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A major challenge in radiation oncology is the prediction and optimization of

clinical responses in a personalized manner. Recently, nanotechnology-based

cancer treatments are being combined with photodynamic therapy (PDT) and

photothermal therapy (PTT). Predictive models based on machine learning

techniques can be used to optimize the clinical setup configuration, including

such parameters as laser radiation intensity, treatment duration, and

nanoparticle features. In this article we demonstrate a methodology that can

be used to identify the optimal treatment parameters for PDT and PTT by

collecting data from in vitro cytotoxicity assay of PDT/PTT-induced cell death

using a single nanocomplex. We construct three machine learning prediction

models, employing regression, interpolation, and low- degree analytical

function fitting, to predict the laser radiation intensity and duration settings

that maximize the treatment efficiency. To examine the accuracy of these

prediction models, we construct a dedicated dataset for PDT, PTT, and a

combined treatment; this dataset is based on cell death measurements after

light radiation treatment and is divided into training and test sets. The

preliminary results show that the performance of all three models is

sufficient, with death rate errors of 0.09, 0.15, and 0.12 for the regression,

interpolation, and analytical function fitting approaches, respectively.

Nevertheless, due to its simple form, the analytical function method has an

advantage in clinical application and can be used for further analysis of the

sensitivity of performance to the treatment parameters. Overall, the results of

this study form a baseline for a future personalized prediction model based on

machine learning in the domain of combined nanotechnology- and

phototherapy-based cancer treatment.

KEYWORDS
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(photodynamic therapy), PTT (photothermal therapy), personalized medicine
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1 Introduction

Cancer remains a leading cause of death globally (1). The

conventional methods of treatment offered are radiation (2),

chemotherapy (3), immunotherapy (4), surgery, and recently

nanotechnology (nanomedicine and nano-processes) (5).

Every cancer treatment can be defined and evaluated based

on its efficiency, selectivity, side effects, and economic cost (6).

However, combining predictive models and advanced machine

learning methods with these cancer therapies may enhance

their overall efficiency and selectivity, as well as the safety of

the patient.

Radiation Therapy (RT), also known as radiotherapy, is a

non-surgical intervention frequently used in cancer treatment

(2). This method is based on a high-level focused dose of

radiation directed toward the tumor. This deposit of high-

energy radiation kills cancer cells or decelerates their growth

by damaging their DNA (2). Nevertheless, the challenges of RT

include damage to tumor- proximate normal cells, the inability

to radiate minor tumors out of scope of the imaging scans,

patient movement, and low oxygen supply (7, 8). Therefore,

many researchers are working on the development of targeted

radiation methods to deliver a higher dose of radiation to the

tumor with improved selectivity.

Recently, the combination of nanotechnology with laser

radiation has been demonstrated to represent a safe set of

modalities for tumor destruction with high specificity (9). In

particular, this involves the use of light-controlled

nanoparticles (NPs) that can be activated via a light of a

specific wavelength to form highly efficient and selective

systems in the nanometer range (10). These NPs accumulate

specifically within tumors due to the Enhanced Permeability

and Retention (EPR) effect (11). Thereafter, a specific band of

light is directed and radiated toward the target area of

the subject.

The two main nanotechnology-based phototherapies for

tumor ablation are photodynamic therapy (PDT) and

photothermal therapy (PTT) (9). PDT is a two-stage

treatment combining a photosensitizing chemical substance

with activation by a specific wavelength and energy of light.

This photosensitizer activation, performed in the presence of

oxygen, generates singlet oxygen molecules that are highly

reactive, extremely toxic, and known to cause damage to the

tumor (12–14). In contrast, PTT is based on photothermal

agents (PTAs) that convert near-infrared (NIR) light to

vibrational energy (heat) (15). The targeted cancer cells are

labeled by biocompatible PTAs with high photothermal

conversion efficiency and stability, these being properties that

permit the utilization of light in the near-infrared wavelengths

(l ≈ 650 - 1064 nm) (16). These long wavelengths are suitable

for deep penetration into biological tissues (up to a few

centimeters) due to their insignificant absorbance by water
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(17). Nevertheless, PDT and PTT have limited efficiency in

cancer treatment (18). The shortcomings and drawbacks of

these therapies include short chemical stability, poor tissue

penetration, low oxygen, the short life and diffusion distance of

ROS, and thermal damage to nearby healthy tissue (18–20).

Optimization of the treatment parameters can enhance the

efficiency of the treatment and allow these drawbacks to

be overcome.

Synergistic strategies are becoming necessary to improve the

treatment efficiency of PDT and PTT (21–23). Obstacles may be

overcome by adopting a synergistic approach in which the

disadvantages of one therapy are mitigated by the advantages

of another. Under many circumstances, combining distinct

therapeutic approaches in this way does not merely provide a

simple supplementary effect, but in fact has a synergistic effect

(24, 25). Thus, a thorough investigation should be made of the

potential for a synergistic effect of PDT and PTT, rather than

treating them as a simple combination of therapeutic

approaches. The optimal equilibrium between these

therapeutic approaches should be identified computationally in

order to provide personalized and productive cancer treatment.

Currently, there is no computational methodology that

combines these phototherapies in an optimized and

customized manner.

A major challenge in RT and particularly in phototherapy

is the ability to predict a clinical radiation dose and outcome

for a given treatment setup (26). Adjusting the treatment

guidelines, such as by estimating the effective dose, reducing

acute/late toxicity, and estimating conventional fractionation,

is integral to the success of the treatment in terms of patient

outcome. Currently, RT is offered based on the patient’s type of

cancer, its location, volume, and proximity to normal tissue,

and the patient’s general health and medical history (27, 28).

After confirming the suitability of the treatment, the treating

physicians attempt to identify the set of radiation properties,

including radiation frequency, intensity, duration, and angle,

that will optimize its effect on the tumor tissue (29).

Nonetheless, personalized phototherapy combined with

nanotechnology has not been adopted in a clinical setting

(10). At present, there are no computational methods that

incorporate an optimization criterion covering all aspects of

treatment and offer a framework for prediction of a

nanotechnology-based phototherapy cancer treatment (PDT

combined with PTT).

