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The tumorigenesis of esophageal carcinoma arises from transcriptional

dysregulation would become exceptionally dependent on specific regulators

of gene expression, which could be preferentially attributed to the larger non-

coding cis-regulatory elements, i.e. super-enhancers (SEs). SEs, large genomic

regulatory entity in close genomic proximity, are underpinned by control

cancer cell identity. As a consequence, the transcriptional addictions driven

by SEs could offer an Achilles’ heel for molecular treatments on patients of

esophageal carcinoma and other types of cancer as well. In this review, we

summarize the recent findings about the oncogenic SEs upon which

esophageal cancer cells depend, and discuss why SEs could be seen as the

hallmark of cancer, how transcriptional dependencies driven by SEs, and what

opportunities could be supplied based on this cancer-specific SEs.

KEYWORDS
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Introduction

Esophageal carcinoma is the fourth most common gastrointestinal cancer worldwide.

The incidence and mortality rates of esophageal carcinoma accounts for 11.75% and

14.99%, respectively (1). According to statistics from the International Researches Agency

of Cancer (IRAC), the mortality rate of the cancer would increase 69% in China by 2040,

while the main histological type is squamous cell carcinoma (ESCC) (2, 3). The standard-

of-care regimens consisted of surgery, platinum-based chemotherapy, radiotherapy, and

PD-1/PD-L1 blockade therapy (4, 5), which have improved the survival rate and patient’s
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quality of life. However, chemoradiotherapy resistance,

postoperative recurrence and unresectable advanced lesions are

still impeding the long-term survival of these patients. Given that

the limited actionable drivers in ESCC, more effective avenues

based on the clarification of the carcinogenesis are required.

Recently, it is widely recognized that the disease-associated

variations are bound up with enhancer regions, especially super-

enhancers (SEs), which undoubtedly provides novel insights into

therapeutic maneuvers.

Enhancers refer to non-coding part of genome that activate

genes expression independent of orientation, distance, and

location regarding its transcription start sites (TSSs). These

regulatory elements always provide binding sites for multiple

transcription factors (TFs) that can also be transcribed to

produce non-coding enhancer RNAs (eRNAs). More recently,

cluster of enhancers located genomic proximity were identified

as the unique transcriptional single entity, known as SEs. SEs are

underpinned by highly abundant and orchestrated interactions

with transcription apparatus and active enhancer marks

(Acetylation at lysine 27, H3K27ac & Monomethylation at

lysine 4, H3K4me1). Notably, SEs have been demonstrated to

dictate cell identity and disease and play a key role in

carcinogenesis in a broad spectrum of tumors. Recently, it has

been proposed that SEs have the potential to serve as valuable

prognostic and therapeutic targets in cancer.

During the past decade, various types of cancer

pathogenesis have been proved to be closely associated with

SEs, such as oncogenes activation, dysregulated signaling

pathways, and genetic mutations. Generally, cancer-specific

SEs assembly are not presented in the corresponding non-

cancerous tissues, such as C-Myc, INSM1 (6) and TAL1 (7).

Broadly, these SEs activate the tumorigenic signaling

pathways, promoting oncogenic transcriptions, and

enriched in key TFs binding motifs. Fortunately, the

sensitivity of SEs to perturbation has shown the promising

therapeutic vulnerability in various types of cancer, including

breast cancer (8), nasopharyngeal carcinoma (9), small cell

lung cancer (10), medulloblastoma (11) and esophageal

carcinoma (12). The critical oncogenes of ESCC, e.g. TP63,

SOX2, KLF5 and ALDH3A1, have been shown to participate
Frontiers in Oncology 02
in core regulatory circuitry (CRC) driven by SEs (12). Besides,

the pharmacological inhibition of cyclin dependent kinase 7

(CDK7), bromodomain-containing protein 4 (BRD4) and

histone deacetylases (HDACs), has been applied in

esophageal carcinoma treatment (13).

