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lymphoid irradiation dose
to the intestine on graft-versus-
host disease in allogeneic
hematopoietic stem cell
transplantation for
hematologic malignancies
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Background and purpose:Graft-versus-host disease (GvHD) is a leading cause

of non-relapsemortality in patients undergoing allogeneic hematopoietic stem

cell transplantation. The Perugia Bone Marrow Transplantation Unit designed a

new conditioning regimen with total marrow/lymphoid irradiation (TMLI) and

adaptive immunotherapy. The present study investigated the impact of

radiotherapy (RT) doses on the intestine on the incidence of acute GvHD

(aGvHD) in transplant recipients, analyzing the main dosimetric parameters.

Materials and methods: Between August 2015 and April 2021, 50 patients with

hematologic malignancies were enrolled. All patients underwent conditioning

with TMLI. Dosimetric parameters (for the whole intestine and its segments)

were assessed as risk factors for aGvHD. The RT dose that was received by each

intestinal area with aGvHD was extrapolated from the treatment plan for each

patient. Doses were compared with those of the whole intestine minus the

affected area.

Results: Eighteen patients (36%) developed grade ≥2 aGvHD (G2 in 5, G3 in 11,

and G4 in 2). Median time to onset was 41 days (range 23–69 days). The skin
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was involved in 11 patients, the intestine in 16, and the liver in 5. In all 50 TMLI

patients, the mean dose to the whole intestine was 7.1 Gy (range 5.07–10.92

Gy). No patient developed chronic GvHD (cGvHD). No dosimetric variable

emerged as a significant risk factor for aGvHD. No dosimetric parameter of the

intestinal areas with aGvHD was associated with the disease.

Conclusion: In our clinical setting and data sample, we have found no clear

evidence that current TMLI dosages to the intestine were linked to the

development of aGvHD. However, due to some study limitations, this

investigation should be considered as a preliminary assessment. Findings

need to be confirmed in a larger cohort and in preclinical models.
KEYWORDS

TMLI, graft-versus-host disease, tomotherapy, intestine dose radiotherapy, HSCT =
hematopoietic stem cell transplant, intestinal acute graft-versus-host disease
Introduction

Hematopoietic stem cell transplantation (HSCT), the most

effective post-remission treatment for acute leukemia (AL), is

indicated for patients in ≥ second complete remission (CR) or in

first CR with unfavorable cytogenetics and molecular markers

(intermediate–high-risk AL) (1). HSCT achieves its effect

through the conditioning regimen’s myeloablation and the

graft’s elimination of residual leukemic cells [graft vs. leukemia

(GvL) effect]—thanks to its donor T-lymphocyte content (2). On

the other hand, this can cause graft-versus-host disease (GvHD),

a leading cause of non-relapse mortality (3).

GvHD is usually distinguished as acute or chronic, each with

a different underlying mechanism. Acute GvHD (aGvHD)

includes a combination of symptoms and signs that usually

occur in the first 100 days posttransplant but may have a later

onset. Chronic GvHD (cGvHD), the most frequent cause of late

non-relapse morbidity and mortality, might affect several

organs, determining functional impairment (4, 5) .

Approximately 30%–50% of HSCT recipients develop aGvHD

typically affecting the skin, gastrointestinal (GI) tract, and liver,

and 10%–70% are affected by cGvHD (6, 7) that manifests like

autoimmune diseases such as eosinophilic fasciitis or

scleroderma-like skin disease (8).

Risk factors for aGvHD include unrelated or alternative

donors, donor parity, donor–recipient sex mismatch, elderly

recipient, advanced-stage disease, low regulatory T-cell content

in the graft (9). Furthermore, conditioning regimens that

included total body irradiation (TBI) were associated with a

higher incidence of aGvHD than chemotherapy alone (10–12).

On the other hand, the large Forum Randomized Controlled

Trial did not show significant differences in aGvHD in children

after chemotherapy or 6 × 2 Gy TBI conditioning (13). The
02
robust GI structure and function in young patients might have

enabled them to tolerate higher GI doses with TBI.