In this article, we propose a framework for data analysis

that may assist clinicians in designing a phototherapy

treatment plan, with a corresponding setup configuration and

specific laser radiation parameters, based on a desired

treatment goal. The framework is based on machine learning

techniques that enhance the treatment’s efficacy and the

specificity with which it targets cancer cells. We focus in the

present study, without loss of generality, on optimization of the
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laser radiation intensity and duration used in PDT and PTT,

both separately and in combination. We derive mathematical

models that include the condition of affected cells during and

after the treatment; these derivations are followed by an

evaluation of the gain provided by combined treatment. We

propose three prediction models that enable the selection of an

optimal set of parameters and enhance the overall treatment

efficiency while preserving certain constraints. To validate the

proposed model, we performed a set of in vitro experiments in

which PDT, PTT, and a combination of the two were

administered with various parameter setting conditions for

each treatment. We conduct analysis of post- treatment cell

death as a proxy for the treatment’s effectiveness.

The main objective of this work was to establish a precision

medicine platform that predicts a treatment outcome when

phototherapy and nanotechnology are combined. The work

makes four main contributions: 1) formulation of a first step

toward a decision support framework for clinicians to help them

determine parameter optimization in combined laser radiation

and nanotechnology- based treatment; 2) verification of the

proposed framework using three predictive models based on

machine learning that separately determine treatment

parameters for PDT and PTT in order to achieve desired level

of treatment efficiency while minimizing laser power and

duration; 3) derivation of a quantitative model that aids in

predicting the likelihood of cancer cell death based on post-

treatment permeability measurements; and 4) derivation of a

lower bound for the efficiency of combined PDT and PTT
Frontiers in Oncology 03
therapies based on the prior distributions of the estimated

efficiency of each treatment separately .
2 Materials and methods

2.1 Materials

2.1.1 Experimental setup
Human neuroblastoma cells SH-SY5Y (ATCC) were

incubated in a 24-well culture plate at a density of 1 X 105 per

well. After 24 h of incubation, the cells were treated with 1.2 mM
AuNP-mTHPC in serum-free media and co-incubated for

another 24 h without light interference. The characterization of

this nanocomplex has been described previously (25).

Subsequently, the cells were exposed to 650 nm laser (PDT),

532 nm laser (PTT), or a combination of PDT and PTT. After

laser radiation, the cells were incubated at 37°C for 24 h (Figure 1).

Following this procedure, all cells were collected from the dish and

propidium iodide (PI) was added; samples were next incubated in

darkness for 5 minutes at room temperature and then analyzed

using flow cytometry (BD LSRFortessa™).

For the cell death analysis, we used the standard FACS

software based on cell size and fluorescent intensity (30).

Fractional cells and doublet cells were filtered out as artifacts

and excluded. Clustering of cells into live and dead clusters was

derived via a manual gating process. Data were processed and

analyzed using MATLAB software (MATLAB version R2021a,
A

B

C

FIGURE 1

Description of the experiment sets: (A) PDT, (B) PTT, and (C) the combined PDT and PTT experiments.
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The MathWorks, Inc). Figure 2 shows the PDT, PTT, and

combined PDT and PTT experiments.

2.1.2 Sets of experiments
We conducted separate sets of experiments for training and

testing of the prediction model. To obtain training data for the

model, we carried out two main sets of experiments for PDT and

PTT (25). For each set, we used laser radiation intensities of 1, 6,

15, and 30 mW/cm2 and treatment durations of 1, 4, and 8

minutes, for a total of 12 experimental configurations, each of

which was implemented twice for replication purposes. This

array of laser radiation parameters was designed to include

extreme conditions that would result in unaffected cells and

death of the entire set of the cells used in the experimental setup.

For each experiment we had three controls: cells without any

treatment, cells exposed to laser radiation only (with no NPs),

and cells exposed to NPs only (without laser radiation).

To test the prediction model, we used an independent test

dataset. This test set consisted of two subsets of data, the first

consisting of data from three experiments in which each treatment

was administered separately, and the second consisting of data from

two in which the treatments were combined. This allowed us to

examine the feasibility of predicting a lower bound for the efficiency
Frontiers in Oncology 04
of the combined treatment, over a total of eight test experiments.

The test values for a tuple representing treatment duration and

intensity, (t, I0), were selected randomly from the range of values

falling within the scope of the treatment; these selections were (2,

25), (6, 12), (7,18), which were used for both the PDT and the PTT

treatments, generating a total of six datapoints for the test set.

The set of values used for laser radiation were selected in

accordance with the relevant FDA regulations, which specify

that Photofrin® should be activated with laser light delivered

through optical fibers with a cylindrical-diffuser end emitting

630-nm light at an intensity of 400 mW per cm (mW/cm) and

energy of 50–300 J/cm per length of the diffuser (31).

To examine the effect of combined PDT and PTT treatment,

we administered identical total treatment durations of 4 and 8

minutes for a fair comparison. For the first dataset, PDT and PTT

were administered separately for a duration of 4 minutes in each

case, and in the combined condition, each was administered for a

duration of 2 minutes. For the second dataset, each treatment was

administered separately for a duration of 8 minutes, and in the

combined condition, each was administered for 4 minutes. For

each of the two sets, laser radiation intensity was set to 6 and 15

mW/cm2 for PDT and PTT, respectively. Thus, the values of the

parameter tuple (t, I0) for the test datasets with combined PDT
FIGURE 2

Effects of treatment on cells and probabilities of each cell state. Cancerous cells are treated with two consecutive treatments, n1 and n2. Each
treatment influences the condition of the cells and may result in cell death, cell damage (affected cells), or no change (unaffected cells). To
analyze the effect of the combined treatment, we use a state diagram with conditional probabilities.
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and PTT treatments were (4, 6), (4, 15), and (8, 6), (8, 15). These

values were selected to produce similar treatment efficacies that

would enable examination of the effect of the combined treatment

without exceeding the maximum value of any parameter. We first

applied PDT, followed by PTT; the order of application has been

demonstrated to be approximately commutative.
2.2 Methods

2.2.1 Modeling of combined laser radiation and
nanotechnology-based phototherapy

In RT, an electromagnetic power source is concentrated to

form a beam, which is radiated toward the target tissue. The

radiated beam, B, can be defined (following 32) as:

B q , fc, I0ð Þ = a qð ÞI0e2p fct : (1)

where I1=20 e2p fct+j represents the electromagnetic waveform, fc,

and j are its frequency and phase, and a(q) represents the spatial
attenuation factor, which is a function of the beamforming

technique and the electromagnetic waveform properties.