Therefore, not surprisingly, deregulation of SEs is

fundamental mechanism of cancer, which offers an Achilles

heel for diagnostic and therapeutic maneuvers (14). This

review attempts to discuss SEs’ fundamental characteristics

and roles in esophageal carcinoma, which would pave the way

for SE-based diagnostic and therapeutic maneuvers.
Super-enhancers: identification,
organization and functions

Identification of super-enhancers

Enhancers were firstly recognized as the cis-regulatory

elements from simian virus 40 (SV40), which could

prominently promote rabbit b-globulin transcription in

HeLa cells (15, 16). In general, enhancers activate cell-type-

specific gene expression regardless of their distance, position,

and orientation with respective to the cognate promoter (17,

18). The elements of enhancer are bound up with critical TFs

through their tissue-specific recognition motifs, thereby

functioning as the platform to integrate signaling pathways

and further dictate cell lineages (19). Mechanistically, the

enrichment of master TFs on enhancers results in recruiting

of the subunit of the Mediator complex (Med1), RNA

polymerase II (Pol II) , and the basal transcription

apparatus, which is organized by looping between

enhancers and their cognate promoters. Additionally,

enhancer regions are mainly overlapped with DNase

hypersensitive sites (DHS), and the active state of enhancers

are dependent on the following combinations of histone

modifications: enrichment with H3K27ac, H3K4me1, and

deficiency of Trimethylation at lysine 4 (H3K4me3)

(Table 1) (20).
TABLE 1 Histone modification markers and the related functional state of the regulatory elements.

Regulatory elements
Surrogate Markers

Promoters Enhancers Super-enhancers

DHS + + +

BRD4 + + +++

MED1 + + +++

H3K4me3 + – –

H3K4me1 – + +

H3K27ac ++ ++ +++
DHS, DNase hypersensitive sites; BRD4, Bromodomain-containing protein 4; MED1, subunit of the Mediator complex; H3K4me3, Trimethylation at lysine 4; H3K4me1, Monomethylation
at lysine 4; H3K27ac, Acetylation at lysine 27.
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SEs were firstly identified as the unique cluster of enhancers

in close genomic proximity, which were densely occupied by

master TFs Oct4/Pou5f1, Sox2, Nanog (OSN), Klf4, Esrrb, and

Med1 in murine embryonic stem cells (mESCs) (21, 22). The

Rank Ordering of Super-Enhancers (ROSE) algorithm had been

proposed to separate typical-enhancers (TEs) from SEs, whose

constituent enhancers were stitched together within 12.5 kb

genomic regions enriched by input-normalized level of

Med1 signal.
Structural features of super-enhancers

Liquid-liquid phase separation (LLPS) is a physicochemical

process by which membraneless organelles are generated in

eukaryotic cells, which could compartmentalize biochemical

reactions within the dense phase (23–25). It has been

demonstrated that SEs are phase-separated assemblies

accumulated by exceptionally high densities of master TFs, co-

activators, and RNA Pol II, dictating the roles in cell identity and

disease, including cancers (26). The intrinsically disordered

regions (IDRs) of the co-activators (BRD4 & Med1), driven by

high-valency and weak-affinity interactions, are responsible for

the formation of the phase-separated condensates at SEs, which

could bring those cis-elements and the cognate promoter in close

three-dimensional (3D) proximity and then facilitate SEs
Frontiers in Oncology 03
activation (Figure 1). This physical interaction between

enhancer and promoter both involving in TEs and SEs are

mediated by cohesin-associated CTCF (CCCTC-binding

factor) loops. Additionally, the ubiquitously expressed TF Yin

Yang 1 (YY1) has been also identified as the structural regulators

contributing to this loop structure (27). The disruption of this

structure is likely to result in activation of oncogenes outside the

neighborhood by deletion of CTCF binding site, which are

consistent with a tendency of liquid phase condensates to

undergo fusion.
Functional properties of super-enhancers

The main features of SEs had been summarized as following

Richard A. Young et al. and colleagues: (i) high-density occupancy

of master TFs, co-activators and chromatin remodelers (Table 1),

(ii) large genomic spanning, (iii) ability to exceptionally activate

transcription, (iv) sensitivity to perturbation and (v) dictate cell

identity and disease (28). Based on these observations, the

oncogenic role of SEs usually caused by genetic variations are

proposed to drive the transcriptional addiction in cancer.

