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Impact of intestinal dysbiosis
on breast cancer metastasis
and progression

Jin Zhang, Qiqi Xie, Xingfa Huo, Zhilin Liu, Mengting Da,
Mingxue Yuan, Yi Zhao and Guoshuang Shen*

Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University,
Xining, China
Breast cancer has a high mortality rate among malignant tumors, with

metastases identified as the main cause of the high mortality. Dysbiosis of

the gutmicrobiota has become a key factor in the development, treatment, and

prognosis of breast cancer. The many microorganisms that make up the gut

flora have a symbiotic relationship with their host and, through the regulation of

host immune responses and metabolic pathways, are involved in important

physiologic activities in the human body, posing a significant risk to health. In

this review, we build on the interactions between breast tissue (including tumor

tissue, tissue adjacent to the tumor, and samples from healthy women) and the

microbiota, then explore factors associated with metastatic breast cancer and

dysbiosis of the gut flora from multiple perspectives, including enterotoxigenic

Bacteroides fragilis, antibiotic use, changes in gut microbial metabolites,

changes in the balance of the probiotic environment and diet. These factors

highlight the existence of a complex relationship between host-breast cancer

progression-gut flora. Suggesting that gut flora dysbiosis may be a host-

intrinsic factor affecting breast cancer metastasis and progression not only

informs our understanding of the role of microbiota dysbiosis in breast cancer

development and metastasis, but also the importance of balancing gut flora

dysbiosis and clinical practice.
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1 Background

1.1 Epidemiology and staging of
breast cancer

The 2020 Global Cancer Statistics report shows that female

breast cancer is the most common cancer worldwide, with the

highest number of new cases annually (approximately 11.7% of

all new cases in both men and women), having overtaken lung

cancer (11.4%) (1). There are four main subtypes of breast

cancer, approximately 75% of them are positive for ER and/or

PR (2). The luminal A (ER and PR positive, HER2 negative, low

Ki67) subtype accounts for approximately 40% of all cases; it is

characterized by low invasiveness, a low recurrence rate, a high

survival rate, and the best response to hormonal therapy (3). In

turn, the luminal B (ER and PR positive, HER2 positive or HER2

negative, with high Ki67) subtype is responsible for 10–20% of

all cancer cases, has a higher relapse rate, proliferative index, and

lower recurrence survival (4–6). HER2 positive (non-luminal)

were defined as HER2 overexpression or amplification, ER and

PR absence, and survival rate significantly improvement with

targeted therapy (7). Triple‐negative breast tumors (TNBC) are

defined as ER, PR, and HER2 negative. TNBC which makes up

approximately 15% of all breast tumors and have a high risk of

distant relapse in the first 3 to 5 years following diagnosis (8, 9).

With advances in early diagnosis and comprehensive

treatment, the prognosis for patients with breast cancer has

improved; however, the incidence of metastasis is also increasing

(10). It has been reported that 20%–30% of patients with breast

cancer can develop metastases after diagnosis and treatment of

the primary tumor, with metastases being the cause of

approximately 90% of deaths (11). Breast cancer shows a

tendency to metastasize to a variety of organs, including bone,

lung, liver, and brain, which is termed metastatic heterogeneity.

Bone metastases account for approximately 75% of metastases

(12), with an overall 5-year survival rate of 22.8% (13). Lung is

the second most common site of breast cancer metastasis (14),

with an overall 5-year survival rate of 16.8%. The liver is second

only to lung as a metastasis site, but survival is poor relative to

local, bone, and lung recurrences, with an expected 5-year

overall survival rate of 8.5% (15). Brain accounts for

approximately 15%–30% of metastatic sites in patients with

metastatic breast cancer, limiting quality of life and a very

short life expectancy (16–18).

The priority of metastasis varies from organ to organ,

resulting in differences in prognosis and treatment response. A

widely accepted model of metastasis is the “seed and soil”

hypothesis proposed by Paget (19), which initially revealed

that successful colonization of second organs depends on the

intrinsic properties of the tumor cells and the compatibility and

support of the microenvironment.
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1.2 Intestinal flora dysbiosis

1.2.1 Gut microbiota composition in
human health

A dynamic balance is maintained between the microbiota

and the host, and this balance plays an important role in human

health by influencing the physiological functions of the

organism. A healthy intestinal microbiota is composed mainly

of the phyla Firmicutes and Bacteroidetes, followed by the phyla

Actinobacteria and Verrucomicrobia (20). The distribution of

microorganisms in the gastrointestinal tract varies longitudinally

from the esophagus to the rectum, Helicobacter is the dominant

species in the stomach and determines the microbial status of the

entire gastric flora. While H. pylori inhabits the stomach as a

commensal, other genera constitute the rich diversity of the

gastric flora (21, 22). Conversely, this diversity is reduced when

H. pylori cause disease. Firmicutes and Actinobacteria are the

most dominant phylum in the duodenum (23). The jejunum is

dominated by the growth of Gram-positive aerobic and

facultative anaerobes, including Lactobacilli, Enterococci and

Streptococci. In the ileum, with predominance of aerobic

species, while the distal ileum has a similar bacterial body to

the colon, with anaerobes and Gram-negative organisms (23).

The bacteriophage in the large intestine is dominated by the

phyla Firmicutes and Bacteroidetes. Furthermore, there are other

important pathogens in the human colon, such as

Campylobacter jejuni, Salmonella enterica, Vibrio cholera and

Escherichia coli (E. coli), and Bacteroides fragilis (24, 25). The

abundance of the Proteobacteria phylum is significantly lower in

normal humans, and its absence along with the high abundance

of genera such as Bacteroides, Prevotella and Ruminococcus

indicates a healthy gut microbiota (26).

1.2.2 Gut microbiota function
Intestinal flora homeostasis has an important role in

maintaining normal body function, The gut microflora creates

a stable mucosal barrier for the intestine to prevent the invasion

of pathogenic microorganisms (27). Gut microbes break down

non-digestible compounds through anaerobic fermentation to

produce compounds of short-chain fatty acids (SCFAs), which

have good anti-inflammatory and chemopreventive properties

and act as barrier protectors (28, 29) and are considered as

tumor suppressors (30). Microorganisms containing

Lipopolysaccharide (LPS), such as Salmonella and Escherichia

coli, activate antigen presenting cells through pattern

recognition receptors to produce cytokines, which together

with endogenous glycolipid antigens and the major

histocompatibility complex (MHC) class I-related glycoprotein

CD1d activate Invariant natural killer T (iNKT) cells and

participate in various immunomodulatory responses (31, 32).

In addition, many intestinal microbiota are involved in bone
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remodeling processes as immunomodulators, such as

Lactobaci l lus acidophi lus , Lactobaci l lus plantarum ,

Lactobaci l lus rhamnosus GG , Lactobaci l lus reuteri ,

Lactobacillus paracasei and Bacillus clausii (33). The gut

microbiota regulates nutrient metabolism by regulating lipid

metabolism, propionic acid in short-chain fatty acids reduces

fatty acid levels in liver and plasma and reduces food intake (34),

and the gut microbiota regulates intestinal and plasma

Lipopolysaccharide (LPS) levels by modulating the intestinal

endocannabinoid (eCB) system (35), which affects adipose tissue

metabolism. Intestinal flora are involved in the production of

gastrin, insulin (36) and glucagon-like peptide-1 (GLP-1) (37,

38) through a paracrine pathway produced by enterocytes, and it

is also involved in the synthesis of bile acids, cholesterol, bound

fatty acids (39) and vitamin (40), thereby regulation of endocrine

levels and metabolic changes in the host. The gut microbiota

synthesizes a number of neurochemicals, (e.g., gamma amino

butyric acid (GABA): an inhibitory neurotransmitter), which

influence central nervous and gut function (41). A gut-brain

microbial axis exists between gut microbes, the gastrointestinal

tract and the central nervous system (42), which links brain

emotional centers to mechanisms such as gut function, gut

neural reflexes and gut endocrine signaling to jointly

coordinate organismal changes (43, 44). Circulating SCFAs

produced by gut microbiota metabolism affect the integrity of

the blood-brain barrier (BBB) by increasing the production of

tight junction proteins, and increased BBB integrity reduces the

entry of undesirable metabolites into brain tissue and

strengthens the defense mechanisms of the blood-brain barrier

(45). Compounds produced by the metabolism of the gut

microbiota, such as lipoproteins and lipopolysaccharides, affect

autoimmune function by stimulating the release of cytokines

from immune cells. These cytokines can cross the BBB and

activate neurons, altering neurological function and leading to

changes in mood and behavior (46), providing new ideas for the

treatment of brain dysfunction.