The beam is radiated in the desired direction with a pre-

determined intensity, frequency, and duration (t) that alter the
properties of the affected tissues (3, 33). Thus, the spatial

attenuation factor can determine the spatial selectivity of the

radiation treatment.

The cellular properties of cancer cells differ from those of

normal cells in several respects, such as membrane permeability,

cel lular morphology, and gene expression (34). A

nanotechnology phototherapy design as described by Haimov

etal. (14) or Raj etal. (35) aims to exploit the difference in

permeability to enable NPs to enter the cancer cells exclusively.

This targeted nanotechnology approach is dependent on tissue
Frontiers in Oncology 05
composition, endothelial cell junctions, tumor location, and the

characteristics of the NPs (20, 36, 37).

Overall treatment selectivity is affected by radiation

selectivity, which is determined by the beam spatial

attenuation, a(q)), and by nanotechnology selectivity (38).

Thus, the overall selectivity is determined by the nanomaterial,

the cell membrane permeability, and the properties of the

radiation:

  Sn = fSðmn,Cp,B(q, fc, I0) (2)

Where mn represents the set of relevant NP properties such

as size, material, and shape; Cp represents the permeability-

related properties of the cancerous and normal cells in the tissue

undergoing treatment; and B(q,fc) represents the properties of

the radiation targeting the selected area.

F igure 3B i l lus t ra te s the spa t i a l sens i t i v i ty o f

traditional radiotherapy aiming to minimize damage to

normal ce l l s . F igure 3C i l lust rates how treatment

selectivity for cancer cells over normal cells can be

used together with spatial selectivity to enhance the

overall efficacy of a combined treatment.

A prerequisite for personalized cancer treatment is the

ability to optimize treatment efficacy while preserving certain

constraints. Here, the major criterion for treatment efficiency is

the ability to terminate cancer cells while sparing normal cells

from any harm. The treatment can be administered under

certain safety constraints to ensure that radiation will not

cause irreversible damage to non-targeted tissues (39); these

constraints include NP biocompatibility (40, 41) and reduced

treatment duration. In addition to safety considerations,

treatment costs and computational difficulty can also

be considered.

We define the response to treatment n, with treatment

conditions Pn, as the cell death rate as sampled T hours
A B C

FIGURE 3

Mechanisms of radiation and nanotechnology-based treatment. (A) Illustration of nanoparticles entering the metastatic cells and being
subsequently activated by radiation. (B) Illustration of the spatial selectivity of traditional radiotherapy, which is spatially selective, but can cause
death of not metastatic cells. (C) Demonstration of how metastatic selectivity together with spatial selectivity can enhance treatment efficacy.
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after the beginning of the experiment; this can be

represented by the expression Dn, T
Pn

. The cell death rate

represents the probability that an individual cell within a

sampled population will die, and its possible values range

from 0 to 1. The treatment conditions, for example, might

consist of laser radiat ion intensity (mW/cm2) and

duration (min).

An efficiency criterion for maximization in laser radiation-

based cancer treatment is:

Ln,TPn =
Dn,T ,cancerous cells
Pn

Dn,T ,normal   cells
Pn

− LtPn + LsafetyPn
(3)

where, Dn,T ,cancerous cells
Pn

and Dn,T ,normal   cells
Pn

represent the total

death rates among the targeted cancerous and normal cells,

respectively; LtPn is a clinical cost represented as a function of

the treatment duration; and LsafetyPn
is a safety cost, usually a

function of the laser radiation intensity and the nano-

material component.

This criterion implies that the ratio
Dn,T ,cancerous cells
Pn

Dn,T ,normal   cells
Pn

is the

treatment selectivity, Sn,TPn , which needs to be maximized while

preserving feasible treatment duration and safe radiation

conditions. Treatment latency, which is a component of the

treatment cost, must also be minimized, while treatment safety

must be maximized, or fall within the boundaries of the FDA

regulations (31).
2.2.2 Estimating target cell death under a
single treatment (PDT or PTT)

Death rate is a non-linear function that is determined by the

treatment conditions, laser radiation intensity, and duration

(42). To estimate the death rate of targeted and non-targeted

cells, we need to calculate the death rate as a function of the

treatment condition and compare it to a reference baseline. The

cell death rate compared to the reference baseline can be defined

as:

Dn,T
Pn = f n,TPn D0� �

− DT
Pcontrol (4)

where D0 is the initial death rate of the cells, f n,TPn
is a

function of the nth set of treatment conditions Pn, sampled at

time T, and DT
Pcontrol is the control death rate in the absence of

the treatment, also sampled at time T, which is used as

a reference.

Thus, the treatment success rate as a function of the

treatment parameters I (laser radiation intensity) and t (laser

radiation duration), according to a sample taken after 24 hours

from the experiment onset, is defined as follows for the PDT and

PTT treatment conditions, respectively:

DPDT ,24
I,t = FPDT ,24

I,t D0� �
− DT

Pcontrol ,  D
PTT ,24
I,t

= FPTT ,24
I,t D0� �

− DT
Pcontrol (5)
Frontiers in Oncology 06
2.2.3 Dual treatment design (PDT and PTT)
In the case of the dual PDT and PTT treatment design, death

rate is assessed as follows:

Dn1+n2,T
Pn1 ,Pn2

= f n2,TPn2
f n1,TPn1

D0� �� �
− DT

Pcontrol (6)

For example, in a case in which PDT and then PTT

treatments are administered, and the tissues sampled after 24

hours, with the treatment parameters IPDT,tPDT , and IPTT,tPTT ,
we would compute the following death rate:

DPDT+PTT ,T
I,t   = f PTT,TIPTT ,tPTT f PDT,TIPDT ,tPDT D0� �� �

− DT
Pcontrol (7)

For an unbiased comparison between any single treatment

and the combined effect, we equate the laser radiation intensity

and duration used in the combined PDT and PTT treatment to

that of an individual PDT or PTT treatment,tPTT or tPDT.