The transcriptional activities of SEs exhibit an order-of-

magnitude higher than TEs and the individual constituent

enhancers within SEs, which also showing highly context-

dependent manner under rigorous genetic regulation (29).
FIGURE 1

Schematic diagram of the phase-separated condensates at super-enhancers.
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And more interestingly, the cooperativity of SEs constituents is

neither additively nor synergistically, suggesting that the “modus

operandi” of each component under highly precise and complex

regulation by other component (30).
Establishment of oncogenic super-
enhancers in esophageal carcinoma

Generally, inappropriate SEs are acquired de novo during

tumorigenesis compared with the counterpart normal tissues,

which driving expression of the critical oncogenes. The

malignant transformation and maintenance underpinned by

tumorigenic SEs could be seen as one of the core tenets of

cancer biology (28, 31, 32). Mechanically, the formation of

oncogenic SEs may stem from (i) focal amplification, (ii)

genomic rearrangements, (iii) single nucleotide polymorphisms

(SNPs), (iv) disruption of topological associating domain (TADs).
Genetic variations harboring super-
enhancers constituents

Somatic copy number alterations (SCNAs) are common

mechanism of oncogenesis driven by SEs. For example, focal

amplification peak harboring SEs identified by profiling of

H3K27ac in esophageal carcinoma (chr13:73880413-74042621,

about ~162 kb), which subsequently proven to activate the

oncogene KLF5 expression. And these cancer-specific focal

amplification peaks enriched in SEs have also been identified in

several types of cancers, including head and neck squamous cell

carcinoma, colorectal carcinoma, and liver hepatocellular

carcinoma as well (33). Additionally, genomic rearrangements

could change the natural genomic context resulting in close

proximity between oncogene promoter and their SEs, which

ectopically activates gene expression (34). This phenomenon is

also described as “enhancer hijacking”, by which oncogenic SEs

formed in colorectal carcinoma, medulloblastoma, and acute

myeloid leukemia as well (11, 35, 36). Besides, SNPs have been

reported to promote tumorigenesis by disrupting the activities of

SEs, including acquired oncogenic or abrogating protective allele

within master TFs binding sites (37, 38).

These genomic variants provide novel insights into the

carcinogenesis of esophageal carcinoma, which deserves

further investigation.
Hijacking of super-enhancers by
topological associating domain disruption

TADs have been recognized as the self-interacting genomic

region, which demonstrates higher interconnection frequency

than the outer regions (39). It has become clear that the main
Frontiers in Oncology 04
function of TADs is to insulate promoters from distal enhancers

or SEs, which conducted by binding of insulator CCCTC-

binding factor (CTCF) in cooperation with cohesin complex at

their TAD boundaries (40). Although TADs structures are

conserved in mammalian, disruption of TADs boundaries

caused by genetic or epigenetic could be convenient for

abnormal interactions between enhancer/SEs and promoters,

which is undoubtedly could be laid the foundation

for tumorigenesis.

It has been reported that TADs boundaries disruption could

be caused by recurrent mutations of CTCF and cohesin binding

sites, which were identified in esophageal carcinoma as well as

other types of cancers, including liver hepatocellular carcinoma,

colorectal carcinoma, and gastric carcinoma (41, 42).