1.2.3 Dysbiosis
Dysbiosis refers to a state in which the intestinal flora loses

its normal “beneficial” function and is continuously disturbed,

causing disease. It is associated with a large proportional change

in the composition of the microbiota beyond the normal range

caused by host-related and environmental factors (47). Dysbiosis

is usually characterized by the following feature: Bloom of

pathobionts (48), Loss of commensals (49) and Loss of alpha

diversity (50–52), which can be present individually or

simultaneously and mutually exclusive. Currently, dysbiosis

has a causal relationship with the manifestation, diagnosis or

treatment of specific diseases, from the perspective of the

composition of the intestinal microflora, mainly originating

from Infection and inflammation (53, 54); Diet and
Frontiers in Oncology 03
xenobiotics (55, 56); Genetics (57) and Familial transmission

(58–60) etc.

1.2.4 Link between dysbiosis and cancer
Dysbiosis states may negatively affect the organism leading

to various disease states. The microbiota may have some tumor

suppressive effects on the host, and deviations in flora balance

may be associated with cancer development (61). Studies (62–

67) have identified direct and indirect roles of the gut microbiota

in carcinogenesis, cancer treatment and prevention. including

colon (66, 68, 69), gastric (70–73), lung (74, 75), prostate (76–78)

and breast cancers (79) (Tables 1, 2), and suggest that the gut

microbiota and these cancers are interlinked through tumor

suppression and tumor initiation factors. Modification of the

composition and activity of the intestinal flora through the

administration of prebiotics, probiotics and synthetics,

providing benefits to patients with colorectal cancer, such as:

modulation of immunity, improvement of bile acid metabolism

and restoration of intestinal microbial diversity (68). H. pylori is

one of the major causative factors of gastric cancer. Probiotics

against H. pylori through various mechanisms, including:

secretion of antibacterial compounds; inhibition of H. pylori

colonization; action through stimulation of mucin synthesis; and

modulation of host immune response, which provides new

perspectives on gastric cancer prevention and treatment (100).

It was found that memory T and NK cell profiles were increased

in peripheral blood samples from patients with beneficial and

diversity-rich gut microbes. This has important implications for

predicting the response to anti-PD-1 immunotherapy in Chinese

non-small-cell lung cancer patients (101). Gram-positive

bacteria stimulate the production of specific subpopulations of

“pathogenic” T helper 17 (pTh17) cells and memory Th1

immune responses, and the absence of these bacteria leads to

reduced pTh17 responses and cyclophosphamide tumor

resistance, demonstrating that the gut microbiota contributes

to the formation of anti-cancer immune responses in lung

cancer patients (102). However, the symbiotic gut microbiota

promotes endocrine resistance in castration-resistant prostate

cancer by providing an alternative source of androgens, implying

that the gut flora may play a negative role in this process (103).

Gut bacteria can regulate insulin-like growth factor-1 (IGF1)

levels in the host via short-chain fatty acids, thereby promoting

the proliferation of prostate cancer cells, then modulating the gut

microbiota to influence the gut microbiota-IGF1-prostate axis

may be beneficial in the prevention and treatment of prostate

cancer (104). In addition, the use of gut microbiota analysis to

predict patient response to immune check inhibition sites has

emerged in cancer treatment, e.g., breast cancer (105). Currently,

the role of gut microbes in the development of various cancers

varies, and their variation may have implications for achieving

more personalized precision medicine in oncology.
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TABLE 1 A summary of studies addressing changes in microbiota between breast cancer tissue, non-cancerous adjacent tissue and healthy breast
tissue.

REF Mian
methodology

Sample type Microbiome related results

Normal breast
tissue

Non-
cancerous
adjacent
tissues

Breast cancer (BC)

(80) Pyrosequencing V4
16S rDNA
Pipeline: QIIME

20 BC patients ↑Sphingomonas
yanoikuyae

↑Methylobacterium radiotolerans

(81) V3-V4 16S rRNA
sequencing (Illumina)
Pipeline: UCLUST

57 women with invasive breast
carcinoma and 21 healthy
women

↑Methylobacterium ↑Alcaligenacea

(82) V3-V5 16S rRNA
amplified sequencing
data

668 tumor tissues and 72 normal
adjacent tissues from The Cancer
Genome Atlas (TCGA)

↑Actinobacteria
and Firmicutes

↑Proteobacteria, Mycobacterium fortuitum and
Mycobacterium phlei

(83) V1-V2 16S rRNA
sequencing (Illumina
HiSeq)

22 Chinese patients with benign
tumor and 72 malignant BC
patients

↑Propionicimonas, Micrococcaceae, Caulobacteraceae,
Rhodobacteraceae, Nocardioidaceae and
Methylobacteriaceae (Ethnicity-related);
↓Bacteroidaceae and ↑ Agrococcus (with malignancy)

(84) Pathochips array 20 normal breast tissue and 148
BC tissue

↑Actinomyces, Aerococcus, Arcanobacterium,
Bifidobacterium, Bordetella, Cardiobacterium,
Corynebacterium, Eikenella, Fusobacterium, Geobacillus,
Helicobacter, Kingella, Orientia, Pasteurella, Peptinophilus,
Prevotella, Rothia, Salmonella, and Treponema

(85) Pathochips array 100 women with triple negative
BC (TNBC), 17 matched
controls and 20 non-matched
controls

↑Arcanobacterium (75%), Brevundimonas, Sphingobacteria,
Providencia, Prevotella, Brucella, Eschherichia, Actinomyces,
Mobiluncus, Propiniobacteria, Geobacillus, Rothia,
Peptinophilus, and Capnocytophaga (Canimorsus)
↑Herpesviridae, Retroviridae, Parapoxviridae,
Polyomaviridae, Papillomaviridae (virus)

(86) V3 16S-rRNA gene
amplicons sequencing
(Ion Torrent)

16 Mediterranean patients with
BC

↓Methylobacterium
(↑Ralstonia)

↑Sphingomonas

(87) V6 16S rRNA gene
sequencing (Illumina
MiSeq)
Pipeline: QIIME

58 women after surgery:13
benign, 45 cancerous tumors and
23 healthy women

↓ Prevotella,
Lactococcus,
Streptococcus,
Corynebacterium and
Staphylococcus

↑Bacillus, Staphylococcus,
Enterobacteriaceae
(unclassified), Comamondaceae (unclassified) and
Bacteroidetes (unclassified)

(88) V3-V5 16S rDNA
hypervariable taq
sequencing (Illumina
MiSeq)
Pipeline: IM-
TORNADO

28 women undergoing non-
mastectomy breast surgery: 13
benign breast disease and 15
invasive BC

↓Fusobacterium, Atopobium, Gluconacetobacter,
Hydrogenophaga and Lactobacillus

(89) V4 16S rRNA gene
sequencing (Illumina
MiSeq)
Pipeline: Mothur

25 women with breast cancer
and 23 healthy women

↓unclassified genus
of the
Sphingomonadaceae
family in NAF

↑Alistipes

(90) V4 16S rRNA gene
sequencing (Illumina
Miseq)

32 women with BC stage 0 to II ↓Akkermansia muciniphila (AM) in BC patients with
elevated body fat.