2.2.4 Optimization criterion
To determine the optimal efficiency of a given treatment , we

need to solve for the criterion in (3), as a function of the

treatment conditions under the treatment latency and safety

constraints. We can do this using the L2-norm loss function,

while minimizing the difference between treatment sensitivity

and the desired sensitivity goal, and with the addition of the

safety and duration losses as constraints. The criterion for

identification of the optimal treatment conditions for the nth

treatment, after T minutes, thus becomes:

Ln,TPn = E STdesired − Sn,TPn

� �2
s : t :     LtPn , L

safety
Pn

(8)

Solving for this criterion can be cumbersome. We can

assume, without loss of generality, that the death rate of the

normal cells, Dn,T ,normal   cells
Pn

, is both low and relatively constant,

and can therefore be neglected. We further assume that the NPs

employed in application of the treatment are biocompatible.

Accordingly, the only tunable safety parameter is that relating to

laser radiation. The treatment optimization criterion then

becomes:

L I, tð Þ = E Dn,T ,  cancerous    cells
desired − Dn,T ,cancerous    cells

Pn

� �2
s : t :  t

< tmax ,   I0 < I0max (9)

where t<tmaxrepresents the treatment latency constraint and

I0<I0,max represents the safety constraint, with I0,max being the

maximum laser radiation.

2.2.5 Identifying treatment parameters to
maximize treatment efficiency

The criterion in (9) can be used to identify the optimal

treatment parameters. We assume without loss of generality that

the treatment parameters consist of laser radiation intensity and

treatment duration. Thus, the solution to (9) can be obtained by
frontiersin.org
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solving for the following criterion:

Î , t̂
� �

= argminI,tE Dn,T ,cancerous cells
desired − Dn,T ,cancerous cells

I,t

� �2
s : t : t

< tmax ,   I0 < I0max

(10)

where Dn,T ,Mcells
desired is the desired death rate of the cancerous

cells and Dn,T ,Mcells
I,t is the measured death rate as a function of the

treatment parameters (laser radiation duration and intensity).

The solution implies that the treatment parameters should

be identified while the constraints are preserved. To solve (9), we

can use predictive models based on training datasets (18) that

capture the statistical outcomes of a range of parameter settings.

Although the problem is non-linear, we can exploit high- order

polynomials, as in Blumrosen etal. (39). Our objective is to

predict continuous cell death rate values, rather than predicting

a predetermined set of classes. Therefore, continuous methods

like regression and interpolation are appropriate. Non-linear

regression can include many coefficients, which means that they

can suffer from overfitting and cause estimation errors to

accumulate. Accordingly, we also propose adopting an

approach to fitting using analytical functions that preserve the

asymptotic conditions of the solution.
2.2.6 Single treatment effect analysis
If the influence of the two treatments on the viability of cells

is independent and there are no live but affected (i.e., partially

damaged) cells, their combined effect in terms of efficiency can

be defined as the additive sum of the two efficiencies. Under a

realistic set of model assumptions, we assume the following: 1)

there are some cells, referred to as “affected cells”, that incur

partial damage; 2) a portion of the cells with partial damage will

recover naturally; 3) another portion of the cells with partial

damage will accumulate further damage under the effect of the

other treatment, which is likely to contribute to the cell

death rate.

We model the probability of cell death after treatment as pD,

which can be estimated as a function of the experimental

conditions. The cell death rate associated with a particular

experimental setup can be measured based on the fluorescent

intensity of the cells present in the training data, as this variable

attests to the cells’ condition (43, 44). Specifically, a signal

indicating high fluorescent intensity can be taken to indicate

reduced cell viability, since it means that membrane

permeability is greater and consequently the cell has a higher

probability of dying.

Traditionally, cells have two possible conditions: live or

dead. In practical terms, in our work, we measure the

probability of cell death by examining the population. We can

determine the probability of cell death if the population statistic

exceeds a threshold of DTH for the value that ensures the cell’s

death:
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p Dn,T
Pn

� �
= FD(D

n,T
Pn > DTH) (11)

where FD is the cumulative function of the probability

distribution, and the probability that a cell will be unaffected

by the treatment is 1 − p(Dn,T
Pn

). DTH is determined in such a way

as to ensure that a desired sensitivity and specificity are achieved

in this classification, e.g., specificity of 0.95. The results need to

be verified either by inspecting the properties of the cells or by

tracing the sampled cells for a long period.

In this work, to model the intermediate state, we define three

cell states: unaffected, affected (partially damaged), and dead.

Detection of damaged cells is challenging (45), but cell damage

following this type of treatment results in alterations to overall

cell volume, cell circularity, and membrane integrity.

To estimate the condition of the cells, and specifically to

estimate the death rate, Dn,T
Pn

, an accepted method is to observe

two main features: cell size and membrane permeability. Normal

cells will retain their size and exclude fluorescent binding dyes,

whereas dead or damaged cells are drastically smaller and

contain permeable membranes that allow fluorescent materials

such as propidium iodide (PI) to enter unimpeded (43). The

clustering of cell states is a k-dimensional problem, where k is

the number of features. A machine learning algorithm can be

used to locate the decision boundaries that maximize the

selectivity and specificity of the clustering algorithm. Under

the assumption that some of the cell state parameters are

continuous, such as the correlation of the fluorescence signal

with cell death, the problem can be reduced to a single

dimension with two thresholds based on the probability of cell

death within the population. As an example, the clustering of

cells into the three conditions of unaffected, affected (partially

damaged), or dead can then be approximated by:

p sð Þ =

FD Dn,T
Pn

> DTH

� �
                                       Pd

  FD Dn,T
Pn

> HTH

� �
+   FpD Dn,T

Pn
< DTH

� �
  Pa  

  FD Dn,T
Pn

< HTH

� �
                                        Pna  

�����������

�����������

(12)

where Pd, Pa and Pna, are the probabilities of death, being

affected (partially damaged), and being unaffected (normal),

respectively, and the thresholds for death and being unaffected

(DTH, and HTH) are selected for the desired sensitivity and

specificity (46). Figure 4 illustrates the decision boundaries

used to classify the conditions on the basis of the cell death

probability density function, p(Dn,T
Pn

), with classification carried

out on a simulated randomized dataset with mean values of 0.1,

0.3, and 0.7 for the proportion of unaffected, affected, and dead

cells, respectively.

