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and urine energy metabolism to
differentiate single benign from
malignant pulmonary nodule
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Objective: To investigate a novel diagnostic model for benign and malignant

pulmonary nodule diagnosis based on radiomic and clinical features, including

urine energy metabolism index.

Methods: A total of 107 pulmonary nodules were prospectively recruited and

pathologically confirmed as malignant in 86 cases and benign in 21 cases. A

chest CT scan and urine energy metabolism test were performed in all cases. A

nomogram model was established in combination with radiomic and clinical

features, including urine energy metabolism levels. The nomogram model was

compared with the radiomic model and the clinical feature model alone to test

its diagnostic validity, and receiver operating characteristic (ROC) curves were

plotted to assess diagnostic validity.

Results: The nomogram was established using a logistic regression algorithm

to combine radiomic features and clinical characteristics including urine

energy metabolism results. The predictive performance of the nomogram

was evaluated using the area under the ROC and calibration curve, which

showed the best performance, area under the curve (AUC) = 0.982, 95% CI =

0.940–1.000, compared to clinical and radiomic models in the testing cohort.

The clinical benefit of the model was assessed using the decision curve analysis

(DCA) and using the nomogram for benign and malignant pulmonary nodules,

and preoperative prediction of benign and malignant pulmonary nodules using

nomograms showed better clinical benefit.
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Conclusion: This study shows that a coupled model combining CT imaging

features and clinical features (including urine energy metabolism) in

combination with the nomogram model has higher diagnostic performance

than the radiomic and clinical models alone, suggesting that the combination

of both methods is more advantageous in identifying benign and malignant

pulmonary nodules.
KEYWORDS

pulmonary nodules, nomogram, texture analysis, urine energy metabolism,
benign, malignant
Introduction

Lung cancer is one of the malignant tumors with high

morbidity and mortality, the incidence and mortality rates of

which have been on the rise in recent years. The incidence and

mortality of lung cancer in China ranked first among all

malignant tumors in 2015 with those in the world at about

11.4% and 18%, respectively (1). The 5-year survival rate can

approach 50% if early diagnosis and therapy are successful, and

early detection and treatment of lung cancer are the keys to

improving patient survival rates (2). With the wide application

of high-resolution CT, pulmonary nodules are ubiquitous in CT

screening. Benign and malignant pulmonary nodules have

different treatments and prognoses. Semantic characteristics of

pulmonary nodules such as size, attenuation, and margins are

often insufficient for characterization. Follow-up CT increases

the cost and radiation burden on the patient, in addition to the

patient’s concern about waiting too long to learn the results

(3–5). Therefore, the accurate diagnosis of lung nodules is

particularly important. Although conventional CT features are

helpful in identifying benign and malignant nodules, there is still

some controversy as to which morphological features are

valuable for the differential diagnosis of pulmonary nodules (6).

CT texture analysis can objectively and effectively evaluate

the CT value of each pixel in the lesion and can detect the subtle

density changes in the lesion that cannot be observed by the

naked eye, reflecting to some extent the heterogeneity of the

tumor (7). CT texture analysis has now been shown to

distinguish between tumor grade and genetic mutations (8–

10). Digumarthy et al. (11) performed CT texture analysis in 175

patients with pulmonary nodules prior to operation and showed

that CT texture analysis could reliably predict well-differentiated

and poorly differentiated pulmonary malignant tumors. Awe

et al. (12) analyzed the application of CT texture analysis in

pancreatic lesions, showing the clinical potential of CT texture

analysis in the diagnosis and risk classification of pancreatic

lesions. Despite the usefulness of CT texture analysis in tumor
02
diagnosis and grading, results have been obtained in the

decision-making and efficacy assessment of treatment options,

but the lack of uniform standards for image texture feature

parameters has led to inconsistent conclusions (7).

The hallmarks of cancer were reported by Robert Weinberg

and Douglas Hanahan in 2000 (13, 14), which can intervene in

tumor stages. The main reason for this is abnormal cellular

energy metabolism. Cell energy metabolism technology has

played an important role in research recently, which

quantitatively and automatically reflects the status of the living

cells, such as mitochondrial oxygen consumption rate and

glycolytic acid production rate. Some earlier proteomic studies

in lung cancer diagnosis based on urine or serum specimens

have been investigated. Prospective biomarker studies have

shown elevated DNA methylation markers CDO1 and SOX17

in the urine of patients with non-small-cell lung cancer (NSCLC)

(15). Another prospective study showed that an untargeted

urinary metabolome was associated with a lower lung cancer

risk in never-smoking women and suggested that an abnormal

urine metabolome may be associated with a higher risk of lung

cancer (16). However, few studies have focused on the role of the

urocyte energy metabolome in the discrimination between

benign and malignant nodules.

In this study, morphological assessment, CT texture analysis,

and urine cell energy metabolism test were used to investigate

their values in the diagnosis of benign and malignant pulmonary

nodules and to compare the diagnostic effectiveness of each

feature alone and in combination.