(91) V3-V4 and V7-V9 16S
rRNA gene
sequencing

221 patients with breast cancer,
18 individuals predisposed to
breast cancer, and 69 controls.

↑Stenotrophomonas
and Caulobacter

↓Propionibacterium and Staphylococcus

(92) 16s rRNA gene
sequencing;
Quantitative Insights
into Microbial Ecology
(QIIME) tool;RStudio

Bilateral normal breast tissue
samples (n = 36) and breast
tumor samples (n = 10)

↑(OUT)
[Mogibacteriaceae]
family, and
Flavobacterium,
Acinetobacter,

↑(OUT) Ruminococcaceae,
Rikenellaceae, genera Butyricimonas, Sutterella, and
Akkermansia.

(Continued)
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1.3 The role of microbiota in
breast tumourigenesis

1.3.1 Estrogen and metabolism
The gastrointestinal microbiome regulates systemic

estrogen, and the development of postmenopausal breast

cancer is associated with disordered (high) levels of estrogen
Frontiers in Oncology 05
in the body (106). The metabolism of estrogen occurs in the

liver, where the metabolites are conjugated and excreted into the

gastrointestinal lumen within the bile. They are de-conjugated

by b-glucuronidase-producing bacteria in gastrointestinal

lumen, and then they are reabsorbed as free estrogens through

the enterohepatic circulation to reach breast (107). All the genes

in the gut flora that metabolize estrogen are collectively known
TABLE 1 Continued

REF Mian
methodology

Sample type Microbiome related results

Normal breast
tissue

Non-
cancerous
adjacent
tissues

Breast cancer (BC)

and Brevibacillus
genera

(93) Kraken2 and
Metaphlan3

breast tumours and normal
tissues (from cancer-free
women) of 23 individuals
(Slovak); 91 samples obtained
from SRA database (China)

↑Proteobacteria
(47%), Bacteroidetes,
Firmicutes and
Actinobacteria (12%)
(Slovak women);
↑Proteobacteria
(42%), Firmicutes
(42%), Actinobacteria
(5%), Cyanobacteria
(4%)

↑Acinetobacter, Rhodobacter, Micrococcus, order
Corynebacteriales and Priestia megaterium (Slovak
patients)
↑Streptomyces, viruses Siphoviridea and Myoviridae (China
patient)

(94) Illumina MiSeq
sequencing

Tumor tissue and normal tissue
in 34 women

↑Actinobacteria,
↓Proteobacteria,

↑Firmicutes and Alpha-proteobacteria
↑ means up, ↓ means down.
TABLE 2 A summary of studies addressing changes in gut flora between breast cancer patients and non-breast cancer patients.

REF Mian
methodology

Sample type Gut flora related results

Non-breast
cancer
patients

Breast cancer patients

(95) Real-time qPCR
targeting specific
16S rRNA
sequences

31 women with early-stage BC: 15 stage 0, 7
stage I, 7 stage II and 2 stage III.

↑Bacteroidetes, Clostridium coccoides cluster, Clostridium leptum
cluster, Faecalibacterium prausnitzii, and Blautia spp. in patients
with stage II/III BC compared to patients in stage 0/I.

(96) V3-V4 16S rRNA
sequencing
(Illumina)
Pipeline: QIIME

48 postmenopausal women with BC and 48
paired control women

↑Clostridiaceae, Faecalibacterium, and Ruminococcaceae and ↓
Dorea and Lachnospiraceae in BC patients compared to controls.

(97) Illumina
sequencing

18 premenopausal BC patients, 25
premenopausal healthy patients, 44
postmenopausal BC patients and 46
postmenopausal healthy patients

↑Escherichia coli, Citrobacter koseri, Acinetobacter radioresistens,
Enterococcus gallinarum, Shewanella putrefaciens, Erwinia
amylovora, Actinomyces spp. HPA0247, Salmonella enterica, and
Fusobacterium nucleatum and
↓Eubacterium eligens and Roseburia inulinivorans in
postmenopausal BC patients.

(98) 16s rRNA gene
sequencing

54 premenopausal
women with breast cancer and 28 normal
premenopausal women

↑Photobacterium,
Pseudobutyrivibrio

↑Firmicutes/Bacteroidetes (F/B)
Ratio;
↑Parasutterella and Campylobacter

(99) V3–V4 16S rRNA
Gene Sequencing

30 healthy women controls and 25 breast cancer
patients

↑Bacteroidetes ↑Firmicutes
↑ means up, ↓ means down.
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as the estrobolome (108). A study found that difference s in

urinary estrogen levels were associated with beta-glucuronidase

activity in pre- and post-menopausal women, and that

gastrointestinal flora could influence non-ovarian estrogen

levels via the enterohepatic circulation (109). In addition,

urinary estrogen levels in men and postmenopausal women

were strongly correlated with all indicators of microbiota

richness and diversity in faeces, with non-ovarian-acting

systemic estrogens significantly associated with fecal

Clostridium perfringens (including non-clostridial and three

genera of the family Rhizobiaceae), and Gut microbiota may

influence estrogen-related diseases in the elderly (109), such as

Postmenopausal Breast Cancer. Many of the microbes associated

with breast cancer have the b-glucuronidase enzymatic activity

mentioned above, which prevents the binding of estrogen and

other compounds and makes them biologically active, thus

affecting local and systemic levels of estrogen and its

metabolites (79, 110). During estrogen metabolism, the gut

acts as an important site for estrogen reactivation and

microorganisms act locally or distally to regulate disease

development and homeostasis (111). When the balance of the

intestinal environment is disrupted and the structure and ratio

of the flora are imbalanced, excess intestinal bacteria,

Lipopolysaccharides and pro-inflammatory cytokines are

produced, and this change disrupts the integrity of the

intestinal mucosa, which in turn triggers inflammation after

bacterial translocation (112). In addition to those involving

hormone metabolism (estrogen and progesterone),Studies in

growing numbers are exploring the relationship between the

gut microbiome and breast cancer risk via a non-estrogen-

dependent pathway. Obesity, insulin resistance, dyslipidemia,

leukocytosis, and elevated C-reactive protein (113) are

associated with reduced gut microbial diversity, some of which

are associated with breast cancer. Studies have demonstrated

that metabolic health status (as defined by the homeostasis

model assessment of insulin resistance [HOMA-IR] index, or

fasting insulin level), but not obesity per se, may be an associated

factor in the risk of postmenopausal breast cancer development,

suggesting that hyper insulinemia is an important risk factor for

breast cancer (114). Karen L Margolis et al. demonstrated an

increased risk of invasive breast cancer in postmenopausal

women with higher white blood cell counts (115), Nicholas J

Ollberding et al. concluded that circulating C-reactive protein

levels44 reflecting adipokines and systemic inflammation were

associated with the risk of postmenopausal breast cancer,

independent of Body fat rate (116), These further support the

possibility that inflammation may be associated with the

initiation, promotion and progression of breast cancer. In

addition, breast cancer in postmenopausal women is

significantly associated with the immune-recognised (IgA-

positive) and -unrecognised (IgA-negative) gut microbiota, the

former possibly through immune-mediated pathways and the

latter possibly through the enterohepatic circulation effects of
Frontiers in Oncology 06
estrogen (117). It was shown that the microbiota of breast tissue

is different from that of mammary skin tissue, where bacterial

species are more abundant than in skin tissue, and more

operative taxonomic units (mostly low abundance) were

observed in the breast tissue microbiota. These taxa with

different abundance were from the phyla Firmicutes,

Actinobacteria, Bacteroidetes, and Proteobacteria (88). A

comparison of breast tissue from breast cancer patients and

normal women revealed higher levels of Enterobacteriaceae and

Staphylococcus and increased numbers of Bacillus in breast

cancer patients (87). In contrast, Lactobacillus and

Streptococcus were higher in healthy women and have

anticancer properties that may play a role in the prevention of

breast cancer (118). Prevotella, which produces SCFAs propionic

acid and exerts benefits in the intestine, was higher in healthy

women compared with breast cancer patients (119). Further

study of bacterial metabolites and bacterially induced host

metabolites would provide insight into the role of bacteria in

the role of breast disease will provide important information.