Furthermore, the boundaries disruption is also exemplified by

epigene t ic dysregula t ion in g l ioma by increas ing

hypermethylation in CTCF site followed by its reduced

binding activity (43). Modification of 3D genome by TADs

disruption could activate oncogene expression driven by

inadvertent SEs-promoter looping, which might be utilized as

the novel candidates for targeting the oncogenic SEs in

esophageal carcinoma.
Principles of SEs-driven oncogenic
transcription dependencies

Transcriptional core regulatory circuitries

The ESC master TFs OSN have previously been

demonstrated to bind to their own genes or those of the others

in mESCs, which forms an autoregulatory feed-froward loop,

i.e., CRC (44, 45). The constituents of this interconnected loop

were subsequently extended with the other core TFs, Klf4 and

Esrrb, both of which prominent for the maintenance of ESC state

(Figure 2A) (21). Thus, CRC plays a critical role in the

reprogram of somatic cell into induced pluripotent stem cells

(iPSCs), and its dysregulation is undoubtedly involved in cancer

(12, 46).

Trio-occupancy of OSN has also been well-studied in hESCs

(human ESCs), which dominates the pluripotency contributing

to human fibroblasts differentiated into the induced pluripotent

identity. And this model has been complemented for additional

seven key TFs by “CRC Mapper” algorithm, including FOXO1,

ZIC3, NR5A1, RARG, MYB, RORA, and SOX21 (Figure 2B)

(47). The principle of CRC identification by “CRC Mapper” has

been characterized as the following three properties: TFs (i)

encoded by SEs-assigned genes, (ii) binding to SEs of their own

genes, (iii) forming fully interconnected feed-froward loops with

other TFs by binding to their SEs.

In accordance with this strategy, cancer-type and -subtype

specificity of CRC models have been identified in esophageal
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cancer and other malignancies. For example, KLF5 has been

proven to be collaborated with ELF3, GATA6 and EHF in EAC

(46), while cooperated with TP63 and SOX2 in ESCC to form

CRC (12), respectively (Figure 2C). And SOX2 has also been

identified co-regulated with KLF4, EGR1 and NOTCH1 in

Glioblastoma (48). These cancer-type and -subtype specific

CRCs driven by SEs orchestrate the oncogenic transcriptional

addiction, while offers therapeutic vulnerabilities due to

perturbation sensitivity of their own SEs. These tissue-specific

and cancer-specific CRCs driven by SEs orchestrate the

oncogenic transcriptional addiction, which offers therapeutic

vulnerabilities consistent with the perturbation sensitivity of

their own SEs.

Furthermore, cell-type-specific CRC observed in types of

cancers is in line with tumor heterogeneity, one of the hallmarks

of malignancy. For example, the other CRC (MYC/JUNB/

FOSL1) has been identified in ESCC, different with the KLF5/

SOX2/TP63 circuitry (Figure 2C). This heterogeneity of CRC

coincides with the two major genomic molecular subtypes in

ESCC, which are presumably dominated by the two CRCs

respectively. And different CRCs have also been identified in

other types of cancers, including medulloblastomas and acute
Frontiers in Oncology 05
myeloid leukemia (49, 50). The heterogeneity of CRC highlights

cell-type-specific property of SEs, which sheds light on the novel

therapeutic possibilities.
Concentration of oncogenic signaling
pathways on super-enhancers

The constituents within SEs have been demonstrated to be

heavily loaded with terminal TFs of the Wnt, Tgfb-1, and Lif

signaling pathways in mESCs, showing the preferential affections

upon SE-assigned genes compared with genes regulated by TEs

(51). Therefore, SEs could serve as a platform to converging

multiple signaling pathways, dictating the development and

disease state of cells, especially oncogenesis (52). For example,

EAC-specific SEs has been proposed to be loaded with tumor-

promoting TFs LIF, which contributes its malignant features by

activating STAT3 and PI3K/AKT signaling pathways (46).

