcoma. As a second step, they then

utilised gaussian mixture modelling to create quantitative

definitions that described the probability of a pixel belonging

to one of these specific habitats. This approach identified a

validated necrotic habitat that correlated well with preoperative

fluorodeoxyglucose-(FDG)-PET, which increased after

preoperative radiotherapy (62). Another approach utilised in a

preclinical sarcoma mouse model involves registering fine cut

tissue sections to multiparametric imaging, to identify imaging

signatures predictive of specific histologically defined habitats

(76). This is challenging in glioblastoma patients as it requires

en-bloc resection, which is only feasible in limited locations

within the brain and in most cases will not capture infiltrative

components of the tumour periphery (77), or the availability of

temporally correlated post-mortem specimens. However, unlike

experiences in glioblastoma patients, both of these strategies

limit the number of imaging habitats to those apparent clinically.

Understanding the biological meaning of habitats is of

direct clinical importance and experience in prostate cancer

has demonstrated its value. Stoyanova et al. defined habitats

based on DCE/ADC MRI and correlated them with Gleason

scores on finely cut prostate cancer sections. Their prior work

had identified thresholds based on DCE/ADC that correlated
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with higher Gleason scores. They identified a habitat that

correlated well with a Gleason score of ≥7, representing

increased likelihood of cancerous tissue, with an area under

curve of 0.8. This habitat is now being prospectively targeted

with regional dose boost radiotherapy in a phase II randomised

trial (72).

A limitation of concepts presented in this work is reliance on

relatively small studies with largely un-validated methodologies.

There is wide scope for refinement and validation of imaging

habitat techniques in glioblastoma patients specifically given that

firstly, multiparametric MRI is a standard of care, and secondly that

MRI-guided surgery is routine in the brain (78). Future studies

should therefore focus on histologically validating robustly-derived

imaging habitats. A generic limitation of studies in other cancer

types is the lack of real-time tissue sampling from habitats and

reliance on registration of histological sections with imaging. This is

not always reliable, given the gantry angle of MRI machines and

potential for tissue distortion during slice extraction

and preparation.
Conclusion

Habitat imaging is a relatively novel concept that reflects

the evolution of imaging biomarkers, to potentially offer a

superior means to assess tumour biology and response to

treatment in glioblastoma. At present, literature is limited

and further studies are required to both robustly generate and

validate this technique. This is an important area of research

given the multiple clinical applications of habitat imaging

that could facilitate more personalised therapy Glioblastoma.

Future studies should investigate clustering techniques

(machine learning vs. simpler strategies), choice of imaging

biomarkers, habitat reproducibility/external validity and

means to histologically validate findings, towards the

common goal of identifying strategies to overcome

treatment-resistance of habitat defined regions.
Data availability statement

All datasets presented in this study are included in the

article/Supplementary Material.
Author contributions

MW: drafted manuscript, performed literature review, aided

with figures. PVH: drafted manuscript, aided in literature review,

reviewed manuscript. EH: aided in literature review and

reviewing manuscript draft. K-LL and XZ: produced tables

and data for figures, reviewed manuscript draft. AJ: designed
frontiersin.org

https://doi.org/10.3389/fonc.2022.1037896
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Waqar et al. 10.3389/fonc.2022.1037896
concept, reviewed manuscript. MI: oversaw machine learning

sections, reviewed manuscript draft. JO’C: designed concept,

aided in processing figures, reviewed manuscript. ID: designed

concept, reviewed manuscript. UVH: designed concept,

reviewed manuscript. DC and GB: formulated concept of

study, obtained original data for figures, oversaw manuscript

editing and finalization. All authors contributed to the article

and approved the submitted version.
Acknowledgments

The authors acknowledge Istvan Huszar (contributor to the

FMRIB Software Library) from the University of Oxford for his

assistance with image registration.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Oncology 15
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1037896/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Search strategy. To review the current evidence on imaging habitats,