1.3.2 The role of antibiotics
Indirect evidence suggests that the development of breast

cancer is strongly associated with alterations in specific

microbiota when taking antibiotics or probiotics. Through a

large-scale analysis of nearly 4 million women, Simin et al. (120)

showed a specific dose-dependent relationship between

antibiotic use and breast cancer, with a different correlation

between the type of antibiotic and breast cancer risk, such as b-
lactams, macrolide (121). Irregular use or overuse of antibiotics

may increase the risk of gut dysbiosis and decrease microbial

diversity, and this effect may be long-lasting (122, 123), For

example: co-amoxiclav and clarithromycin, Cefprozil,

Amoxicillin, etc. Also, overuse of antibiotics (penicillins,

streptomycin, chloramphenicol, tetracyclines, erythromycin,

cephalosporins and their analogues) decreases plasma levels of

lignans-enterolactone, which can increase the risk of breast

cancer by affecting the microbiota (124). A study has shown

that the increased excretion of bound estrogens in the feces of

patients treated with ampicillin suggests that the gut microbiota

are actively involved in estrogen metabolism and can have some

effect on the pathogenesis of breast cancer by altering the

individual’s microbial status (106). Antibiotics have been

shown to disrupt the microbiota, leading to a reduced

response by tumor cells to platinum-based chemotherapy and

immunotherapy (106, 125, 126), suggesting that a stable

microbiota is necessary for an optimal response to

antitumor therapy.

1.3.3 Regulation of chronic inflammation
and immunity

Microbiota may promote the risk of malignancy by inducing

the persistence of chronic inflammation, disrupting the balance

between cell proliferation and death in the body, and triggering
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uncontrolled innate and adaptive immune responses (127, 128).

A putative inflammatory mechanism associated with breast

carcinogenesis has been demonstrated to be the upregulation

of cyclooxygenase 2 (COX2) and its product prostaglandin E2

(PGE), which would increase the expression of aromatase in

adipose tissue, thereby promoting the conversion of androgen

precursors to estrogens (129, 130) and increasing the risk of

breast carcinogenesis. Studies have demonstrated that a potential

inflammatory biomarker, mucosal secretory immunoglobulin A

(IgA) (131), can maintain the integrity of the mucosal barrier by

regulating the composition of the intestinal microbial

community, thereby attenuating the host’s innate immune

response. The link between breast cancer and the mucosal

secretory IgA has been established (117). This mechanism

places some limits on the participation of intestinal microbial

antigens in the circulation of the body, and some limits on the

invasiveness of potentially dangerous microorganisms (132).

Certain specific microbiota may also maintain breast health by

stimulating the host inflammatory response. For example,

specific bacteria S. yanoikuyae are present in the breast tissue

of healthy women and their abundance is significantly reduced

in the corresponding tumor tissue. An increase in its abundance

may lead to a decrease in bacterial-dependent immune cell

stimulation in the body, resulting in a reduced environmental

risk level for the development of breast tumors (80). Studies have

also confirmed the role of microorganisms in regulating specific

immune processes in the development of cancer (133), For

example, Lactococcus spp. can activate important cells

associated with tumor growth (murine splenic NK cells),

maintain their cytotoxicity, and enhance cellular immunity

(134). In another case-control study, Goedert and colleagues

(117) investigated the role of immunity and inflammation in

breast cancer risk and whether the gut microbiota differed in the

composition of the immune recognition microbiota and found

significant differences in the composition, abundance and alpha

diversity of the microbiota between the IgA+ and control IgA-

groups in cancer cases and correlated with changes in high and

low estrogen levels. This suggests a significant association with

IgA+ and IgA- gut microbiota in postmenopausal women with

breast cancer, suggesting that the gut microbiota may influence

breast cancer risk through altered metabolism, estrogen cycling

and immune pathways.

1.3.4 Genomic stability and DNA damage
DNA damage may not be sufficient to promote cancer

development, but microbes can trigger transformation by

destabilizing genes, cell proliferation and death, and it has

been demonstrated that microbes cause cancer development

by damaging host DNA in order to survive (135). Urbaniak

et al. (87) found that Escherichia coli (a member of the

Enterobacteriaceae family) isolates and a Staphylococcus

epidermidis isolate from normal adjacent tissues of breast
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cancer patients had the ability to induce DNA double-strand

breaks, thus causing genomic instability (136). In addition, some

bacterial species may eventually lead to genotoxicity by

increasing the production of reactive oxygen species (137).
2 Current status on breast
cancer progression, metastasis
and microbiology

2.1 Enterotoxigenic bacteroides fragilis

Bacteroides fragilis is a common colonic colonizing

enterobacterium (138) whose virulence is attributed to a 20

kDa zinc metalloprotease toxin known as B. fragilis toxin (BFT)

(139). With reference to the effect of enterotoxigenic B. fragilis

(ETBF) intestinal or ductal colonization on breast cancer

progression in the mammary intraductal model, Parida S et al.

(140) colonized BALB/c mice via the teats with ETBF or a non-

toxic mutant B. fragilis (086Mut) that does not secrete BFT. The

presence of BFT was found to be detected in the mammary

glands of ETBF-carrying mice compared to controls, with a 3.9-

fold higher tumor volume than 086Mut controls, enhanced lung

and liver metastases, and more proliferative tumors forming in

the ETBF group, exhibiting a mesenchymal phenotype.

Moreover, trichrome staining showing significantly higher

stromal infiltration, demonstrating that ETBF intestinal or

ductal colonization was associated with breast cancer

progression and distant metastasis. Furthermore, significant

differences in breast tissue structure were found in the ETBF

group compared with the 086Mut control group (140), including

extensive local inflammation and tissue fibrosis, Ki-67 and

proliferating cell nuclear antigen staining showed increased

epithelial cell proliferation, CD3 staining showed increased T-

cell infiltration, and significantly altered expression of pan-

keratin, all indicating that BFT was associated with a

significant increase in oncogenic cell activity and growth rate.

The study also found that RNA-seq analysis of secondary tumors

arising from breast cancer cells treated with BFT showed

enrichment of the b-catenin pathway. The expression of

several Notch-responsive genes was enriched in breast cancer

cells suggesting that BFT also triggered activation of the Notch1

pathway. The results advance our understanding of the

molecular mechanisms associated with ETBF/BFT and breast

cancer progression (140), and point to a hypothesis that

dysbiosis or disruption of the gut flora might be associated

with breast cancer metastasis and progression, and that

inhibition of manipulable key molecules or pathways could

potentially reduce the impact of ETBF infection on

breast cancer.

In looking at whether BFT affects the tumorigenicity of

breast cancer cells, the team found that, compared with cells
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from the control group, BFT-pretreated MCF-7 and MCF-10A

cell groups showed greater invasion and migration, with local

tumor expansion and the formation of multifocal tumors

resembling local metastases (140).However, it was not clear

whether ETBF spread from within the gut to the breast or

whether gut-infected mice acquired the mammary gland

infection through environmental factors. Data from RNA-seq

analysis of secondary tumors with limited in vivo formation

showed higher expression of genes associated with migration,

homing, and metastasis in the BFT pre-treatment group,

suggesting that BFT production by ETBF intestinal

colonization might be associated with the initiation of breast

cancer metastasis; and breast cells exposed to BFT showed

dramatic changes supporting cell motility, embryonic

pluripotency pathways, expression of metastatic genes, and

molecular mechanisms. However, it cannot be demonstrated

that ETBF can be the sole driver directly triggering the

transformation of human breast cells into tumor cells or

interacting with other microbiota to show oncogenic activity.
2.2 Antibiotic-induced intestinal flora
dysbiosis and the progression of breast
cancer metastasis

To assess the effect of pre-established dysbiosis on the

metastasis of hormone receptor–positive (HR+) breast cancer

in a more aggressive and metastatic tumor model, Parida S et al.