Similarly, the cancer-subtype-specific SEs are densely bound

up with its specific master TFs TP63 in ESCC, which

participates in the formation of CRC and promotes cancer cell

proliferation via PI3K/AKT signaling pathways (12, 53, 54).
A

B

C

FIGURE 2

Model of core regulatory circuitry and its implications in esophageal tumorigenesis. (A) CRC model in murine embryonic stem cells. (B) CRC
model in human embryonic stem cells identified by “CRC Mapper” algorithm. (C) Histopathology- and cell-type-specific CRC in esophageal
carcinoma, including adenocarcinoma (left) and squamous cell carcinoma (right). Hematoxylin-eosin stain (magnification x 100).
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These findings have also been clarified in other types of cancer,

e.g., colorectal carcinoma (51), pancreatic carcinoma (55) and

osteosarcoma (56). Taken together, these lines of evidence have

been proposed that these oncogenic SEs occupied by key TFs

pertaining to the critical signaling pathways upon which cancer

cell depend, which offers the therapeutic vulnerabilities for

esophageal carcinoma.
The occupancy of CDK7 at super-
enhancers in esophageal carcinoma

The cyclin-dependent kinases (CDKs) of mammals

comprise two main subfamilies with unique properties

associated with cell cycle (CDKs 1-6 & 14-18) and

transcriptional regulation (CDKs 7-13 & 19-20) (57). The

unique functional repertoire of CDK7, the critical component

of CDKs, is based on the regulation of transcription and cell

cycle progression. General ly , CDK7 could activate

transcriptional initiation and elongation by combining with

transcription factor II H (TFIIH), while it could also control

cell cycle progression by virtue of forming CDK-activating

kinase (CAK) (58, 59).

Studies have demonstrated that the dysregulation of CDK7

was involved in various types of cancers and considered to be

positively correlated with the aggressive clinicopathological

features of these cancers, including esophageal cancer,

hepatocellular carcinoma, gastric cancer, and colorectal cancer

(13, 60–62). In ESCC, an immunohistochemical (IHC) analysis

demonstrated that elevated expression of CDK7 was observed in

over 80% samples which was associated with high tumor grade

and poor prognosis. Notably, inhibited proliferation and

decreased chemotherapeutic resistance have been observed

when CDK7 gene was silenced (63). Besides, the level of

CDK7 was higher in ESCC tissues with lymph node

metastases compared to control group and positively

correlated with tumor metastasis and patients’ overall

survival (64).

The overabundance of CDK7 within SEs regions offer the

opportunities of blockade therapies in a lineage-specific cancer

cell manner. THZ1, a covalent inhibitor of CDK7, was proposed

to have a preferential impact on a plethora of oncogenes driven

by SEs and could cause the disruption of specific transcriptional

programs. For example, Chipumuro et al. found that this

inhibitor could suppress the transcription of amplified Mycn

to suppress the neuroblastoma cells proliferation and the

sensitivity to THZ1 was related to preferentially decreased

expression of SE-driven oncogenes (65). Subsequent studied

showed that esophageal cancer, lung cancer and prostate

cancer were sensitive to THZ1 treatment at low nanomolar

range (10, 13, 66). Additionally, THZ1 could also cause

downregulation of SEs-associated functional long noncoding
Frontiers in Oncology 06
RNAs acting as competing endogenous (ce-lncRNAs), such as

HOTAIR, XIST, SNHG5, and LINC00094 (67), which are

associated with expression of cancer hallmark genes. Notably,

LINC00094, as a novel oncogenic lncRNA could be activated by

master TFs, e.g., TCF3 and KLF5, and positively correlate with

poor prognosis. Upon inhibiting these TFs by THZ1, the level of

LINC00094 is downregulated, which could cause tumor

regression in ESCC. Thus, these studies have demonstrated

THZ1 could be utilized as the crosshair of cancer drug

discovery (57).