Radiation dose correlated with aGvHD severity. In a mouse

model, Hill et al. (14) showed that a higher TBI dosage (13 Gy vs.

9 Gy) led to greater intestinal damage and more severe GvHD.

High-dose TBI (15.75 Gy vs. 12 Gy) was also associated with

more aGvHD in a clinical study by Clift et al. (15). In a large

series of patients who had received matched or mismatched stem

cell transplantation, TBI >12 Gy emerged as a risk factor for

GvHD (44% with doses >12 Gy vs. 28% with 0–12 Gy, p =

0.001) (16).

Radiation-related damage to the GI tract plays a major role

in aGvHD development and its systemic involvement by

triggering and propagating the cytokine storm (17). Critically,

the TBI dose can injure the intestinal mucosa, inducing

inflammation and promoting translocation of inflammatory

stimuli, thus further damaging the GI tract. Furthermore, the

conditioning regimen injures tissues and activates inflammatory

cytokines tumor necrosis factor (TNF)-a and interleukin (IL)-1.

Tissue damage is amplified by donor T-cell activation leading to

IL-2 and interferon (IFN)-g secretion. Intestinal mucosal

damage increases the release of lipopolysaccharides and

stimulates cytokine production by lymphocytes and

macrophages in the GI tract and by keratinocytes, dermal

fibroblasts, and macrophages in the skin (18).

In order to reduce the radiotherapy (RT) dose to the GI tract

and to other organs at risk (OARs) of toxicity, such as the lungs,

heart, and kidneys (19), total marrow irradiation (TMI) and total

marrow/lymphoid irradiation (TMLI) were introduced into the

conditioning regimens (20–23). Unlike TBI, the radiation target

volumes for TMI is only the skeleton, while total lymphoid

irradiation (TLI) is targeted at major lymph node chains and

non-lymphoid organs, such as the spleen and liver. Preclinical
frontiersin.org
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data in a murine model confirmed that, compared with TBI,

TMI reduced the dose to the GI tract and thus the risk of

aGvHD-mediated tissue damage (24). In a retrospective cohort

analysis, Haraldsson et al. (25) reported less aGvHD after TMI

with tomotherapy than two-dimensional (2D) TBI.

The present study assessed whether clinical parameters and

the dose delivered to the intestine were risk factors for aGvHD in

patients undergoing TMLI in the conditioning regimen for HSCT.
Patients and methods

Between August 2015 and April 2021, this prospective

observational study recruited 50 patients [median age 56 years,

range 23–70 years; 33 men; 17 women; 44 with acute myeloid

leukemia (AML), 3 with acute lymphoid leukemia (ALL), and 3

with myelodysplastic syndrome]. The study was conducted in

accordance with the 1975 Helsinki Declaration, as revised in

2000, and all patients provided written informed consent. The

indication for TMLI was age >50 years old. Six unfit patients (i.e.,

with comorbidities that precluded TBI) who were <50 years old

also received TMLI. Before conditioning, no patient was affected

by GI disturbances. Table 1 reports details of these 50 patients.
Radiotherapy

TMLI was administered to all patients by helical tomotherapy

in nine fractions delivered twice daily for 4.5 consecutive days.

Using a Simultaneous Integrated Boost (SIB) procedure, target

volumes were skeletal bones for TMI (total dose 13.5 Gy) and

major lymph node chains and spleen for TLI (total dose 11.5 Gy).

Patients with ALL received 13.5 Gy to the brain. All patients were

reproducibly immobilized using a vacuum cushion and a 5-point

open-face thermoplastic mask for the head, neck, and shoulders.

Since the tomotherapy unit treats up to 135 cm in length,

treatment was split into two plans: the upper, comprising

approximately from the vertex to the knees, and the lower, from

approximately the toes to the hip bone. All patients underwent

two computed tomography (CT) scans, using 10-mm slice

thickness, in opposite directions, with the patient rotated

through 180 degrees. To reach an acceptable dose homogeneity

in the junction region of the plans, a controlled dose gradient was

created using five regions inside the overlap volume.