(141) evaluated tumor spread to the lung and axillary lymph

nodes in a highly metastatic MMTV-PyMT mouse model with

reference to the poorly metastatic HR+ mouse breast cancer cell

line BRPKp110. The results were similar to those observed in the

BRPKp110 cell line: where the spread of tumor cells to the lung

was significantly increased after commensal dysregulated of the

intestinal flora due to antibiotic treatment, independent of

tumor volume. Moreover, the tumors progressed with the

same kinetics regardless of the symbiotic dysregulation status

in the experimental mice, suggesting that symbiotic

dysregulation has a significant and sustained effect on HR+

breast cancer dissemination and that the enhanced ability of

cancer cells to spread in symbiotically dysregulated mice is

independent of tumor growth kinetics. To confirm the impact

of the flora-dysregulation-driven host-intrinsic differences in

inducing propagation in a mammary tumor model, they tested

the symbio t i c dysregu la t ion us ing the L-S top-L-

KRasG12Dp53flx/flxL-Stop-L-Myristoylated p110a-GFP+
induced mouse model of breast cancer (141), and found that

consistent with that observed in the homozygous model, the

lungs of mice with dysbiosis of the intestinal flora showed a

higher frequency of disseminated tumor cells. No significant

increase in GFP+ tumor cells was observed in the distal lymph

nodes. Those results confirmed that dysbiosis is independent of

primary tumor growth and is associated with enhanced tumor
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cell dissemination; they also suggest that the tumor

dissemination enhancement is the result of host dysbiosis

rather than of intrinsic differences in tumor aggressiveness.

Macrophages in the mammary gland may promote the

metastasis of mammary tumors in experimental animals (142).

Parida S et al. (141) found that commensal dysbiosis influenced

the frequencies and numbers of macrophages during early or

advanced stages of mammary tumor progression. Macrophages

are one of the most abundant cell types within the breast tumor-

microenvironment (143) and are a significant prognostic

indicator of reduced survival for patients diagnosed with HR+

breast cancer (144). They observed that the majority of myeloid

infiltrates within the mammary tumor microenvironment were

M2-like macrophages during at early and advanced stages of

tumor progression based upon CD206 expression. Importantly,

the number of infiltrating tumor-promoting M2-like

macrophages was significantly increased in advanced tumors

of mice in the dysbiotic mice compared to non-dysbiotic

controls with equal tumor burden. These data suggest that

systemic expression of inflammatory mediators is increased in

mice with dysbiosis tumors and that commensal dysbiosis acts

synergistically with developing tumors to enhance myeloid

recruitment into mammary tumors. Enhanced interstitial

density or dense breast tissue is a recognized risk factor for the

development of breast cancer metastases (145) and intra-

mammary pro-tumor inflammation (146). They found that

pre-established dysbiosis was associated with significantly

enhanced collagen deposition in normal adjacent mammary

glands and in tumors, and that collagen accumulation was

slightly increased in the lungs of advanced tumor-bearing mice

with dysbiosis, suggests that enhanced local and distal fibrosis is

a long-term consequence of dysbiosis during breast cancer.

Parida S et al. to determine whether gastrointestinal dysbiosis

is sufficient to enhance mammary tumor cell dissemination

(141), and a fecal microbiota transplantation (FMT) method

was used, Both the experimental and control group and control

groups were BRPKp110 breast tumor cells, Mice receiving flora-

dysregulated cecal contents by FMT also showed enhanced

infiltration of inflammatory myeloid cells into the mammary

tissue and increased accumulation of myeloid cells into tumor

tissue. Similar effects were observed in the mammary gland and

tumor tissue during the advanced stages of tumor progression—

that is, mammary gland tissue and tumors showed enhanced

tissue fibrosis. Importantly, the spread of tumor cells to

peripheral blood, lung, and distal axillary lymph nodes was

also significantly increased in mice receiving dysbiosis flora

(rather than “normal” FMT) by FMT, considering that a

dynamically imbalanced microbiome is sufficient to enhance

the metastatic spread of breast cancer. Moreover, it may be an

independent correlate of the distant spread of tumor cells.

Further supporting the idea that dysbiosis contributes to the

evolution of breast tissue and/or tumors toward more aggressive

and high-grade disease. regardless of the metastatic potential of
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the HR+ breast tumor model used in the study, dysbiosis of the

gut flora was associated with enhanced dissemination and

metastasis of breast tumor cells.

Changes in the gut microbiota also to effects in metabolites,

and inflammatory signaling pathways can be amplified or

inhibited. Using an in-situ mouse model of breast cancer,

Kirkup et al. (147, 148) found significant differences in

metabolic regulatory pathways across the tumor transcriptome

in animals treated with broad-spectrum antibiotics, and single-

cell transcriptomics revealed that the stromal cell population was

altered in breast tumors from antibiotic-treated mice. The main

form of the alteration was an increased number of mast cells,

which accelerate tumor progression. The breast cancer model

used a PyMT-derived ductal lumen cell line (PyMT-BO1) to

investigate the role of gut microbiota in regulating the growth of

primary mammary tumors (149). Disruption of intestinal

microbiota by gavage administration of oral antibiotics

(vancomycin, neomycin, metronidazole, amphotericin, and

ampicillin [VNMAA]) prior to administration of tumor cells to

animals, producing severe intestinalmicrobial changes (150, 151),

and although no significant differences in tumor tissue structure

were observed in those animals compared with a control group

receiving plain water, significantly accelerated tumor growth was

observed. Under a similar treatment regimen (152), enhanced

growth resembling basal-like breast cancers was observed when

spontaneously derived basal cells (EO771) were implanted in situ,

suggesting that antibiotic-induced microbiota disruption can

drive disease progression in multiple breast cancer subtypes. To

determine the effect of the VNMAA mixture on the microbiota,

microbial DNA was isolated from the cecum of control and

VNMAA-treated animals on day 18 and subjected to birdshot

macro-genomics analysis. The analysis revealed dramatic changes

in the populations and overall diversity of the bacteria obtained

from the animals that received VNMAA treatment, with the

Shannon diversity index showing that the abundance of several

microbial communities in the gut of antibiotic-treated mice was

significantly reduced. In parallel, some communities (e.g.,

Fusobacterium nucleatum) persisted or overgrew. The

composition of the gut microbiota was significantly altered in

terms of species, abundance and overall diversity following the use

of antibiotics, which was associated with accelerated tumor

growth and an increase in mast cells in the tumor stroma. To

determine whether mast cells affected tumor growth, Kirkup et al.

(147) treated control and VNMAA-treated tumor-bearing mice

with cromolyn (a mast cell stabilizer) and found that cromolyn

inhibited tumor growth in the antibiotic-treated animals.

Notably, the VNMAA-treated group without cromolyn

treatment showed a significant increase in tumor size when

compared to the control animals treated with cromolyn, and an

increase in the number of mast cells was observed in sections of

the EO771 tumor stroma taken fromVNMAA-treated mice (147,

148). Those data suggessed the key role that mast cells play in

tumor progression after antibiotic-inducedmicrobiota disruption
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in mouse breast cancer: when vancomycin alone was used to

induce microbiota disruption, effects similar to those already

described were observed in a completely different model of

breast cancer. Possibly, microbiota disruption was associated

with increased homing of mast cells to, and/or increased

proliferation within, tumor. However, given that mast cells in

the control animals did not affect tumor progression, the pro-

tumor function observedwas shown to be specifically regulated by

the microbiota. Given confirmation that antibiotic disruption of

the gut microbiota has a detrimental effect on breast cancer,

antibiotic-induced dysbiosis of the flora and dysregulation of the

associated metabolites could be hypothesized to promote tumor

growth by reprogramming mast cell homing and/or function.