MEDLINE was queried systematically using the search terms described by
two independent authors (MW, PVH) with discrepancies resolved through

discussion with a third (EH). A total of 15 articles were included in the final
review relating to imaging habitats that are summarised in .
References
1. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ,
et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
N Engl J Med (2005) 352(10):987–96. doi: 10.1056/NEJMoa043330

2. Waqar M, Roncaroli F, Lehrer EJ, Palmer JD, Villanueva-Meyer J, Braunstein
S, et al. Early therapeutic interventions for newly diagnosed glioblastoma: Rationale
and review of the literature. Curr Oncol Rep (2022) 24(3):311–24. doi: 10.1007/
s11912-021-01157-0

3. Waqar M, Trifiletti DM, Mcbain C, O'connor J, Coope DJ, Akkari L, et al.
Rapid early progression (REP) of glioblastoma is an independent negative
prognostic factor: Results from a systematic review and meta-analysis.
Neurooncol Adv (2022) 4(1):vdac075.

4. Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E,
et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature (2019)
576(7785):112–20. doi: 10.1038/s41586-019-1775-1

5. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC,
et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary
dynamics. Proc Natl Acad Sci U S A (2013) 110(10):4009–14. doi: 10.1073/
pnas.1219747110

6. Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K, Salie H, et al. Spatially
resolved multi-omics deciphers bidirectional tumor-host interdependence in
glioblastoma. Cancer Cell (2022) 40(6):639–55.e13. doi: 10.1016/j.ccell.2022.05.009

7. Aderetti DA, Hira VVV, Molenaar RJ, and Van Noorden CJF. The hypoxic
peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches
in human glioblastoma. Biochim Biophys Acta Rev Cancer (2018) 1869(2):346–54.
doi: 10.1016/j.bbcan.2018.04.008

8. Lam KHB, Leon AJ, Hui W, Lee SC, Batruch I, Faust K, et al. Topographic
mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral
heterogeneity. Nat Commun (2022) 13(1):116. doi: 10.1038/s41467-021-27667-w

9. Yang Y, Han Y, Zhao S, Xiao G, Guo L, Zhang X, et al. Spatial heterogeneity
of edema region uncovers survival-relevant habitat of glioblastoma. Eur J Radiol
(2022) 154:110423. doi: 10.1016/j.ejrad.2022.110423

10. Choi SW, Cho HH, Koo H, Cho KR, Nenning KH, Langs G, et al. Multi-
habitat radiomics unravels distinct phenotypic subtypes of glioblastoma with
clinical and genomic significance. Cancers (Basel) (2020) 12(7). doi: 10.3390/
cancers12071707
11. O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ,
et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol (2017) 14
(3):169–86. doi: 10.1038/nrclinonc.2016.162

12. Li KL, Djoukhadar I, Zhu X, Zhao S, Lloyd S, Mccabe M, et al. Vascular
biomarkers derived from dynamic contrast-enhanced MRI predict response of
vestibular schwannoma to antiangiogenic therapy in type 2 neurofibromatosis.
Neuro-oncology (2016) 18(2):275–82. doi: 10.1093/neuonc/nov168

13. Singh G, Manjila S, Sakla N, True A, Wardeh AH, Beig N, et al. Radiomics
and radiogenomics in gliomas: a contemporary update. Br J Cancer (2021) 125
(5):641–57. doi: 10.1038/s41416-021-01387-w

14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than
pictures, they are data. Radiology (2016) 278(2):563–77. doi: 10.1148/
radiol.2015151169

15. Xie C, Yang P, Zhang X, Xu L, Wang X, Li X, et al. Sub-Region based
radiomics analysis for survival prediction in oesophageal tumours treated by
definitive concurrent chemoradiotherapy. EBioMedicine (2019) 44:289–97. doi:
10.1016/j.ebiom.2019.05.023