On the CT images, one expert radiation oncologist (SS)

contoured OARs (Table 1) and target structures using the

Pinnacle TPS v.16 (Philips) contouring tool. Before

transferring images and RT structures to the Accuray®

Planning Station 5.1.1 for plan optimization, expert medical

physicists (CZ, CF) reviewed the volumes and created planning

regions of interest (ROIs) (e.g., remaining volume at risk, healthy

lungs, junctions) using a fully automated Pinnacle script.
Frontiers in Oncology 03
Plan setup and optimization were done using a dedicated

protocol with the following parameters: “fine” dose calculation

grid, 5.02-cm field width; fixed jaw mode. For the upper and lower

plans, planning modulation factors were in the range of 3.0–3.7

and 2.0–2.5, respectively; the pitch was in the range of 0.32–0.43

for the upper plan and was set at 0.287 for the lower. The pitch

value of the upper plan was selected to minimize the thread effect,

especially for off-axis targets such as the arms, and to reach a

compromise between dose homogeneity and gantry period.

Treatment planning system planning optimization goals

were set so that 100% of the prescribed dose covered 60% of

the planning target volume (PTV) and at least 95% of the

prescribed dose covered 90% of the PTV.

The optimization procedure focused on dose reduction to

the main OARs, i.e., the heart, bowel, liver, lungs, and kidneys,

and was iterated at least 500 times. Treatment plans were

assessed and approved according to the following criteria:

individual patient factors and needs, dose distribution

conformity and homogeneity (as visually assessed), hot spots

within the target, adequate treatment time for patient

compliance, achievement of target coverage objectives, and

average doses to the OARs in accordance with our center’s

reference values (Table 2). Treatment plans were satisfactory

when doses fell within the ranges shown in Table 2. By

respecting these constraints, no plan has to date fallen outside

of our median range. If it were to happen, the plan would

be redone.
TABLE 1 Details of 50 patients who underwent a TLMI-based
conditioning regimen to hematopoietic stem cell transplantation (HSCT).

Sex

Male 33

Female 17

Age (years)

Median 56

Range 23–70

Hematologic malignancies

Acute myeloid leukemia 44

Acute lymphoid leukemia 3

Myelodysplastic syndrome 3

Genetic risk stratification at diagnosis

Favorable 4

Intermediate 21

Adverse 22

Missing information 3

Disease status at HSCT

First complete remission (CR) 24

≥ Second CR 21

Advanced 5

Minimal residual disease (MRD)

MRD positive 33

No MRD 17
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Transplantation procedure

Figure 1 illustrates the conditioning regimen and graft

composition, showing TMLI was followed by thiotepa (5–7.5

mg/kg), fludarabine (150 mg/m2), and cyclophosphamide (20

mg/kg per day in Human leukocyte antigens (HLA)-matched

HSCT; 30 mg/kg per day in HLA-haploidentical HSCT). Donors

were HLA-matched related for 11 patients and HLA-

haploidentical mismatched family members for 39. Apheresis

procedures were described in full elsewhere (23). All patients

received an infusion of 2 × 106/kg donor regulatory T cells

(Tregs) on day -4 followed by 1 × 106/kg conventional T cells

(Tcons) on day -1. A megadose of >6 × 106/kg positively selected

CD34+ hematopoietic progenitor cells was infused on day 0.
Prophylaxis for Acute graft-versus-host
disease (aGvHD) and infections

aGvHD prophylaxis consisted of ex vivo T-lymphocyte

depletion by positive immunoselection of CD34+ peripheral

hematopoietic progenitor cells and donor Tregs. No

pharmaceutical immunosuppressive therapy was given

posttransplant. All patients received antibacterial, antifungal,

antiviral, and anti-Pneumocystis carinii prophylaxis. GI status

and all symptoms were registered in each patient’s chart before,

during, and after TMLI and after transplantation.
Frontiers in Oncology 04
aGvHD assessment