Future studiesmight consider determining the changes that occur

in mast cells and breast tumor cells in response to gut dysbiosis.

Kirkup et al. (147, 148) used a mixture of vancomycin, neomycin,

metronidazole, and amphotericin (VNMA) to assess DNA

concentrations in feces after microbiota dysbiosis and found

very low DNA concentrations in the feces of the experimental

group compared to the control group (water treatment).

Importantly, the rate of PyMT-BO1 and EO771 breast tumor

growth was significantly increased after disruption of the gut

microbiota in the treated animals compared with the control

animals (water treatment). Transcriptomic analysis also revealed

dramatic differences in the regulation of metabolic pathways after

antibiotic-induced dysbiosis of the intestinal flora, suggesting that

accelerated breast cancer tumor growth might be associated with

metabolic reprogramming. Fecal metabolomics was confirmed by

1H NMR spectroscopy analysis, which showed that 8 metabolites

were elevated and 9 were significantly reduced in the major

components of fecal samples from antibiotic-treated animals

compared to fecal samples from control animals (147). Several

of these amino acids (among them alanine, histidine and aspartic

acid) were significantly increased in the antibiotic-treated

animals. In contrast, the SCFAs butyrate and acetate, but not

the branched-chain fatty acid isovalerate, were significantly

reduced. Microbiota-derived butyrate is readily absorbed from

the gut and can play a role in inhibiting histone deacetylases (153)

in a variety of diseases, including cancer. Inhibition by butyrate

can sensitize cancer cells to reactive oxygen species–induced

apoptosis, thereby inhibiting the proliferation of breast cancer

cells (154), but its role in the organism is yet to be confirmed in

clinical trials. The authors hypothesized that a decrease in the

bioavailability of the intestinal flora metabolite butyrate plays a

role in enhanced tumormetabolism.Metabolites from the gut can

reach distant tissues and organs such as the breast via the

circulation, where they might play a role in regulating cancer

cell function. Kirkup et al. noticed that antibiotics associated with

breast cancer (e.g., cefadroxil, which is widely used in the USA

after mastectomy). C57BL/6 mice carrying PyMT-BO1 tumor

cells and receiving a cefadroxil dose equivalent to that in human

patients experienced a significant acceleration in tumor growth.

Analysis of the gut microbiota of the animals showed that the
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microbiota aggregates in samples from the experimental and

control animals were independent and clustered differently

before and after treatment. The relative abundance of

Lactobacillus decreased over time in the control and

experimental groups, and this appeared to be replaced mainly

by fecal genera in the control animals, however, this did not occur

in the antibiotic-treated animals. The genus with the most

significant change in the microbial composition of the animals

in the experimental group compared to the pre-treatment samples

was Lactobacillus, but there was no significant difference before

and after the control group. We presume that the disappearance

of Lactobacillus might be driven by tumor cells, tumor–

microbiota interactions, or natural maturation of the

microbiome rather than by cefadroxil administration. Further

analysis revealed differences in the abundance of 11 genera after

cefadroxil treatment: Mucispirillum , Marvinbryantia ,

Parabacteroides, Anaeroplasma, Bacteroides, and Paraprevotella

were significantly higher, and Alloprevotella, Alistipes,

Odoribacter, Faecalibaculum, and Anaerotruncus were

significantly lower. When multiple comparisons were made, 8

genera were significantly altered after antibiotic treatment. the

genera that were significantly lesser abundant in treated animals

relative to the controls, several are known butyrate-producing

bacteria (e.g.,Odoribacter and Anaerotruncus) or genera carrying

the genes required for butyric acid production (e.g.,

Faecalibaculum and Alistipes) (147), consistent with the

significant reduction in butyrate production observed in the

metabolomic analysis of feces. That observation suggests that

the use of a single antibiotic associated with breast cancer causes

significant changes in microbiota genera and aggregation,

potentially correlating with the tumor growth rate, but without

a direct link to accelerated growth of breast tumors.
2.3 Effect of changes in metabolites
following microbial perturbation on
breast cancer metastasis

A major signaling route between the microbiome and the

host is the secretion of Microbial metabolites that enter the

circulation and reach their target cells (155–158). microbial

metabolites synthesized in organs or glands (in this study, in

the microbiome) function much like human hormones, in that

they transfer to other anatomic locations and exert biologic

effects (159). Microbial metabolites can enter the circulation and

interfere with the steady-state of the intestinal and other local

environments, acting as signaling mediators that influence the

progression of breast cancer. SCFAs (160, 161), Lithocholic acid

(LCA) (162–165), cadaverine (166), and de-conjugated

estrogens (96, 109, 167), these metabolites have the ability to

inhibit tumor-cell proliferation, the conversion of epithelial cells

to mesenchymal cells, tumor metastasis, and cell migration and

metastasis, and to induce antitumor immunity, to restructure
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cell metabolism, to induce senescence, and lower the number of

tumor stem cells (164, 166, 168, 169).

The finding that perturbations in the gut microbiome are

associated with tumor propagation at a distance supports the idea

that the gut microbiome can be considered to be an endocrine

gland (159, 170). Some metabolites associated with the activity of

gut bacteria can enter the bloodstream and have been shown in

vitro to affect the functioning of breast cancer and immune cells.

Members of the microbiota can digest certain indigestible

components of the human diet (e.g., dietary fiber), and SCFAs

—for example, acetate, propionate, and butyrate—are

components of metabolized dietary fiber (30, 171) and act as

modulators of the host’s immune response. Bioactive compounds

such as metabolic polyphenols (172) promote the growth of

beneficial bacteria such as Bifidobacterium and Lactobacillus

and produce SCFAs (173, 174). Some studies have shown that

microbially derived homologous receptors for SCFAs were

associated with a reduction in the invasive potential of breast

cancer cells, with the homologous receptor FFAR2 inhibiting the

Hippo-Yap pathway and increasing the expression of the

adhesion protein E-cadherin, and FFAR3 inhibiting MAPK

signalling (175), particularly butyrate, which has anticancer

effects, as demonstrated in cancer cell cultures (176, 177) and

animal models (160). Crucially, those microbial metabolites are

produced after fermentation and/or metabolism of dietary

components, and one of the key roles of the microbiota is to

break down complex foods into simple bioactive compounds.

In the gut, disruption of the microbiota breaches the biologic

barrier between it and the underlying tissue, leading to adverse

physical contact between microbes and host cells, inducing

paracrine production of bacterial metabolites (135). Changes

in the microbiome have been associated with metabolic diseases

such as obesity and type II diabetes (178), which are risk factors

for certain cancers, including breast cancer (80, 179). The

intestinal flora is responsible for the conversion of primary

bile acids to secondary bile acids (180), and changes in the

intestinal microbiota can therefore directly affect changes in

secondary bile acids. Edit Mikóah et al. (169) studied three

secondary bi le acids—LCA, deoxychol ic acid , and

ursodeoxycholic acid. Of those three, LCA was found to exert

a tumor-suppressive effect by reducing the growth of MCF7,

SKBR3, and 4T1 breast cancer cells. They tested the cytostatic

properties of LCA in mice transplanted with 4T1 breast cancer

cells and found that the ability of the primary tumor to infiltrate

surrounding tissues and metastasize was significantly reduced

after LCA treatment. This study was the first to provide evidence

for a mechanism of interaction between the microbiome and

breast cancer by describing that LCA, a metabolite of

microorganisms in the gut, is transferred to the breast via the

bloodstream and might play an important role in promoting

antiproliferative effects in breast cancer. However, LCA might be

produced by the breast’s own microbiota and not only by the gut

microbiota. The ratio of those two sources (breast and gut) in
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terms of LCA abundance is unknown and requires substantial

research and continued trials.