Similar to CDK7, CDK9 is mainly responsible for oncogenic

transcription, e.g., as MCL-1 and C-Myc, by binding to

elongation complex (p-TEFb) (68) and knocking down CDK9

has shown an excellent antineoplastic activity in hematologic

and solid tumors. SNS-032, a selective inhibitor against CDK

family as well can inhibit transcription initiation and elongation

by targeting both CDK7 and CKD9, with the IC50 values of 62

and 4 nM, respectively (69–71). It could suppress the lung and

lymph node metastasis as well as inhibit ESCC proliferation (72).

These findings indicate that SNS-032 play an antineoplastic role

in ESCC and is expected to enter clinical trials to validate its

efficacy, especially in those with metastasis.
The occupancy of BRD4 at super-
enhancers in esophageal carcinoma

The bromo domain and extra-terminal domain (BET) family

contain BRD2, BRD3, BRD4, and testis-specific BRDT, which are

characterized by acetylation recognition and transcription

regulation (73). The well-known member of the BET family,

BRD4 was initially recognized as the component of Mediator

complex, and subsequently the general regulator for RNA Pol II

by virtue of recruitment with transcriptional elongation factor P-

TFEb. Consistently, the genomic profiling of BRD4 demonstrated

that it is mainly enriched at active enhancers and promoters,

which is not surprisingly complicated in critical cellular processes,

such as embryogenesis (74) and cancer development (75–82).

More importantly, the tumorigenic transcriptional activation of

BRD4 are preferentially to regulate SE associated oncogenes, such

as C-Myc and BCL2 (83, 84)

Emerging evidence have demonstrated that inhibition of

BRD4 occupancy result in SEs disruption and subsequently

suppress its related oncogenes expression (73). Up till now,

about 20 BRD4 inhibitors have been entered into clinical trials,

some of which showed valuable therapeutics for several cancers,

including hematological malignancies and non-small cell lung

cancer (85). The critical oncogenes within these cancers showed

highly sensitivity to JQ1, one of the promising anti-tumor BET

inhibitors (22, 86). For instance, JQ1 has been demonstrated to

inhibit ESCC proliferation by inhibiting C-Myc amplification

(86). For another, it could also block recruitment of BRD4 on the
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promoter of aurora kinases A and B (AURKA/B) to trigger

cellular senescence, which provided a novel action manner of

BRD4 in esophageal carcinoma (87). In esophageal

adenocarcinoma (EAC), high expression of YAP1 has been

reported to be observed and positively associated with poor

prognosis. JQ1 is capable of blocking BRD4 binding to the YAP1

promoter and suppress Hippo/YAP1 signaling (88), which could

be synergistically enhanced when traditional chemotherapeutic

agents, e.g., docetaxel, are added both in vitro and in vivo (88).

Notably, cell cycle arrest, especially in G1 phase, has been

observed in all the studies above. These studies also indicated

that JQ1 might be a promising drug in esophageal

carcinoma treatment.

Although a variety of small-molecule BET inhibitors have

been entered in clinical researches, however, the off-target and

side-effects cannot be neglected (89). Proteolysis targeting

chimeric (PROTAC) technology have been utilized as an

effective degradation tool over the years, which can

ubiquitinate the disease-causing proteins by hijacking E3

ligases to achieve the anti-tumor effects (90). Compared to the

general small-molecule inhibitors, the hetero-bifunctional

molecule based on PROTAC technology demonstrated

degradation of BET protein at low nanomolar dose with

negligible side-effects (91). The first oral PROTACs (ARV-110,

NCT03888612 & ARV-471, NCT04072952) have achieved

encouraging benefit for prostate and breast cancer treatment

in clinical trials (92). The newly developed GNE987, and

PROTAC pan-BET degrader, have been showing good potency

against several cancers, including hematological malignancies

(93, 94), neuroblastoma (95), and prostate carcinoma (96).

Additionally, MZ1, a PROTAC BET degrader, was previously

identified unexpectedly degradation of BRD4 over other

members of BET family, such as BRD2 and BRD3 (97).