16. Khalifa J, Tensaouti F, Lotterie JA, Catalaa I, Chaltiel L, Benouaich-Amiel A,
et al. Do perfusion and diffusion MRI predict glioblastoma relapse sites following
chemoradiation? J Neurooncol (2016) 130(1):181–92. doi: 10.1007/s11060-016-
2232-8

17. Napel S, Mu W, Jardim-Perassi BV, Aerts H, Gillies RJ. Quantitative
imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and
habitats. Cancer (2018) 124(24):4633–49. doi: 10.1002/cncr.31630

18. Spence AM, Muzi M, Swanson KR, O'sullivan F, Rockhill JK, Rajendran JG,
et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]
fluoromisonidazole positron emission tomography before radiotherapy:
Correlation with time to progression and survival. Clin Cancer Res (2008) 14
(9):2623–30. doi: 10.1158/1078-0432.CCR-07-4995

19. Pruis IJ, Koene SR, Van Der Voort SR, Incekara F, Vincent A, Van Den Bent
MJ, et al. Noninvasive differentiation of molecular subtypes of adult nonenhancing
glioma using MRI perfusion and diffusion parameters.Neurooncol Adv (2022) 4(1):
vdac023. doi: 10.1093/noajnl/vdac023

20. Lee DH, Park JE, Kim N, Park SY, Kim YH, Cho YH, et al. Tumor habitat
analysis by magnetic resonance imaging distinguishes tumor progression from
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.1037896/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1037896/full#supplementary-material
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1007/s11912-021-01157-0
https://doi.org/10.1007/s11912-021-01157-0
https://doi.org/10.1038/s41586-019-1775-1
https://doi.org/10.1073/pnas.1219747110
https://doi.org/10.1073/pnas.1219747110
https://doi.org/10.1016/j.ccell.2022.05.009
https://doi.org/10.1016/j.bbcan.2018.04.008
https://doi.org/10.1038/s41467-021-27667-w
https://doi.org/10.1016/j.ejrad.2022.110423
https://doi.org/10.3390/cancers12071707
https://doi.org/10.3390/cancers12071707
https://doi.org/10.1038/nrclinonc.2016.162
https://doi.org/10.1093/neuonc/nov168
https://doi.org/10.1038/s41416-021-01387-w
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ebiom.2019.05.023
https://doi.org/10.1007/s11060-016-2232-8
https://doi.org/10.1007/s11060-016-2232-8
https://doi.org/10.1002/cncr.31630
https://doi.org/10.1158/1078-0432.CCR-07-4995
https://doi.org/10.1093/noajnl/vdac023
https://doi.org/10.3389/fonc.2022.1037896
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Waqar et al. 10.3389/fonc.2022.1037896
radiation necrosis in brain metastases after stereotactic radiosurgery. Eur Radiol
(2022) 32(1):497–507. doi: 10.1007/s00330-021-08204-1

21. O'Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A, et al.
Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical
outcome. Clin Cancer Res (2015) 21(2):249–57. doi: 10.1158/1078-0432.CCR-14-
0990

22. Lee J, Narang S, Martinez J, Rao G, Rao A. Spatial habitat features derived
from multiparametric magnetic resonance imaging data are associated with
molecular subtype and 12-month survival status in glioblastoma multiforme.
PloS One (2015) 10(9):e0136557. doi: 10.1371/journal.pone.0136557

23. Lee J, Narang S, Martinez JJ, Rao G, Rao A. Associating spatial diversity
features of radiologically defined tumor habitats with epidermal growth factor
receptor driver status and 12-month survival in glioblastoma: Methods and
preliminary investigation. J Med Imaging (Bellingham) (2015) 2(4):041006. doi:
10.1117/1.JMI.2.4.041006

24. McGarry SD, Hurrell SL, Kaczmarowski AL, Cochran EJ, Connelly J, Rand
SD, et al. Magnetic resonance imaging-based radiomic profiles predict patient
prognosis in newly diagnosed glioblastoma before therapy. Tomography (2016) 2
(3):223–8. doi: 10.18383/j.tom.2016.00250

25. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA, et al.
Identifying spatial imaging biomarkers of glioblastoma multiforme for survival
group prediction. J Magn Reson Imaging (2017) 46(1):115–23. doi: 10.1002/
jmri.25497

26. Dextraze K, Saha A, Kim D, Narang S, Lehrer M, Rao A, et al. Spatial
habitats from multiparametric MR imaging are associated with signaling pathway
activities and survival in glioblastoma. Oncotarget (2017) 8(68):112992–3001. doi:
10.18632/oncotarget.22947

27. You D, Kim MM, Aryal MP, Parmar H, Piert M, Lawrence TS, et al. Tumor
image signatures and habitats: A processing pipeline of multimodality metabolic
and physiological images. J Med Imaging (Bellingham) (2018) 5(1):011009.

28. Stringfield O, Arrington JA, Johnston SK, Rognin NG, Peeri NC,
Balagurunathan Y, et al. Multiparameter MRI predictors of long-term survival in
glioblastoma multiforme. Tomography (2019) 5(1):135–44. doi: 10.18383/
j.tom.2018.00052

29. Li C, Yan JL, Torheim T, Mclean MA, Boonzaier NR, Zou , et al. Low
perfusion compartments in glioblastoma quantified by advanced magnetic
resonance imaging and correlated with patient survival. Radiother Oncol (2019)
134:17–24. doi: 10.1016/j.radonc.2019.01.008

30. Del Mar Alvarez-Torres M, Juan-Albarracin J, Fuster-Garcia E, Bellvis-
Bataller F, Lorente D, Reynes G, et al. Robust association between vascular habitats
and patient prognosis in glioblastoma: An international multicenter study. J Magn
Reson Imaging (2020) 51(5):1478–86. doi: 10.1002/jmri.26958

31. Park JE, Kim HS, Kim N, Kim YH, Kim JH, Kim E, et al. Low conductivity
on electrical properties tomography demonstrates unique tumor habitats
indicating progression in glioblastoma. Eur Radiol (2021) 31(9):6655–65. doi:
10.1007/s00330-021-07976-w

32. Park JE, Kim HS, Kim N, Park SY, Kim YH, Kim JH, et al. Spatiotemporal
heterogeneity in multiparametric physiologic MRI is associated with patient
outcomes in IDH-wildtype glioblastoma. Clin Cancer Res (2021) 27(1):237–45.
doi: 10.1158/1078-0432.CCR-20-2156

33. Xu X, Samaras D, Prasanna P. Radiologically defined tumor-habitat
adjacency as a prognostic biomarker in glioblastoma. Annu Int Conf IEEE Eng
Med Biol Soc (2021) 2021:3998–4001. doi: 10.1109/EMBC46164.2021.9629779

34. Bailo M, Pecco N, Callea M, Scifo P, Gagliardi F, Presotto L, et al. Decoding
the heterogeneity of malignant gliomas by PET and MRI for spatial habitat analysis
of hypoxia, perfusion, and diffusion imaging: A preliminary study. Front Neurosci
(2022) 16:885291. doi: 10.3389/fnins.2022.885291

35. Juan-Albarracin J, Fuster-Garcia E, Perez-Girbes A, Aparici-Robles F,
Alberich-Bayarri A, Revert-Ventura A, et al. Glioblastoma: Vascular habitats
detected at preoperative dynamic susceptibility-weighted contrast-enhanced
perfusion MR imaging predict survival. Radiology (2018) 287(3):944–54. doi:
10.1148/radiol.2017170845

36. Juan-Albarracin J, Fuster-Garcia E, Garcia-Ferrando GA, Garcia-Gomez
JM. ONCOhabitats: A system for glioblastoma heterogeneity assessment through
MRI. Int J Med Inform (2019) 128:53–61. doi: 10.1016/j.ijmedinf.2019.05.002

37. Jenkinson M, Chappell M. Introduction to neuroimaging analysis. 1st ed.
New York, NY: Oxford University Press (2018) xvii(258).