Cadaverine is produced through lysine decarboxylation by

lysine decarboxylase (181). Shigella felis, Shigella sonnei,

Escherichia coli, and Streptococcus are all capable of expressing

it (182). Kovács et al. (166) explored the effects of cadaverine

supplementation (500 nmol/kg) on mice homozygously

transplanted with 4T1 breast cancer cells and found a

reduction in the aggressiveness of the primary tumor.

Histologic examination of the primary tumors after cadaverine

treatment showed a reduced mitotic rate and heterogeneity of

nuclear morphology in the mammary tumor cells. To assess

whether cadaverine treatment could convert mesenchymal-like

carcinoma cells into epithelial-like cells, increased cadaverine

resistance was measured using ECIS (Electric Cell-substrate

Impedance Sensing), which showed better cell adhesion. To

verify that finding, cells stained with Texas Red-X phalloidin

and observed under microscopy showed that, after cadaverine

treatment, the fibroblast-like morphology of 4T1, MDA-MB-231

and SKBR-3 breast cancer cells had changed to a cobblestone-

like morphology that is characteristic of epithelial cells, and the

inhibition of matrix metalloproteinase 9 expression also

confirms the decrease in tumour cell migratory properties. A

cellular flux analyser assessed the metabolic changes induced by

necrotropism and found a reduction in glycolytic flux, which is

characteristic of breast cancer mesenchymal cells (183).

Cadaverine exerts its anticancer effects by inhibiting epithelial–

mesenchymal transition, cell motility, chemotaxis, and

metastasis. A further assessment of the “stemness” of 4T1 cells

using an aldehyde dehydrogenase assay found that “stemness”

was also slightly reduced (166). Dysbiosis of the intestinal flora

(i.e., a change in the basal environment) leads to a change in the

level and type of metabolites produced, which might have no

effect on reducing the proportion of stem cells in breast cancer

and slowing the rate of metastasis or might have the opposite

effect, promoting malignant progression of the tumor. In the

early stages of breast cancer in dysbiosis mice, bacterial

cadaverine biosynthesis in the gut is reduced, leading to lower

production of anti-cancer bacterial metabolites. We can

speculate that in the presence of disturbed or slightly disturbed

gastrointestinal flora, the metabolites produced act as signaling

mediators and a specific crosstalk reaction may occur with the

host, and this process may be directly or indirectly linked to the

metastasis, migration and invasion of mammary tumors in mice.
2.4 Role of probiotics to block breast
cancer spreading

A few studies have found that probiotic preparations are

gaining in popularity for the improvement of health conditions
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such as antibiotic-induced diarrhea, irritable bowel syndrome,

and obesity (184, 185). The use of probiotics can reduce or

inhibit tumor growth, reduce tumor angiogenesis, tumor cell

extravasation and lung metastasis (186). Long-term disturbance

of the gut microbiome, which disrupts the probiotic structure

and composition, may conversely increase the risk of breast

cancer metastasis (187, 188).

Lactobacillus casei, a type of probiotic, is a Gram-positive

bacterium that is resistant to the body’s defense mechanisms.

After entering the human body, L. casei can survive in large

numbers in the intestinal tract and can play a role in regulating

the balance of intestinal flora, promoting digestion and

absorption, among other processes (189). It is highly effective

in lowering blood pressure (190) and cholesterol (191),

promoting cell division and antibody immunity, enhancing

human immunity, preventing cancer, and inhibiting tumor

growth. Aragón et al. (186) used milk fermented with L. casei

CRL431 to evaluate its possible effects on tumor growth, tumor

cell extravasation and lung metastasis in a mouse model. By

comparing mice fed fermented milk (FM), mice fed regular milk

and mice not fed any special food, it was found that the group

fed FM showed an inhibition of tumor growth and a decrease in

tumor vascular filling, tumor cell extravasation and lung

metastasis. Khoury et al. (192) used kefir water, a fermented

milk product containing probiotics, to treat BALB/c mice that

had been transplanted with 4T1 mammary cancer cells and, in

the treated mice, detected a significant reduction in tumor size

and weight, a significant enhancement of helper T cells and

cytotoxic T cells, a significant reduction in lung and bone

marrow metastases. Zamberi et al. (193) found that kefir water

(mix of Lactobacillus acidophilus, Lactobacillus casei, and

Lactococcus lactis) exerted an anti- angiogenic effect on mouse

mammary tumors by down-regulating the tumor-promoting

invasive interleukin 1b and vascular endothelial growth factor

(a key mediator of angiogenesis). In the above model, levels of

the pro-angiogenic factor interleukin 6 were found to have

declined (186, 189, 194, 195) after probiotic treatment,

suggesting that downregulation by Lactobacillus might affect

the metastatic potential of cancer cells. some study (186, 196,

197) demonstrated that milk fermented with Lactobacillus casei

CRL431 (probiotic fermented milk (PFM)) reduced the side

effects of capecitabine and reduced intestinal mucositis and

mortality in a mouse model of breast cancer by modulating

the immune response, this suggests the potential of PFM as a

probiotic as an immune adjuvant that may reduce tumor growth

and metastasis without compromising the anti-tumor/anti-

metastatic effects of chemotherapy. They differentially regulate

cancer-related signaling pathways in a cell-type-specific manner

and play a suppressive role in the pro-tumor microenvironment

(198–200). Conversely, disruptions in the intestinal flora might

simultaneously or subsequently affect the probiotic
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environment, which could cause probiotics to lose their

“dominant” role in the tumor environment, negatively

affecting the control or inhibition of breast tumor cell growth

or even accelerating the growth of tumor cells and promoting

angiogenesis, becoming an indirect contributor to tumor

metastasis. Yazdi et al. (201) demonstrated that selenium-

nanoparticle-enriched L. brevis administered to mammary

tumor-bearing BALB/c mice induced an effective immune

response, resulting in reduced liver metastases and an

increased lifespan, included increases in the T helper

cytokines, interferon-gamma and interleukin 17, and enhanced

natural killer cell activity. Hassan Z et al. Demonstrated that

(202) Enterococcus faecalis and Staphylococcus hominis can

significantly inhibit cell proliferation, induce apoptosis, and
Frontiers in Oncology 12
cell cycle arrest, and that they have no cytotoxic effect on

normal cells, making them a good alternative drug for breast

cancer treatment (Figure 1).

Figure 1. The linkage between probiotic environmental

homeostasis and breast cancer metastasis

Probiotics have specific anticancer properties, and studies

have shown that they can alter the expression of various genes

involved in apoptosis (203), invasion and metastasis (204),

maintenance of cancer stem cells (205), and control of the cell

cycle (206). Probiotics have been highlighted as superior in the

treatment of cancer. however, more pre-clinical and clinical

studies are needed to determine which strains are beneficial

during specific treatments before probiotic administration is

considered safe and customisable for all individuals.
FIGURE 1

The linkage between probiotic environmental homeostasis and breast cancer metastasis. A good diet (e.g. foods rich in dietary fiber, soy
isoflavones, fucoxanthin and polyphenols) can reduce intestinal flora dysbiosis and thus harmonize the body to reduce the incidence and
metastasis of breast cancer. Diet as an important factor in the stable composition of the host probiotic environment, through intestinal flora
regulation. probiotic environmental homeostasis can play an adjuvant anti-cancer role in the progression and metastasis of breast cancer (lung,
brain, liver, bone).
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TABLE 3 Correlation between factors that disturb the intestinal flora and breast cancer metastasis and progression.