Engrafted patients who survived more than 30 days were

evaluable for aGvHD, which was assessed according to the

Glucksberg score (26). The grade was determined by the worst

disease stage in any organ. Diagnosis of intestinal aGvHD was

confirmed by means of a CT scan in the acute phase of intestinal

inflammation. aGvHD areas were defined by indicative

radiological signs (i.e., luminal dilation with small bowel wall

thickening (“ribbon sign”) and air/fluid levels suggesting an

ileus) (27).
Dosimetric analysis

For the whole intestine and separately for the small

intestine, large intestine, duodenum, sigmoid, and rectum,

the following dosimetric parameters were analyzed: dose

received by 5 cc (D5cc), 10 cc (D10cc), 30 cc (D30cc), 50 cc

(D50cc), 80 cc (D80cc); mean dose (Dmean); maximum dose

(Dmax); volumes that received 5 Gy (V5Gy), 7 Gy (V7Gy), 9

Gy (V9Gy), 11 Gy (V11Gy), 13 Gy (V13Gy), or more. For the

purposes of this study, an expert radiologist (MC) contoured

on the planning CT images the areas that had radiological signs

indicative of aGvHD on diagnostic CT scans, an example is

provided in Figure 2. The RT dose that was received by each

intestinal area with aGvHD (V5Gy, V7Gy, V9Gy, V11Gy,

V13Gy, Dmin, Dmean, Dmax) was extrapolated from the

treatment plan for each patient. Doses to each intestinal area

with aGvHD were compared with those of the whole intestine

minus the affected area.
Statistical analyses

Dosimetric parameters as above and clinical variables {age,

body mass index (BMI), residual disease at transplant [minimal

residual disease (MRD) >0.1% blasts at cytofluorimetric analysis

of bone marrow]} were assessed as risk factors for aGvHD. The

Shapiro–Wilk test checked if variables were normally

distributed. As they were non-normally distributed, data were

expressed as median (min–max). The Mann–Whitney and

Wilcoxon tests were used for continuous/discrete variables, i.e.,

independent and paired data, respectively. The chi-square test

with Yates’ correction or Fisher’s exact test was used to compare

categorical variables. Univariate estimates of time-related

outcome measures for survival curves were determined using

the Kaplan–Meier product-limit method. All statistical analyses

were performed using IBM-SPSS® version 26.0 (IBM Corp.,

Armonk, NY, USA, 2019). In all analyses, a two-sided p-value

≤0.05 was considered significant.
TABLE 2 Organs at risk (OARs) average and range of median doses.

Organ Median dose in Gy Average (Range)*

Anus 7.2 (3.14 – 14.81)

Bladder 8.98 (6.44 – 13.37)

Brain 8.87 (7.74 – 13.57)

Esophagus 11.4 (8.47 – 13.9)

Heart 6.35 (5.30 – 9.04)

Kidney (left) 6.27 (5.08 – 9.3)

Kidney (right) 5.69 (4.42 – 8.85)

Large bowel 7.93 (6.34 – 11.73)

Lens (left) 3.2 (1.85 – 5.19)

Lens (right) 3.3 (1.92 – 4.91)

Liver 7.72 (5.7– 10.21)

Lung (left) 8.97 (6.35 – 10.98)

Lung (right) 8.7 (6.31 – 10.65)

Oral cavity 8.83 (5.59 – 12.45)

Rectum 7.75 (5.55 – 11.66)

Small bowel 6.43 (5.61 – 10.59)

Stomach 8.39 (5.5 – 12.81)

Thyroid 10.95 (7.31 – 13.94)
*Average and range (minimum and maximum median dose) of median doses in 75
patients with diverse hematologic malignancies. Values derive from a retrospective
analysis of our entire series of 75 TMLI patients, starting in 2015. They were gradually
reduced over time to account for updates in skills and for values reported elsewhere.
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Results

All 50 patients achieved primary sustained engraftment with

full donor-type chimerism. Table 3 summarizes outcomes.