2.2.7 Effect of combined treatment
The combined effect of multiple cancer treatments is of great

importance in cancer therapy (47). The primary consideration is
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that the concatenation of different treatments can increase the

level of accumulated damage to the targeted cells in a diverse

manner, thereby improving the overall effectiveness of treatment

(25). Secondarily, the two treatment effects described in (6)

combine with one another in a non-linear fashion, which makes

it cumbersome to optimize this combined treatment based on

separate optimization of each individual treatment.

Consequently, non-linear parameter optimization can enhance

performance in a desirable way, in a similar manner to

hyperparameter configuration of non-linear neural networks

(48). We derive a statistical model of this combined effect below.

The presence of damaged cells induces a statistical

dependency between treatments (whether they involve

repetition of the same treatment or administration of a

different treatment), as the probability that damaged cells will

recover or die depends on the prior probability. The probability

of death after consecutive treatments becomes:

p Dn1+n2,T
Pn1 ,Pn2

� �
= Pd1 Dn1,T

Pn1

� �
Pd2=d1 Dn2,T

Pn2

� �

+ Pa1Pd2=a1 Dn2,T
Pn2

� �
+ Pna1Pd2=na1 Dn2,T

Pn2

� �
(13)

The term Pd2=d1 is equal to 1 since dead cells remain dead.

A combined treatment gain can be defined as the relative

gain occurring as a result of two consecutive different treatments

compared to that occurring as a result of consecutive

applications of the same treatment (24, 49, 50). Thus, the gain is:

SG(n1, n2jn1, n1) = p Dn1+n2,T
Pn1 ,Pn2

� �
− p Dn1+n1,T

Pn1 ,Pn1

� �
(14)

The combined effect can also be denoted as SG(n1,n2|n1).

A value of SG (n1) > 0 indicates a synergistic result. This

implies that application of the two processes has a higher

efficiency than the option of repeating the same treatment.

When SG (n1) = 0, there is no synergetic gain; instead, the gain
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between treatments is additive. Finally, when SG (n1)< 0, the

efficiency is higher with repetition of treatment n1 ;

consequently, the gain is of a type referred to as antagonism.

Substituting the terms in (13) into (14), we derive the

combined gain as follows:

SG n1, n1ð Þ = Pa1Pd2=a1 Dn2,T
Pn2

� �
+ Pna1Pd2=na1 Dn2,T

Pn2

� �

− Pa1Pd2=a1 Dn1,T
Pn1

� �
− Pna1Pd2=na1 Dn2,T

Pn2

� �
(15)

The combined gain can be further separated into two

components, covering the effect of the combined treatment on

damaged cells and unaffected cells:

SG n1, n2jn1ð Þ = Sa1G + Sna1G   (16)

where Sa1G and Sna1G represent the combined gain in relation to

affected (partially damaged) cells and unaffected (normal) cells,

respectively, Pa1 (P
n2
d2=a1

− Pn1
d2=a1

), Pna1 (P
n2
d2=a1

− Pn1
d2=a1

).

Following the initial treatment, affected cells have incurred

preliminary damage, which reduces their resistance to the

second treatment. The combined gain depends on the

treatment condition and on the details of the experimental

setup, including cell type, NP characteristics, and the accuracy

with which cell states are measured. Quantification of the effects

of the combined treatments can be used to estimate the

combined gain; this entails considering the internal states of

the cells after the initial treatment. The probability of cell death

in unaffected cells is governed by two factors: death may occur

either as a result of treatment or through spontaneous natural

death. We assume subtraction of the natural cell death rate in the

control experiment in (4), hence it can be neglected. Figure 4

illustrates the cell state distribution after a single treatment and

dual consecutive treatments.
FIGURE 4

Cell state as derived by the death rate probability.
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2.2.8 Prediction of the combined
treatment efficiency

To predict the efficiency of the combined treatment, we need

to estimate the distributions for each treatment. An alternative

method is to use the prediction model to make estimates based

on measurements taken following different components of the

combined treatment.

Excluding deaths among normal cells and the presence of

damaged cells (since these are not clustered as dead cells) we

derive a lower bound for the probability of cell death under the

combined treatment:

p treatment   effect   independentð Þ

= Pd1 Dn1,T
Pn1

� �
+ 1 − Pd1 Dn1,T

Pn1

� �� �
Pd2 Dn2,T

Pn2

� �
(17)

A further lower bound can be established based on the

assumption that there is no synergetic effect of the treatments,

and we neglect deaths occurring among unaffected cells (natural

death) and damaged cells. Accordingly, the two treatments each

have an independent effect based on the unique influence of each

on the viability of cells. The lower bound then becomes:

BL Dn1+n2,T
Pn1 ,Pn2

� �
= Pd1 Dn1,T

Pn1

� �

+ 1 − Pd1 Dn1,T
Pn1

� �� �
Pd2 Dn2,T

Pn2

� �
(18)

The lower bound in a case in which the predicted outcome of

the first treatment alone is Pd1 (D
n1,T
Pn1

) = 0:6, and that of the

second treatment is Pd2 (D
n2,T
Pn2

) = 0:7, would be BL(D
n1+n2,T
Pn1 ,Pn2

) =

0:6 + (1 − 0:6)� 0:7 = 0:84. If the result of combined treatment

is a higher death rate than the lower bound, this indicates a

synergetic gain: for example, experimental results demonstrating

a death rate of 0.94 would indicate a synergetic gain of 0.1,

or 12%.
3 Results

3.1 Pre-processing and artifact removal

Pre-processing was performed on the raw data on cells’

fluorescent intensity, which was measured as an indicator of the

rates of cell membrane damage and cell death. First, we

computed the normalized level of fluorescence in comparison

to a baseline reference; this was taken to represent the

probability of cell death . Subsequently, we excluded artifacts

on the basis of extreme cell size values that would be

unrepresentative of cells. For appropriate artifact removal we

used the standard protocol for flow cytometry analysis.

Fractional cells and doublet cells were treated as artifacts and

excluded. The clustering of cells into live and dead clusters was

derived in accordance with a manual gating process in which the
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size of the cells was also used as a criterion for removal of

artifacts arising from fractional cells and doublets, as shown

in Figure 4.