Factor Study model Regulation Key biologic function

ETBF

BFT BALB/C, MCF-7,
MCF-10A

Up ETBF produces BFT, which is highly invasive in breast cells and expresses migration-
and metastasis-related genes (137–139)

Antibiotics

MMTV-PyMT Up Dysbiosis was associated with enhanced distant metastasis and dissemination of breast
tumor cells (140)

BRPKP110 Up Infiltration of myeloid cells in breast tissue was enhanced after FMT perfusion (140)

GFP+ tumor cells Up Dysbiosis was associated with increased breast tumor cell dissemination (140)

M2-like macrophages Up Dysbiosis was associated with enhanced infiltration of myeloid cells into the breast
tissue (140, 141)

VNMAA or vancomycin PyMT-BO1 Up Significant reduction in gut microbiota abundance and accelerated tumor growth were
observed after VNMAA treatment (146)

E0771 Uncertain Increased homing/value-added of mast cells in breast cancer tumors where gut
microbiota were disturbed after antibiotic treatment (146)

VNMA PyMT-BO1, E0771 Up Antibiotic-induced dysbiosis of microflora was associated with reduced expression of
pro-apoptotic genes and increased expression of pro-survival genes (153)

PyMT-BO1, E0771 Up Antibiotic administration was associated with dramatic differences in the regulation of
microbial metabolic pathways and increased tumor growth rates in laboratory animals
(146, 148)

cefadroxil PyMT-BO1 Up Gut microbial aggregation, genus differences, and accelerated tumor growth were
observed in cefadroxil-treated animals (146, 148)

Probiotics

CRL431 Down FM was associated with inhibited mammary tumor growth and metastasis in mice
(185)

Kefir water 4T1, BALB/C Down Administration of kefir water was associated with inhibition of tumor size and distant
metastasis with downregulatory effect (190, 191)

L. brevis BALB/C Down L. brevis administration was associated with immune response and reduced liver
metastases from mammary carcinoma in mice (195)

Microbial metabolite

SCFAs SCFAs Down Butyrate has anti-cancer properties (159, 175, 176)

LCA MCF-7, SKBR3, 4T1 Down LCA was associated with inhibition in the growth of breast cancer cells (180) and
reduction in infiltration by the primary tumor into the surrounding tissue and
metastasis (168)

Cadaverine 4T1, MDA-MB-231,
SKBR3

Down Cadaverine can fight breast cancer progression by inhibiting EMT, cell motility,
chemotaxis, and metastasi (182)

Diet

Lactobacillus casei Shirota and
Soy isoflavones from puberty onwards (207)

Uncertain

polyphenol (173) Uncertain

Fucoidan (209) Uncertain
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ETBF, Enterotoxigenic Bacteroides fragilis; BFT, B. fragilis; BALB/C, experimental mouse; MCF-7, human breast cancer cells; MCF-10A, epithelial cell line; MMTV-PyMT, mouse model of
highly metastatic breast cancer; BRPKP110, HR+ mouse breast cancer cell line model; FMT, fecal microbiota transplantation; GFP+, Green fluorescent protein; VNMAA, vancomycin,
neomycin, metronidazole, amphotericin, ampicillin; PyMT-BO1, PyMT-derived ductal cell line in situmammary fat pad injection model; E0771, spontaneously derived basal cells; VNMA,
vancomycin, neomycin, metronidazole, amphotericin; FM, fermented milk; CRL431, type of L. casei used to ferment milk; 4T1, breast cancer cells; SCFAs, short-chain fatty acids; TLR4,
Toll-like receptor 4;LCA, lithophanic acid; MDA-MB-231, breast cancer cells; SKBR3, breast cancer cells; EMT, epithelial–mesenchymal transition.
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2.5 Diet affects the likelihood of breast
cancer progression

Although the correlations between BRCA risk and dietary

intake have been intensively studied, the underlying associations

or effector mechanisms remain poorly understood. Historically,

increased risk of BRCA has been tied to high intake of red meat

and animal fat (207, 208), with decreased risk being concurrently

linked to fruit and vegetables consumption (209). Changing

dietary patterns affects the microbiome and Indirect affects the

development of breast cancer. A case-control study in Japan

showed that regular consumption of Lactobacillus casei Shirota

and soy isoflavones from puberty onwards reduced the incidence

of breast cancer in Japanese women (210); Newman TM et al. also

indicated that theMediterranean diet could prevent breast cancer,

because of its inclusion of an abundance of plant-based foods and

the lack of processed foods (211). Xue M et al. confirmed through

experiments (212) that fucoidan increases the diversity of

intestinal flora and can promote the intestinal barrier function,

and he suggested fucoidan as a preventive agent for breast cancer.

studies have shown that increased polyphenol intake is associated

with higher levels of beneficial bacteria (such as Bifidobacterium

and Lactobacillus) and SCFAs in humans (174), while also

decreasing levels of bacteria that have been associated with

disease, so‐called pathobionts. Diet is an important factor in all

microbiota studies and can help maintain the stability of gut

microbes, which can influence the development of breast cancer.

If dietary interventions are to be successfully used in future

treatments, studies of diet and microbiota metabolites might

have to be conducted in parallel. Indeed, recent studies have

highlighted the personalised response to individuals (and the

microbiota) to the same diet (213), which highlights the

limitations and challenges for next‐stage studies of this kind.

Alcohol consumption increases the risk of breast cancer,

although alcohol itself is not a direct carcinogen, acetaldehyde, a

product of alcohol metabolism, is a mutagen which can form

adducts with protein and DNA, inducing gene mutation, DNA

crosslinks and chromosomal aberrations (214–216). Many studies

have also confirmed that alcohol consumption not only induces

breast cancer development (217, 218) but also promotes the

progression of existing breast tumors and induces a more

aggressive phenotype (219–222). There are no clear reports to

confirm the correlation between alcohol, microorganisms and

breast cancer metastasis, but there is no doubt that alcohol causes

dysbiosis of the intestinal flora (223–225). It is not difficult to

guess that there may be an alcohol-gut flora-breast cancer axis,

which means that changing lifestyle habits could have profound
Frontiers in Oncology 14
implications for the prevention and prognosis of the disease, but

the role of gut flora in this needs to be studied in depth.

Details of the following studies included in this review are

summarized in Table 3.
3 Conclusions and future prospects

Globally, the number of factors affecting gastrointestinal

dysbiosis is increasing and the gastrointestinal microbiome is

emerging as an important player in the risk and progression of

breast cancer. This provides an exciting new perspective on breast

cancer metastasis, namely that the causes of intestinal dysbiosis

are complex and variable, and that there may be a complex causal

relationship between progression and metastasis of breast cancer.

Therefore, treating the gut flora to stabilize themicroenvironment

may reduce pro-tumorigenic factors and their propagation in the

tissue microenvironment, and establishing new strategies to

balance these deleterious fluctuations is of interest in the

treatment and prognosis of breast cancer. Given that several

intrinsic and extrinsic factors are known and that the gut

microbiota and breast cancer have an interactive relationship,

future sequencing of the microbiota to capture metadata about

dysbiosis and the selection of in vivo models are expected. Those

steps will be informative and positive in reducing the risk of breast

cancer progression and metastasis, and in guiding therapy for

gastrointestinal symptoms or prognosis in patients with breast

cancer. Future studies analyzing the gastrointestinalmicrobiota in

patients with breast cancer should consider definitive

stratification by histology and molecular science, which could

require longer experience and a longer time frame. In addition,

because of the large number of complex resident gut flora species,

the difficulty of data collection and the unclear specific

mechanisms of microenvironmental changes due to dysbiosis,

studies and evidence linking the gastrointestinal microbiota to

breast cancer metastasis and progression are currently relatively

scarce and need to be validated by more specific and high-quality

clinical trials and data, and there is an urgent need to combine

different disciplines and microbiome studies and design new

technical approaches.
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