In the first 3 months posttransplant 30/50 (60%) transplant

recipients developed an infectious complication that was defined

as organ damage coupled with fever (26 pulmonary, 21 GI, 9
Frontiers in Oncology 05
genitourinary). Infections were due to bacteria, fungi, and

viruses, but infectious agents were not always identified.

All patients were evaluable for aGvHD. Eighteen patients

(36%) developed grade ≥2 aGvHD (G2 in 5, G3 in 11, and G4 in

2). Infections and other sources of inflammation were ruled out

as underlying causes. The median time to onset was 41 days

(range 23–69 days). The skin was affected in 11 patients and the
FIGURE 1

Transplantation schema, illustrating TMI/TLI* irradiation, drugs, timing, and immunotherapy before hematopoietic stem cell transplantation with
CD34+ cells. *A SIB procedure was used to deliver different TMI and TLI total doses (respectively, 13.5 Gy and 11.5 Gy); TMI, total marrow
irradiation; TLI, total lymphoid irradiation; CTX, cyclophosphamide; Fludara, fludarabine; T regs, regulatory T cells; T cons, conventional T cells.
A

B

FIGURE 2

CT scan of one representative patient. (A) shows intestinal areas with aGvHD as outlined in pale yellow. (B) shows aGvHD as contoured on this
patient’s original treatment plan and dose distribution.
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liver in 5. At diagnosis of aGvHD, the CT scan was positive for

intestinal involvement in 16/18 patients. All 18 patients received

steroids as first-line therapy. Second-line treatment was

administered to 13 patients either for early steroid withdrawal

or to achieve a better aGvHD response. Agents included

cyclosporine, anti-thymocyte globulin, extracorporeal

photopheresis, and ruxolitinib. aGvHD resolved in 16/18

patients who fully withdrew from immunosuppressive

treatments. At a median follow-up of 34 months (range 1–80

months), no patient has developed cGvHD.

In the 18 patients with aGvHD, neither age (p = 0.666), BMI

(p = 0.495), nor residual disease (p = 0.653) at transplant was

found to be a risk factor.

In the entire cohort of 50 patients, the mean TMLI dose to

the whole intestine was 7.1 Gy (range 5.07–10.92 Gy). No

dosimetric variable emerged as a significant risk factor for

aGvHD (Table 4). No dosimetric parameter of the intestinal

areas with aGvHD was associated with the disease (Table 5).

When 13 patients with G3 and G4 aGvHD were compared

with 32 patients who were aGVHD-free, no dosimetric

parameter emerged as significant.
Discussion

TMLI was recently introduced into the Perugia Unit’s

conditioning regimen as an alternative to TBI in association

with a graft containing Tregs and Tcons (28). The inoculum

content of a megadose of T cell-depleted CD34+ cells and donor

Tregs constituted the only prophylaxis for aGvHD that

otherwise would have been triggered by the Tcon content.

Indeed, evidence from murine haploidentical transplant

models showed that confusion of Tregs with Tcons prevented

lethal aGvHD by suppressing alloreactive T-cell proliferation in

the lymph nodes and non-lymphoid tissues, i.e., the skin, liver,
Frontiers in Oncology 06
gut, and lung. Since the expansion of non-alloreactive T cells was

not inhibited, immunological reconstitution proceeded

unhindered (29–32).

The choice of TMLI or TBI was dictated by the patient’s age

and condition. The present study protocol was designed to offer

HSCT to patients with hematologic malignancies who were

ineligible for TBI, i.e., 44 patients because of age, which

was >50 years, and 6 younger patients who had comorbidities

that were counterindications to TBI. The study’s inclusion

criteria precluded a TBI control group.