38. Lewis D, Roncaroli F, Agushi E, Mosses D, Williams R, Li KL, et al.
Inflammation and vascular permeability correlate with growth in sporadic
vestibular schwannoma. Neuro-oncology (2019) 21(3):314–25. doi: 10.1093/
neuonc/noy177

39. Waqar M, Lewis D, Agushi E, Gittins M, Jackson A, Coope D. Cerebral and
tumoral blood flow in adult gliomas: A systematic review of results from magnetic
resonance imaging. Br J Radiol (2021) 94(1125):20201450. doi: 10.1259/
bjr.20201450
Frontiers in Oncology 16
40. McGuire SA, Wijtenburg SA, Sherman PM, Rowland LM, Ryan M, Sladky
JH, et al. Reproducibility of quantitative structural and physiological MRI
measurements. Brain Behav (2017) 7(9):e00759. doi: 10.1002/brb3.759

41. Nerland S, Jorgensen KN, NordhoyW, Maximov Ii Bugge RaB , Westlye LT,
et al. Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A
comparison of processing methods. Neuroimage (2021) 245:118709. doi: 10.1016/
j.neuroimage.2021.118709

42. Kong Z, Yan C, Zhu R, Wang J, Wang Y, Wang Y, et al. Imaging biomarkers
guided anti-angiogenic therapy for malignant gliomas. NeuroImage Clin (2018)
20:51–60. doi: 10.1016/j.nicl.2018.07.001

43. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced
MRI. NMR BioMed (2013) 26(8):1004–27. doi: 10.1002/nbm.2940

44. Sourbron SP, Buckley DL. On the scope and interpretation of the tofts
models for DCE-MRI. Magn Reson Med (2011) 66(3):735–45. doi: 10.1002/
mrm.22861

45. Li KL, Lewis D, Coope DJ, Roncaroli F, Agushi E, Pathmanaban ON, et al.
The LEGATOS technique: A new tissue-validated dynamic contrast-enhanced MRI
method for whole-brain, high-spatial resolution parametric mapping. Magn Reson
Med (2021). doi: 10.1002/mrm.28842

46. Kwee TC, Galban CJ, Tsien C, Junck L, Sundgren PC, Ivancevic MK, et al.
Comparison of apparent diffusion coefficients and distributed diffusion coefficients
in high-grade gliomas. J Magn Reson Imaging (2010) 31(3):531–7. doi: 10.1002/
jmri.22070

47. Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz
LH, Malyarenko D, et al. Quantitative imaging biomarkers alliance (QIBA)
recommendations for improved precision of DWI and DCE-MRI derived
biomarkers in multicenter oncology trials. J Magn Reson Imaging (2019) 49(7):
e101–e21.

48. OSIPI task force 1.2: DCE/DSC software inventory . Available at: https://
osipi.org/task-force-1-2/.

49. Scouten A, Papademetris X, Constable RT. Spatial resolution, signal-to-
noise ratio, and smoothing in multi-subject functional MRI studies. Neuroimage
(2006) 30(3):787–93. doi: 10.1016/j.neuroimage.2005.10.022

50. Winfield JM, Payne GS, Weller A, Desouza NM. DCE-MRI, DW-MRI, and
MRS in cancer: Challenges and advantages of implementing qualitative and
quantitative multi-parametric imaging in the clinic. Top Magn Reson Imaging
(2016) 25(5):245–54. doi: 10.1097/RMR.0000000000000103

51. Xue JH, Titterington DM. T-tests, f-tests and otsu's methods for image
thresholding. IEEE Trans Image Process (2011) 20(8):2392–6.

52. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a
hidden Markov random field model and the expectation-maximization algorithm.
IEEE Trans Med Imaging (2001) 20(1):45–57. doi: 10.1109/42.906424

53. Kassambara A. Practical guide to cluster analysis in r: unsupervised machine
learning. (2017).

54. Sammouda R, El-Zaart A. An optimized approach for prostate image
segmentation using K-means clustering algorithm with elbow method. Comput
Intell Neurosci (2021) 2021:4553832. doi: 10.1155/2021/4553832

55. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural
networks: An overview and application in radiology. Insights Imaging (2018) 9
(4):611–29. doi: 10.1007/s13244-018-0639-9

56. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature (2015) 521
(7553):436–44. doi: 10.1038/nature14539

57. Shah GD, Kesari S, Xu R, Batchelor TT, O'neill AM, Hochberg FH, et al.
Comparison of linear and volumetric criteria in assessing tumor response in adult
high-grade gliomas. Neuro-oncology (2006) 8(1):38–46. doi: 10.1215/
S1522851705000529

58. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al.
The multimodal brain tumor image segmentation benchmark (BRATS). IEEE
Trans Med Imaging (2015) 34(10):1993–2024. doi: 10.1109/TMI.2014.2377694

59. Ottens T, Barbieri S, Orton MR, Klaassen R, Van Laarhoven HWM, Crezee
H, et al. Deep learning DCE-MRI parameter estimation: Application in pancreatic
cancer. Med Image Anal (2022) 80:102512. doi: 10.1016/j.media.2022.102512

60. Katzendobler S, Do A, Weller J, Dorostkar MM, Albert NL, Forbrig R, et al.
Diagnostic yield and complication rate of stereotactic biopsies in precision medicine
of gliomas. Front Neurol (2022) 13:822362. doi: 10.3389/fneur.2022.822362

61. Mook S, Bonnefoi H, Pruneri G, Larsimont D, Jaskiewicz J, Sabadell MD,
et al. Daily clinical practice of fresh tumour tissue freezing and gene expression
profiling; logistics pilot study preceding the MINDACT trial. Eur J Cancer (2009)
45(7):1201–8. doi: 10.1016/j.ejca.2009.01.004

62. Xing S, Freeman CR, Jung S, Turcotte R, Levesque IR. Probabilistic
classification of tumour habitats in soft tissue sarcoma. NMR Biomed (2018) 31
(11):e4000. doi: 10.1002/nbm.4000

63. Bauchet L, Mathieu-Daude H, Fabbro-Peray P, Rigau V, Fabbro M, Chinot
O, et al. Oncological patterns of care and outcome for 952 patients with newly
frontiersin.org

https://doi.org/10.1007/s00330-021-08204-1
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.1371/journal.pone.0136557
https://doi.org/10.1117/1.JMI.2.4.041006
https://doi.org/10.18383/j.tom.2016.00250
https://doi.org/10.1002/jmri.25497
https://doi.org/10.1002/jmri.25497
https://doi.org/10.18632/oncotarget.22947
https://doi.org/10.18383/j.tom.2018.00052
https://doi.org/10.18383/j.tom.2018.00052
https://doi.org/10.1016/j.radonc.2019.01.008
https://doi.org/10.1002/jmri.26958
https://doi.org/10.1007/s00330-021-07976-w
https://doi.org/10.1158/1078-0432.CCR-20-2156
https://doi.org/10.1109/EMBC46164.2021.9629779
https://doi.org/10.3389/fnins.2022.885291
https://doi.org/10.1148/radiol.2017170845
https://doi.org/10.1016/j.ijmedinf.2019.05.002
https://doi.org/10.1093/neuonc/noy177
https://doi.org/10.1093/neuonc/noy177
https://doi.org/10.1259/bjr.20201450
https://doi.org/10.1259/bjr.20201450
https://doi.org/10.1002/brb3.759
https://doi.org/10.1016/j.neuroimage.2021.118709
https://doi.org/10.1016/j.neuroimage.2021.118709
https://doi.org/10.1016/j.nicl.2018.07.001
https://doi.org/10.1002/nbm.2940
https://doi.org/10.1002/mrm.22861
https://doi.org/10.1002/mrm.22861
https://doi.org/10.1002/mrm.28842
https://doi.org/10.1002/jmri.22070
https://doi.org/10.1002/jmri.22070
https://osipi.org/task-force-1-2/
https://osipi.org/task-force-1-2/
https://doi.org/10.1016/j.neuroimage.2005.10.022
https://doi.org/10.1097/RMR.0000000000000103
https://doi.org/10.1109/42.906424
https://doi.org/10.1155/2021/4553832
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1215/S1522851705000529
https://doi.org/10.1215/S1522851705000529
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1016/j.media.2022.102512
https://doi.org/10.3389/fneur.2022.822362
https://doi.org/10.1016/j.ejca.2009.01.004
https://doi.org/10.1002/nbm.4000
https://doi.org/10.3389/fonc.2022.1037896
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Waqar et al. 10.3389/fonc.2022.1037896
diagnosed glioblastoma in 2004. Neuro-oncology (2010) 12(7):725–35. doi:
10.1093/neuonc/noq030