Flow cytometry analysis typically begins with the creation of

gates and regions to quantify cells of interest. Specifically,

forward and side scatter density plots (the former denoting

cell size and the latter detailing the granularity of the cell) are

used for the identification of distinct cells in a population and to

exclude debris. Nonetheless, these FSC and SSC values are

merely indications of size and granularity, since they are

dependent on the nature of the sample, light refraction, sheath

fluid, and laser wavelength. Debris and doublet cells can

drastically influence this type of analysis and may lead to

mistaken conclusions. Thus, these cells were treated as artifacts

and excluded from our analysis (51).

Following this process, we derived from the fluorescent

intensity the probability of cell death in a similar manner to

Verschoor etal. (30). We then subtracted the control samples

from the experimental data. This provided the ability to visualize

and demonstrate the combined effect of the NPs and laser

radiation. Specifically, we subtracted the mean cell death rate

observed in both control experiments (cells treated with NPs

only and cells treated with laser radiation only).
3.2 Raw data representation

The result of the calibration experiment is shown in Figure 5.

It can be seen in this figure that a similar death rate (4.0±2.5%)

was observed in all control groups after 24 hours, while the death

rates in treated samples ranged from 3% to 99%. For a single

treatment, in practice, we may opt to use the highest intensity

and longest feasible duration: for example, 30 mW/cm2 and 8

minutes. However, since the objective of the present study was to

establish the incremental value of the combined treatment, we

employed a set of parameters that would induce intermediate

rates of cell death, creating the potential for gain as a result of the

combination of PDT and PTT treatments.

Based on the results, we hypothesized that the death rate was

elevated in cases of excessive intensities of over 15 mW/cm2 and

treatment durations above 4 minutes. At the low end of the

range of laser intensities and durations, the death rate was much

lower, with little effect exerted on the sampled cells. We further

observed that there was no substantial death rate in any of the

controls (4.0±2.5%). Finally, we also observed that PDT

produced stronger effects on cells at a lower duration in

comparison to PTT; this might be attributable to the time

required for NPs to heat up (Figure 5), which was around 90

seconds in our setup. Therefore, for the test data, we selected

intermediate laser radiation values of 6 mW/cm2 for 4 minutes

and 15 mW/cm2 for 4 minutes for the PDT and PTT

treatments, respectively.
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3.3 Treatment efficacy prediction models

Machine learning prediction models, used to approximate

the efficiency of a given treatment, are essential in many clinical

applications today (52). We compared three common prediction

models: regression, interpolation, and analytical function fitting.

For the regression model, we used the LOWESS (Locally

Weighted Scatterplot Smoothing) method, which is a non-

parametric linear regression method. The LOWESS method

works locally by using a sliding window in which each

smoothed value is determined by its neighboring data points

within a certain defined distance. We configured the sliding

window span at 28% and used a robust weight function to

combat the influence of outliers. For the interpolation model, we

used thin-plate spline interpolation, in which the values lying

between each training datapoint are interpolated and smoothed

in accordance with a thin-plate spline shape. For the analytical

function model, we used a second-degree polynomial fitting all

data points.

Figure 6 displays the results of each of the three prediction

models for the PDT and PTT treatments. For all prediction

curves, the treatment efficiency (cell death rate) is positively

proportional to the laser radiation intensity and duration.

However, the relationship appears to be less linear in the case

of PDT compared to PTT. For all prediction models, we observe

that the PDT model produces a larger region of effective
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treatment. We can see that the efficiency of PDT treatment

becomes greater in comparison to that of PTT with diminishing

treatment durations. This can be explained by the time that is

required for NPs to heat up (41, 42, 49).

The linear regression results for both PDT and PTT,

illustrated in Figures 6A and 6B, appear to be highly local, and

some training datapoints seem to have high residual error values.

This reflects the nature of regression models, where the accuracy

of the model is directly affected by an inadequate sample size,

causing local distortions. This results in relatively high standard

deviation error of 4.8 ± 11 and 3.8 ± 10 percent. Nevertheless,

the model performed well, with R2 = 0.89 and 0.9 for PDT and

PTT, respectively.

Under the interpolation model, illustrated for PDT and PTT

in Fig 6c and 6d respectively, the training data points were

retained as constraints and points between them were

interpolated and smoothed using the thin-plate spline shape.

Thus, the residual error at the training data points is 0 for both

prediction models, with R2 = 1. Predictions for regions between

the points appear to be smoother and to reflect physical behavior.

Lastly, the analytical function model was selected to have a

lower dimension rank of two, in the form of Dn,T
Pn

= a1I
2
0 + a2I0 +

a3t2 + a4t + a5tI0 + a6. The prediction was not local, allowing

minimization of the fitting error for all training data points. The

results of fitting were: a1=−0.001,a2=0.04,a3=−0.014,a4=0.170,

a5=0.002,a6=−0.392; and a1=−0.0003 ,a2=0.02,a3=−0.0006 ,
FIGURE 5

PDT and PTT treatment for different feasible treatment durations (min) and intensities (mW/cm2).
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FIGURE 6

Prediction model curves. (A-F) illustrate the curves generated by prediction models based on regression, interpolation, and analytical function
fitting for PDT and PTT, respectively. Blue points represent the mean values of training datapoints.
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a4=0.018,a5=0.003,a6=−0.14 , for PDT and PTT, respectively:

DPDT ,24
t ,I0 = −0:001I20 + 0:04I0 − 0:014t2 + 0:17t

+ 0:002tI0 − 0:392 (19)

DPTT ,24
t ,I0 = −0:0003I20 + 0:02I0 − 0:0006t2 + 0:018t

+ 0:003tI0 − 0:14 (20)

The coefficients affirm that the linear components were more

dominant in the fitting than the non-linear terms, justifying the

moderately transformed slopes. We can further observe from the

fitted curves that the outcome of PDT is less linear than that of

PTT, with the latter tending to become more linear as the

treatment duration increases. This is reflected by larger non-

linear terms (I20 and t2) for PDT in comparison to PTT.