In a previous series of high-risk AML patients, RT tailoring

in the conditioning regimens to suit individual needs was

associated with an exceptional 75% of cGvHD/relapse-free

survival, despite T-cell depletion strategies. Grade ≥2 aGvHD

occurred in 15 patients, i.e., in 3/19 (16%) who underwent TBI

and surprisingly in 12/31 (39%) who underwent TMLI (33).

Although older age was hypothesized to have been a factor in the

development of aGvHD (33), it did not emerge as a risk factor in

the present series, with ages ranging from 23 to 70 years old. The

discrepancy may be resolved in the future by conducting a

prospective study with the same eligibility criteria.

The present study focused on radiation-related damage to

the intestine, as it was reported to play a major role in the

development of aGvHD and its systemic involvement by

propagating the cytokine storm (17). We found no evidence

that TMLI dosages to the intestine were linked to the

development of aGvHD in HSCT recipients for the current

level of dose exposure (mean dose 7.1 Gy; range: 5.07–10.92 Gy).

Risk factors other than RT may have triggered aGvHD in our

patients. One culprit may have been the Tcon content in the

graft as T cell-depleted grafts were associated with a lower

aGvHD incidence (9%) in our previous series of HSCT

patients who were conditioned with single-dose or

hyperfractionated TBI (34).

We further investigated whether RT doses to the entire

intestine or its diverse segments were risk factors for aGvHD,

taking into account CT evidence of aGvHD and radiosensitivity

variations in the different segments. In fact, some intestinal cells,

like potential stem cells, are highly radioresistant and are

activated at high-dose (9 Gy) irradiation. Like these potential

stem cells, cells contributing to the recovery of crypts and highly

apoptosis-sensitive cells are also found in different percentages

in the large and small intestine, providing different

radiosensitivity indices and making the small intestine more

radiosensitive than the colon and rectum (35).

The present results did not identify any dosimetric variable

that correlated with aGvHD in the whole intestine or its

segments. Furthermore, no parameter emerged as linked to

aGvHD even when the analysis was restricted to the

radiological area where damage was visible on the CT scan.

Several hypotheses were explored to account for the present

results. In the first instance, RT dose to the GI, tissue damage, and

aGvHD occurrence are possibly nonlinear. Our clinical priority of
TABLE 3 Outcomes of TMLI and hematopoietic stem cell
transplantation in 50 patients with hematologic malignancies.

Engraftment 50 patients

Infections in 30 patients

Pulmonary 26

Gastrointestinal 21

Genitourinary 9

Acute GvHD in 18 patients

Intestinal 16

Liver 5

Skin 11

Chronic GvHD 0

Follow-up in months 34 (1–80)

Transplant-related mortality (TRM) 16% (median time to death: 5.2 months)

Leukemia-free survival* 74.4%
* at 60 months.
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TABLE 4 Impact of dose delivered to the whole intestine and its segments on aGvHD.

Dosimetric variables aGvHD (yes) (n = 18) aGvHD (not) (n = 32)