64. PreOperative brain irradiation in glioblastoma (POBIG) (2022). Available at:
https://clinicaltrials.gov/ct2/show/NCT03582514.

65. Neoadjuvant chemoradiation for resectable glioblastoma (NeoGlio) (2022).
Available at: https://clinicaltrials.gov/ct2/show/NCT04209790.

66. Jiang H, Zeng W, Ren X, Cui Y, Li M, Yang K, et al. Super-early initiation of
temozolomide prolongs the survival of glioblastoma patients without gross-total
resection: A retrospective cohort study. J Neurooncol (2019) 144(1):127–35. doi:
10.1007/s11060-019-03211-1

67. Collet S, Guillamo JS, Berro DH, Chakhoyan A, Constans JM, Lechapt-
Zalcman E, et al. Simultaneous mapping of vasculature, hypoxia, and proliferation
using dynamic susceptibility contrast MRI, (18)F-FMISO PET, and (18)F-FLT PET
in relation to contrast enhancement in newly diagnosed glioblastoma. J Nucl Med
(2021) 62(10):1349–56. doi: 10.2967/jnumed.120.249524

68. Chawla S, Kavouridis VK, Boaro A, Korde R, Amaral Medeiros S, Edrees H,
et al. Surgery vs. biopsy in the treatment of butterfly glioblastoma: A systematic
review and meta-analysis. Cancers (Basel) (2022) 14(2). doi: 10.3390/
cancers14020314

69. Harat M, Blok M, Miechowicz I, Wiatrowska I, Makarewicz K, Malkowski
B, et al. Safety and efficacy of irradiation boost based on 18F-FET-PET in patients
with newly diagnosed glioblastoma. Clin Cancer Res (2022) 28(14):3011–20. doi:
10.1158/1078-0432.CCR-22-0171

70. Laack NN, Pafundi D, Anderson SK, Kaufmann T, Lowe V, Hunt C, et al.
Initial results of a phase 2 trial of (18)F-DOPA PET-guided dose-escalated
radiation therapy for glioblastoma. Int J Radiat Oncol Biol Physics (2021) 110
(5):1383–95. doi: 10.1016/j.ijrobp.2021.03.032

71. Gondi V, Pugh S, Tsien C, Chenevert T, Gilbert M, Omuro A, et al.
Radiotherapy (RT) dose-intensification (DI) using intensity-modulated RT
(IMRT) versus standard-dose (SD) RT with temozolomide (TMZ) in newly
diagnosed glioblastoma (GBM): Preliminary results of NRG oncology BN001.
Frontiers in Oncology 17
Int J Radiat Oncol Biol Physics (2020) 108(3):S22–S3. doi: 10.1016/
j.ijrobp.2020.07.2109