The error values for this model were -0.02 ± 12 and 0.01 ± 10

percent, but the model performed well, with R2 = 0.89 and 0.92

for PDT and PTT, respectively. The relatively low mean error

can be attributed to the optimization criterion, which minimizes

mean error over all fitted curves. However, due to the limitation

on the number of regression terms, the fit was unable to capture

all non-linearities, resulting in relatively high residuals for each

training datapoint. The relatively high R2 value for the non-

linear analytical fitting approach is expected, due to the

monolithic nature of the data and the method of curve-fitting.

The results of the error analysis for training data predictions

are summarized in Table 1. While the regression and

interpolation methods appear to produce more accurate

predictions than the analytical function method, the latter has

the advantage of accessibility to clinicians and can also be further

analyzed for sensitivity testing. However, where computational

resources are unlimited, it seems that the interpolation method

with low- pass filtering has the potential to achieve the

highest accuracy.
3.4 Model verification and error analysis

To examine model performance, we used a separate test

dataset. The test datapoints are illustrated in Figure 7, where

they can be compared to the training datapoints and the predicted

curve generated by each of the three predictionmodels. The mean,

standard deviation error, and R2 for each model with respect to
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the test data are summarized in Table 2. Overall, the error at test

was significantly higher than the training error, as expected. In

addition, outcome estimates were less accurate for PDT compared

to PTT, due to the more complex shape of the PDT curve in

relation to treatment duration. In the case of LOWESS regression,

the error at test was twice as high as the training error, with similar

standard deviation values. The mean error at test for the

interpolation model was ≈20% and ≈10% for PDT and PTT,

respectively. This was higher than the analytical function fitting

model, which generated an error of ≈20% and ≈3% for the PDT

and PTT, respectively. The regression model produced a lower

mean error at test, but this was associated with a high standard

deviation. The relatively high error values at test can be explained

by a small degree of overfitting to the training datapoints, which

constrained the curve-fitting and the model’s predictions. With

the addition of more training data points, prediction error should

also be minimized in the case of the interpolation model. The R2

values for the two treatments were highest in the case of the

interpolation model, poorest in the case of the regression model,

and mid-range in the case of the analytical function

approximation. Similarly, considering the usability of the

analytical curve, we can conclude that the analytical function

offers reasonable performance with high usability. This set of

results is expected on the basis of the theoretical properties of each

of the three prediction models. The parameter tuning employed in

the analytical function method results in a smoother curve due to

the minimization of error over all data points, while the

interpolation method generates the highest local errors as

measured by R2, and the regression model produces the best

local error results as a result of the regression cost function

criterion. Higher- order analytical function fitting can provide

even greater performance, with sufficient usability.
3.5 Approximation of cell state

To evaluate and calculate the probability of a given cell

falling into each state after treatment, we present the cell death

rate predictions of each model on two dimensions, as a function

of laser radiation intensity and duration, in Figure 7. In a similar

way to a three-dimensional representation, this illustrates the

locality of the predictions of the regression model compared to

the other two models. The analytical function model appears to
TABLE 1 Training error analysis results, goodness of fit.

Treatment type PDT PTT

Prediction model Residual error R2 Residual error R2

LOWESS Regression 4.8+11.0 0.89 3.8+10 0.90

Thin plate interpolation 0.0 1.00 0.0 1.00

Analytical model 0.0+0.1 0.89 0.0+0.1 0.92
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be more similar to the regression model in the case of PTT, and

more similar to the interpolation model in the case of PDT.

Nevertheless, for PDT, the cell death region has a more

rectangular shape.
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Clustering can be applied to the outputs of the prediction

models (Figure 8) to derive the probabilities of cells being

unaffected, affected, or dead conditional on the treatment

parameters. This clustering takes a different form to the
frontiersin.org
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FIGURE 7

Model prediction error analysis for the three prediction methods. (A, B) LOWESS regression, (C, D) interpolation, (E, F) analytical function.
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clustering process described in (12), where the cell state

probabilities Pd, Pa, and Pna were determined in relation to the

physiological properties of the cells after treatment. In this case,

the clustering is based on the initial Pd, with the prediction

model outputs over the entire cell population and two

repetitions of the experiment. The objective was to estimate

the cell state probabilities as a function of the conditions applied

in the laser radiation treatment.

Figure 9 shows an example of clustering of the cells with a cell

death threshold of greater than 60% of the cell population (DTH =

0.6), an affected cell population between 30 and 60% (HTH = 0.3),

and a proportion of live cells of less than 30%. The unaffected cell

population (live cells) was pre-specified in such a manner as to

ensure that the median population would be comparable to that of

the control samples (≈ 3% death rate). The high degree of overlap

between the clusters for the three prediction models appears to

reduce prediction error compared to the continuous model. This

can be explained by the filtering- like effect of the clustering

process, which is based on cell population statistics and exclusion

of artifacts (51). The clusters can be cross- validated by tracking

cell survival rate or by observing the properties of the cells, as in

Galluzzi etal. (53). This would determine the sensitivity and

specificity of the threshold values. Cluster validation through

additional experiments can also be used to measure prediction

strength (54).
3.6 Gain from combined treatments

Combining multiple cancer treatments is essential in cancer

therapy. The gain from doing so is equal to the relative gain for

the application of two consecutive treatments compared with

continuation of the first treatment. In this case, we examined

identical laser radiation PDT and PTT treatments of 4- and 8

-minute durations for a fair comparison with the results of

combined PDT and PTT treatment. Subsequently, we estimated

a lower bound for the predicted gain (representing additive

treatment gain), BL(D
n1+n2,T
Pn1 ,Pn2

), based on estimations of the results

of PDT and PTT separately as in (18).

For the first dataset, in which treatment duration was 4

minutes, the cell death rates in the controls were DPDT ,24
tPDT=4 =

29:53 ± 7:32% andDPTT ,24
tPTT=4 = 29:96 ± 1:98%, and the rate for the

combined treatment was DPDT+PTT ,24
tPDT=2,tPTT=2 = 44:21 ± 2:57%. For the
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second dataset, in which treatment duration was 8 minutes, the

corresponding cell death rates were DPDT ,24
tPDT=8 = 66:33 ± 3:28%

and DPTT ,24
tPTT=8=81.16±4.75% for the controls, and DPDT+PTT ,24

tPDT=4,tPTT=4 =

82:1 ± 6:13% for the combined treatment.