Median Min–max Median Min–max p-value

D5cc duodenum 11.2 8.43 - 13.00 11.2 7.90 - 12.97 0.5783

D10cc duodenum 10.5 7.75 - 12.54 10.7 7.39 - 12.23 0.7387

D30cc duodenum 8.3 4.56 - 11.73 8.6 5.15 - 10.59 0.751

V5Gy duodenum 57.9 24.37 - 640.71 51.4 17.85 - 95.20 0.1693

V7Gy duodenum 39.3 14.37 - 443.80 39.3 15.53 - 85.02 0.3631

V9Gy duodenum 23.7 2.00 - 293.10 23.6 0.22 - 61.44 0.5992

V11Gy duodenum 5.8 0.00 - 125.17 6.8 0.00 - 23.32 0.7311

V13Gy duodenum 0.0 0.00 - 4.98 0.0 0.00 - 4.87 0.9145

D5cc large intestine 13.2 11.78 - 14.11 13.1 11.44 - 14.28 0.233

D10cc large intestine 13.0 11.64 - 13.94 13.0 11.32 - 14.05 0.3575

D30cc large intestine 12.7 11.28 - 13.55 12.5 10.99 - 13.73 0.3903

D50cc large intestine 12.4 10.89 - 13.29 12.1 10.69 - 13.62 0.284

D80cc large intestine 12.0 10.20 - 13.06 11.7 10.26 - 13.51 0.2841

V5Gy large intestine 1,498.3 504.76 – 2,689.28 1,161.4 538.29 – 2,317.66 0.531

V7Gy large intestine 931.0 323.83 – 1,856.46 690.5 352.30 – 1,606.63 0.2331

V9Gy large intestine 540.0 180.38 – 1,234.07 379.6 176.36 – 1,369.81 0.2331

V11Gy large intestine 240.1 46.12 - 761.86 156.2 29.63 - 836.66 0.2751

V13Gy large intestine 11.6 0.00 - 92.88 8.9 0.00 - 217.02 0.2369

D5cc rectum 10.7 5.83 - 13.01 10.4 4.19 - 12.18 0.413

D10cc rectum 9.3 4.92 - 12.50 8.5 3.81 - 11.62 0.3122

V5Gy rectum 45.0 9.05 - 135.08 38.4 2.14 - 162.84 0.4669

V7Gy rectum 18.9 0.83 - 82.28 18.4 0.28 - 57.04 0.6712

V9Gy rectum 10.8 0.00 - 77.11 8.4 0.00 - 43.59 0.3902

V11Gy rectum 4.1 0.00 - 76.63 3.3 0.00 - 19.72 0.2027

V13Gy rectum 0.1 0.00 - 5.12 0.0 0.00 - 1.07 0.0769

D5cc sigmoid 11.8 10.26 - 13.37 12.0 9.33 - 13.33 0.3026

D10cc sigmoid 11.4 7.47 - 13.01 11.6 8.09 - 13.01 0.1725

D30cc sigmoid 9.9 4.37 - 12.13 10.0 6.01 - 11.90 0.908

V5Gy sigmoid 73.7 11.23 - 159.12 65.7 31.00 - 240.90 0.7927

V7Gy sigmoid 52.6 10.47 - 139.73 54.8 18.30 - 147.52 0.8241

V9Gy sigmoid 35.7 7.11 - 102.37 37.2 6.09 - 84.98 0.4793

V11Gy sigmoid 16.3 0.22 - 58.16 17.7 0.37 - 43.34 0.4669

V13Gy sigmoid 0.5 0.00 - 10.26 0.4 0.00 - 10.12 0.7799

D5cc small intestine 12.3 11.55 - 13.75 12.2 11.09 - 13.75 0.7694

D10cc small intestine 12.0 11.40 - 13.55 11.8 10.83 - 13.70 0.5991

D30cc small intestine 11.6 10.77 - 13.11 11.4 10.18 - 13.60 0.6934

D50cc small intestine 11.2 10.36 - 12.78 11.2 9.84 - 13.55 0.6565

D80cc small intestine 10.8 9.92 - 12.42 10.8 9.27 - 13.43 0.642

V5Gy small intestine 1,167.3 595.25 – 3,061.58 1,071.2 522.12 – 3,068.37 0.5715

V7Gy small intestine 589.4 271.24 – 1,069.72 556.7 255.00 – 1,166.77 0.8241

V9Gy small intestine 250.3 143.99 - 574.82 258.0 95.19 - 877.30 0.9035

V11Gy small intestine 68.1 19.69 - 266.15 63.6 6.46 - 572.45 0.6134

V13Gy small intestine 0.3 0.00 - 35.95 0.7 0.00 - 165.66 0.5763

D5cc whole intestine 13.3 11.85 - 14.11 13.2 11.68 - 14.28 0.2932

D10cc whole intestine 13.1 11.74 - 13.96 13.0 11.58 - 14.06 0.3472

D30cc whole intestine 12.8 11.54 - 13.57 12.6 11.30 - 13.76 0.363

D50cc whole intestine 12.5 11.37 - 13.32 12.3 11.08 - 13.69 0.3848

(Continued)
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administering low RT doses to the intestine so as to preserve