72. Stoyanova R, Chinea F, Kwon D, Reis IM, Tschudi Y, Parra NA, et al. An
automated multiparametric MRI quantitative imaging prostate habitat risk scoring
system for defining external beam radiation therapy boost volumes. Int J Radiat
Oncol Biol Physics (2018) 102(4):821–9. doi: 10.1016/j.ijrobp.2018.06.003

73. Paldino MJ, Barboriak D, Desjardins A, Friedman HS, Vredenburgh JJ.
Repeatability of quantitative parameters derived from diffusion tensor imaging in
patients with glioblastoma multiforme. J Magn Reson Imaging (2009) 29(5):1199–
205. doi: 10.1002/jmri.21732

74. Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjornerud A, Vangel
MG, Gerstner ER, et al. Repeatability of cerebral perfusion using dynamic
susceptibility contrast MRI in glioblastoma patients. Transl Oncol (2015) 8
(3):137–46. doi: 10.1016/j.tranon.2015.03.002

75. Jardim-Perassi BV, Huang S, Dominguez-Viqueira W, Poleszczuk J,
Budzevich MM, Abdalah MA, et al. Multiparametric MRI and coregistered
histology identify tumor habitats in breast cancer mouse models. Cancer Res
(2019) 79(15):3952–64. doi: 10.1158/0008-5472.CAN-19-0213

76. Jardim-Perassi BV, Mu W, Huang S, Tomaszewski MR, Poleszczuk J,
Abdalah MA, et al. Deep-learning and MR images to target hypoxic habitats
with evofosfamide in preclinical models of sarcoma. Theranostics (2021) 11
(11):5313–29. doi: 10.7150/thno.56595

77. Burger PC, Heinz ER, Shibata T, Kleihues P. Topographic anatomy and CT
correlations in the untreated glioblastoma multiforme. J Neurosurg (1988) 68
(5):698–704. doi: 10.3171/jns.1988.68.5.0698

78. Thomas NWD, Sinclair J. Image-guided neurosurgery: History and current
clinical applications. J Med Imaging Radiat Sci (2015) 46(3):331–42. doi: 10.1016/
j.jmir.2015.06.003

79. Huszar IN, Pallebage-Gamarallage M, Foxley S, Tendler BC, Leonte A,
Hiemstra M, et al. Tensor Image registration library: Automated non-linear
registration of sparsely sampled histological specimens to post-mortem MRI of
the Whole Human Brain. bioRxiv 849570
frontiersin.org

https://doi.org/10.1093/neuonc/noq030
https://clinicaltrials.gov/ct2/show/NCT03582514
https://clinicaltrials.gov/ct2/show/NCT04209790
https://doi.org/10.1007/s11060-019-03211-1
https://doi.org/10.2967/jnumed.120.249524
https://doi.org/10.3390/cancers14020314
https://doi.org/10.3390/cancers14020314
https://doi.org/10.1158/1078-0432.CCR-22-0171
https://doi.org/10.1016/j.ijrobp.2021.03.032
https://doi.org/10.1016/j.ijrobp.2020.07.2109
https://doi.org/10.1016/j.ijrobp.2020.07.2109
https://doi.org/10.1016/j.ijrobp.2018.06.003
https://doi.org/10.1002/jmri.21732
https://doi.org/10.1016/j.tranon.2015.03.002
https://doi.org/10.1158/0008-5472.CAN-19-0213
https://doi.org/10.7150/thno.56595
https://doi.org/10.3171/jns.1988.68.5.0698
https://doi.org/10.1016/j.jmir.2015.06.003
https://doi.org/10.1016/j.jmir.2015.06.003
https://doi.org/10.3389/fonc.2022.1037896
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Visualising spatial heterogeneity in glioblastoma using imaging habitats
	Introduction
	Imaging biomarkers
	Habitat imaging definition
	Habitat imaging in glioblastoma: Status and potential
	Current experience
	Technical considerations
	Clinical application

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