For the first dataset, PDT and PTT were administered

separately for a duration of 4 minutes in each case, and in the

combined condition, each was administered for a duration of 2

minutes (25). For the second dataset, each treatment was

administered separately for a duration of 8 minutes, and in the

combined condition, each was administered for a duration of 4

minutes. In both data sets, the laser radiation intensity was set at 6

and 15 mW/cm2 for PDT and PTT, respectively. The lower bound

estimated for the cell death rate is reported for the regression,

interpolation, and analytical function models (LB1, LB2, LB3).

The results of the experiment, in terms of mean and

standard deviation of the cell death rate, along with the mean

values of the estimated lower bounds for the combined

treatment, are shown in Figure 10. As expected, we observed a

significantly higher cell death rate following the more prolonged

treatment. The increase in the efficiency of the treatment under

this setup, at the predetermined range of intensities, is greater

than the linear response that can be explained by the

accumulation effect (27). The lower bounds calculated using

each model presume an additive effect; these lower bounds are

significantly lower than the experimental results for the lengthier

8- minute treatment in the case of all three treatments (PDT,

PTT, and combined). This can be explained by inertial processes

that cause cell death, which are not considered in calculating the

lower bounds. Using the data for the combined treatment, or

alternatively estimating the probability that a given cell will be

affected, would be a possible way to achieve a closer estimate of

the lower bound. The lower bounds calculated based on an

additive effect (assuming there are no affected cells) are more

accurate for the short- duration treatment (4 minutes), due to

the relatively linearity of the curve in this region. At higher

intensities, the bounds are less accurate due to non-linear

accumulation of the treatment effect on the cells.

To determine the type of gain arising from the combined

treatment (synergetic, additive, or antagonistic) and to quantify

this gain, we substituted the results in (14). The results of doing so

indicated gains of SG,4 (PDT) = 14.68±4.9 and SG,4 (PTT) = 47-23

= 14.25±2.1 for the combined treatment compared to PDT and

PTT separately; these values represent synergetic gains of 49 and
TABLE 2 Test error analysis results, goodness of fit.

Treatment type PDT PTT

Prediction model Residual error R2 Residual error R2

LOWESS Regression 11.9+8.2 0.82 -6.9+13.9 0.58

Thin plate interpolation 20.0+5.3 0.93 9.9+6.3 0.92

Analytical model 19.5#8.2 0.82 3.53+11.8 0.70
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47 percent, respectively. The results indicated that there was a high

synergetic gain for shorter treatment durations. For the longer

treatment duration of 8 minutes, the gains were SG,8 (PDT) =

15.77±4.2 and SG,8 (PTT)=0.94±5.4, values which represent a

synergetic gain of 23 percent for PDT and 1 percent for PTT.
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The results imply that there is a substantial synergetic effect for

PDT, at both long and short treatment durations. In contrast, PTT

treatment provides only an additive combined gain at long treatment

durations. This indicates that, following 4 minutes of PTT treatment,

there is no expected difference in outcome between switching to PDT
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C

FIGURE 8

Representation of the cell death rate in two dimensions: (A, B) LOWESS regression, (C, D) interpolation, (E, F) analytical function.
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and resuming PTT. This finding can be explained by a high death

rate among damaged cells that do not undergo recovery under both

the combined and the PTT treatments. The elevated efficiency of the

PTT treatment when theNPs are heated to an elevated temperature is

close to saturation, causing significant damage to the cell. Thus,

damaged cells can be expected to die at similar rates under both

treatments. Following this, the influence of the second treatment is

restricted to unaffected cells, and is therefore additive.
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4 Discussion and future work

In this article we provide a framework for a dual cancer

treatment combining laser radiation with light- sensitive

nanoparticles. After administering in vitro dual phototherapies

(PDT and PTT) to SH-SY5Y cells, we modeled the efficiency and

selectivity of both treatments. We used NPs that have been

shown to be optimized for size and shape, and to be
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C

FIGURE 9

Clustering of cells into the three clinical classes (dead, affected, and unaffected). (A, B) LOWESS regression, (C, D) interpolation, (E, F) analytical
function.
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biocompatible. Subsequently, in order to maximize the

treatment efficiency, we focused on optimization of the

fundamental treatment parameters to identify the minimal

laser radiation intensity and treatment duration that can be

used to amplify the cancer cell death rate and the overall

treatment efficiency.

We constructed several biomedical statistical models and

defined three cell state probabilities: affected, unaffected, and

dead. These probabilities were used to model the gain achieved

by administering multiple consecutive treatments (combined

treatment gain). We hypothesize that affected cells respond to

subsequent treatment to a greater extent, consequently producing

a synergetic effect. Following this analysis, we defined an

optimization criterion based on the biomedical model.

We have demonstrated the feasibility of using a

computational model and methods for modeling of combined

laser radiation and NPs in the context of two new dual

treatments (PDT and PTT) and their combination. Since there

was no available dataset on which to train our models, we

created a data set to solve this issue. Subsequently, to identify

the optimal parameters for laser radiation, we constructed three

prediction models that can provide predictions for continuous

values on the basis of training data: a regression model, an

interpolation model, and a model using fitting of an analytical

function. We computed the performance of each model using

error analysis on the test data. The preliminary results showed

that the performance of all three models was sufficient, with

death rate error values of 0.09, 0.15, and 0.12 for the regression,

interpolation, and analytical function fitting approaches,

respectively. However, due to its modest form, the analytical

function model has a clinical advantage and can be further used
Frontiers in Oncology 17
for sensitivity analysis of the effect of the treatment parameters

on performance.

In all, this framework constitutes a first step toward a toolkit

for medical decision-making that can support the clinician in

optimizing the use of separate or combined treatments involving

a variety of cancer treatment methods, particularly PDT

and PTT.

In the future, we plan to collect more in vitro data, add

further treatment setup parameters (alongside radiation

duration and intensity), enhance the classification accuracy of

the model using deep learning networks, use enhanced in vitro

3D models to predict the effects of treatment under conditions

more similar to an in vivo setting, and eventually apply our

computational model to predict the efficiency of other cancer

treatment combinations and examine its performance based on

experiments involving clinical data.
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