intestinal function and prevent aGvHD may have been

transformed into a drawback, as low doses were administered to

the whole intestine and its segments, thus making a significant

finding hard to emerge. On the other hand, we have to admit that

the large dose variations in the intestine and the small cohort of

patients further limit resolving the difference. Secondly, it was

difficult to define the exact RT dose for the whole intestine and its

segments. Indeed, organ motion and natural variations in volume

impact upon dose delivery and intertreatment and intratreatment

sessions. Intriguingly, several preclinical studies showed that

commensal bacteria influenced the pathophysiology of GvHD

(36). When evaluating long-term changes in gut microbiota after

TBI in a murine model, Zhao et al. (37) demonstrated quantitative

and qualitative changes in microbial diversity. The results of

ongoing trials of targeted modulation strategies in HSCT

recipients (36, 38) are eagerly awaited.

Finally, contributing to the complexity of untangling the role

of RT is a combination of immune modulation as induced by GI

radiation and adoptive therapy with Tcons and Tregs. Thus, a

preclinical model will be a helpful guide in understanding the

role of TMI in aGvHD. Indeed, we have already observed that
Frontiers in Oncology 08
lowering the radiation dose (~4 Gy) to the GI attenuated tissue

damage, with less donor T-cell traffic to the GI system that

resulted in reduced aGvHD.

Ultimately, since the present small sample size of 50 patients

with 18 cases of aGvHD may account for our lack of significance,

this investigation should be considered as a preliminary assessment.

Recruitment is continuing, as are studies in preclinical models, in an

attempt to explore other potential triggers of aGvHD and provide

more definitive findings about its prevention.
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TABLE 4 Continued

Dosimetric variables aGvHD (yes) (n = 18) aGvHD (not) (n = 32)

Median Min–max Median Min–max p-value

D80cc whole intestine 12.1 11.14 - 13.09 12.0 10.78 - 13.62 0.3319

V5Gy whole intestine 2,802.6 1,155.91 – 5,925.41 2,380.1 1,102.50 – 5,011.60 0.492

V7Gy whole intestine 1,537.8 636.36 – 3,042.76 1,286.3 647.01 – 2,653.46 0.1822

V9Gy whole intestine 834.8 380.51 – 1,636.88 709.8 313.04 – 2,202.96 0.2577

V11Gy whole intestine 314.7 99.61 - 851.36 247.6 57.91 – 1,430.08 0.1513

V13Gy whole intestine 12.7 0.00 - 99.62 11.6 0.00 - 387.55 0.3472
fronti
Statistical analyses were based on Mann–Whitney test; significance was set at p < 0.05.
TABLE 5 RT dose to intestinal areas developing aGvHD vs. RT dose to non-affected intestine.

Dosimetric variables GvHD Gut without GvHD

Median Min–max Median Min–max p-value

V5Gy 722.8 186.99 – 3,206.06 1,703 391.05 – 3,829.56 0.3635

V7Gy 469.680 93.32 – 2,124.64 848.1 218.46 – 1,865.70 0.3635

V9Gy 219.380 39.68 – 1,196.45 628.5 146.48 – 1,075.89 0.3066

V11Gy 111.81 2.76 - 543.21 253.3 40.85 - 489.29 0.2115

V13Gy 8.340 0.00 - 52.46 8.83 0.00 - 68.16 0.2115

Dmin 3.100 2.13 - 6.33 3.09 2.00 - 4.18 0.1318

Dmean 7.280 5.84 - 10.47 7.52 5.06 - 8.86 0.2012

Dmax 13.800 12.22 - 15.32 13.98 12.62 - 14.78 0.256
Statistical analyses were based on Wilcoxon signed rank test; significance was set at p < 0.05.
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