However, MZ1 have been proposed to suppress ESCC

migration by degrading BRDT, initially recognized as testis-

specific protein, rather than BRD2, BRD3 and BRD4. The
Frontiers in Oncology 07
migratory inhibition of ESCC by MZ1 resulted from down-

regulation of DNp63 target genes enriched within SEs (98).
The enrichment of histone
acetylation at super-enhancers in
esophageal carcinoma

Histone H3K27ac has been proposed to separate the active

enhancers from poised enhancers occupied by H3K4me1 alone

(99). The occupancy of H3K27ac facilitates the chromatin

accessibility, which is responsible for exceptionally higher

enrichment of master TFs, co-activators, and transcriptional

machinery on SEs. Therefore, the dysregulated H3K27ac

within SEs region could drive the oncogenesis in several types

of cancer.

Histone acetylation is a relative steady-state controlled by

two families of enzymes: histone acetyltransferases (HATs) and

histone deacetylases (HDACs) (100, 101). Numerous studies

have demonstrated that the disturbed equilibrium of histones

acetylation is closely related with the tumorigenicity of

esophageal carcinoma (Table 2). Furthermore, the tumor-

promoting genes activated by hyperacetylation have also been

identified in esophageal carcinoma (Table 3). The dysregulated

histone acetylation of esophageal carcinoma could be accounted

for the oncogenesis driven by SEs, which densely bound up with

the active enhancer marker H3K27ac.

Based on this knowledge, the aberrant histone acetylation

has been addressed as the alternative avenues for cancer

treatment, especially those driven by oncogenic SEs. For

example, the aberrantly expressed gene SIRT7, NAD-

dependent deacetylase, was activated by SEs in non-alcoholic

fatty liver disease (NAFLD)-associated hepatocellular carcinoma

(HCCs). Depletion of SIRT7 associated SE could suppress the

tumorigenicity both in vitro and in vivo (110). And several types
TABLE 2 The correlations between dysregulated HDACs (and/or HATs) and the advanced oncogenic features of esophageal carcinoma.

Ref.
Sample info.

Targets Malignant characteristics
Pathol. No. Cell lines

Langer R et al.
(102)

EAC 180 N/A HDAC2↑ Lymph node metastasis↑+ Pathological Differentiation (poor) (Human Tissues)

Zeng, et al. (103) ESCC 86 EC/CUHK1, KYSE30/140/
150/180

HDAC4↑ Clinical Stage (advanced) + Pathological Differentiation (poor) + OS & PFS (poor)
(Human Tissues)
Proliferation↑+ Migration↑(in vitro)

Xue, et al. (104) ESCC 167 Eca-109 HAT1↑ Pathological Differentiation (poor) (Human Tissues)
Proliferation↑(in vitro)

Feng, et al. (105) ESCC N/A Eca-109, EC9706 HDAC7↑ Epithelial-mesenchymal transition↑(in vitro & in vivo)

Li, et al. (106) ESCC N/A EC9706 HDAC6↑ Proliferation↑+ Migration↑(in vitro)
EC, Esophageal carcinoma; EAC, Esophageal adenocarcinoma; ESCC, Esophageal squamous cell carcinoma; HDACs, Histone deacetylases; HATs, Histone acetyltransferases; OS, Overall
Survival; PFS, Progress-free Survival.
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of HDAC inhibitors (HDACis) have been shown as the

promising therapeutic strategies against esophageal carcinoma

(Table 4). Therefore, the recruitment of exceptionally high

histone acetylation modification, especially H3K27ac, within

the oncogenic SEs could contribute their vulnerabilities to

HDACis for patients of esophageal carcinoma.
Conclusive remark

The concept of SEs and their function in physiology and

disease has been established in the last decade. To date, there is

no doubt that SEs acquired de novo are one of the hallmarks of

esophageal carcinoma, and the available studies conclude the

characteristics of the oncogenic SEs in esophageal carcinoma:

(i) they are acquired based on genetic variants or TADs

boundaries disruption, (ii) they drive the transcriptional

additions depend on CRCs and convergence of tumorigenic
Frontiers in Oncology 08
signaling pathways, (iii) they could be targeted by inhibition of

BRD4, CDK7, and histone acetylation, which exceptionally

enriched within these cis-elements. However, there are still

several unresolved points regarding SEs in esophageal

carcinoma: (i) how the individual bona fide constituents

selectively respond to targeted inhibition pertaining to the

disproportionately enriched factors, (ii) how 3D genome

structure of the SEs are influenced by the tumor-promoting

signaling pathways, (iii) what are the critical transitions of SEs

landscape during the process of precancerous lesions to cancer,

(iv) what are the main differences of SEs profiling between

squamous cell carcinoma and adenocarcinoma, (v) what are

the clinical benefits based on the combinations of traditional

treatments and novel therapeutic avenues targeting the

subtype-specific or cell-type-specific CRCs. These insights

about SEs-driven transcriptional dependencies in esophageal

carcinoma, may shed light on the potential clinical application

of the cancer-specific SEs.
TABLE 3 The associations between dysregulated histone acetylation modifications and advanced oncogenic features.

Ref.
Sample info. Targets Malignant characteristics

Pathol. No. Cell lines Marker Genes

Zhang R et al.
(107)

ESCC 90 Eca-109, TE-1 H3K27ac↑ CCAT1↑ Lymph node metastasis↑+ Clinical Stage (advanced) + OS (poor) (Human
Tissues)
Proliferation↑+ Migration↑(in vitro & in vivo)

Hu et al. (108) ESCC N/A EC9706, KYSE150 H3K9ac↑ KLF4↑ Proliferation↓(in vitro)

Liang et al. (109) ESCC 115 Eca-109, KYSE150/
450

H3K27ac↑ LAMC2↑ Lymph node metastasis↑+ Clinical Stage (advanced) + OS (poor) (Human
Tissues)
Migration↑+ Invasion↑(in vitro)
TABLE 4 The molecular mechanism of histone deacetylase inhibitors against esophageal carcinoma.

Ref.
Sample info. HDACis

Malignant Features
Pathol. Cell lines Type Names Targets Genes

Hoshino et al.
(111)

ESCC T.Tn, TE-2 Cyclic Peptides Romidepsin HDAC1/2 PRDX1↑+ CDKN1A↑ Proliferation↓+ Apoptosis↑
(in vitro & in vivo)

Murakami, et al.
(112)

ESCC T.Tn, TE-2 Cyclic Peptides CHAP31 Pan-HDAC
(except
HDAC6)

cleaved Caspase-9↑+ Bax/
Bcl-2↑

Apoptosis↑
(in vitro & in vivo)

Tzao, et al. (113) ESCC KYSE70/150/510 Hydroxymates SAHA Pan-HDAC CDKs↓+
E-cadherin↑

Proliferation↓ + Migration↓+
Invasion↓
(in vitro & in vivo)

Shoji, et al. (114) ESCC TE-9/10/11/14 Short-chain fatty
acids

Valproic
acid

HDAC1 RAD51↓ Radiosensitivity↑(in vitro)

Shi, et al. (115) ESCC TE-1, KYSE510 Hydroxymates LMK-235 HDAC4/5 TNS3↓ Proliferation↓
(in vitro & in vivo)

Ma, et al. (116) ESCC EC9706, KYSE70 Benzamide MS-275 HDAC1/3 PI3K/Akt/mTOR↓ Proliferation↓+ Apoptosis↑
(in vitro & in vivo)

Feingold, et al.
(117)

EAC NCI-SB-Esc1/2/3, OE33,
Flo-1

Benzamide MS-275 HDAC1/3 TXNIP↑ DNA damage↑+ Apoptosis↑(in
vitro)
HDACis, Histone deacetylase inhibitors.
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