Materials and methods

Ethical approval of the study protocol

The protocol of this prospective study was approved by the

ethics committee of Zhongshan Hospital Affiliated to Dalian

University (No. 2021029, Dalian, China). Informed consent was

obtained from each patient.
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Patients and study design

This was a single-institution prospective study with 107

patients eventually enrolled consecutively and urine collected

from September 2021 to August 2022 at the inpatient Thoracic

Surgery Department. All of the patients underwent a chest CT scan

within 7 days prior to surgery and were registered as patients with a

single pulmonary nodule. All patients received pulmonary surgery

(video-assisted thoracoscopic surgery), and pathology results were

obtained. Urine energy metabolism index was performed on all

patients (Dalian DeTecsen Biomedical Co., Ltd., Dalian, China).

Inclusion criteria: 1) All patients received plain CT scans and urine

energy level tests in our hospital before surgery; 2) Postoperative

pathological results were determined. Exclusion criteria: 1) Patients

with multiple nodules including pathologically confirmed benign

andmalignant lesions; 2) Poor image quality due to respiratory and

motion artifacts during scanning; 3) Lesions with other lesions that

do not properly depict the region of interest (ROI). A flowchart of

the study subjects is shown in Figure 1.
CT scanning techniques

The patient was scanned in the supine position after deep

inspiration in a breath-hold position. The scanning area was from

the apex of the lung to the level of the bilateral costophrenic angle
Frontiers in Oncology 03
(including the whole lung). Siemens Somatom FLASH scanner was

used for CT scanning, with a tube voltage of 120 kV, tube current

automatic mAs technology, the pitch of 1.0, matrix of 512 × 512, a

layer thickness of 1.0 mm, and the bone reconstruction algorithm.
Urine cell energy metabolism test

The urine cell energy metabolism index was tested on all of

the patients (Dalian DeTecsen Biomedical Co., Ltd., Dalian,

China). Morning urine was collected within 3 days before

surgery, and all of the patients were asked not to eat or drink

for more than 8 h. By using enzymes and cofactors, the cellular

energy metabolites and their derivatives in the urine cell energy

metabolism can reflect a stable color reaction with the probe.

The qualitative results can be obtained by colorimetric

measurement at 450 nm wavelength. According to the color

reaction, urine energy metabolism results were classified into

four degrees: negative (0), weak positive (1), positive (2), and

strong positive (3).
Data preprocessing and analysis

In this work, 107 patients were enrolled; 80 cases were

randomly selected as the training cohort and 27 patients as the
FIGURE 1

Flowchart of the study subjects based on exclusion criteria.
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testing cohort. Clinical features including urine energy

metabolism results, age, gender, CT values, nodule diameter,

and edge and nodule position were collected. Images of all

nodules were independently segmented by two radiologists

and measured using a double-blind method. Calculation of

intraclass correlation coefficient (ICC) ≥0.75 was considered

robust. All of the features were divided into three groups: (I)

geometry, (II) intensity, and (III) texture. Geometric features

characterize the three-dimensional shape of the tumor. The

intensity features describe the voxel intensities within the

tumor. The texture features describe the patterns and higher-

order spatial distributions of the intensities.
Feature extraction, selection, and
model building

All radiomic features were extracted using Pyradiomic’s in-

house feature analysis program (http://pyradiomics.readthedocs.

io). Several different texture feature extraction methods were

used, including the gray-level run length matrix (GLRLM), gray-

level size zone matrix (GLSZM), gray-level co-occurrence matrix

(GLCM), and neighborhood gray-tone difference matrix
Frontiers in Oncology 04
(NGTDM) methods. The least absolute shrinkage and

selection operator (LASSO) regression model was used for

signature construction of the discovery dataset. After LASSO

feature screening, the final retained features are put into machine

learning models, including logistic regression (LR), support

vector machine (SVM), random forest, and XGBoost, for risk

model construction.

Radiomic features were constructed from correlation filters,

and the most robust non-redundant and predictive features were

selected by LASSO. Finally, a combined nomogram model was

built with clinical signatures and radiomic signatures for final

interpretation and analysis. Figure 2 shows the workflow of

radiomic analysis in this study. To reduce the side effects of

outliers, all pixel values were sorted for each image and truncation

with an intensity range of 0.5–99.5 percentiles. Spatial

normalization was employed to reduce the voxel spacing

variation effect. A fixed resolution resampling method was used

in our experiment to handle the aforementioned problems.

The radiomic nomogram was established in combination

with radiomic signature and clinical signatures. The diagnostic

efficacy of the radiomic nomogram was tested in the test cohort,

and receiver operating characteristic (ROC) curves were drawn

to evaluate the diagnostic efficacy of the nomogram. The
FIGURE 2

Workflow of radiomic analysis in this study. Nodules were segmented by radiologists, and features were extracted and selected by LASSO based
on which the prediction model, DCA, Decision curve analysis, and nomogram were built.
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calibration efficiency of the nomogram was evaluated by plotting

calibration curves, and Hosmer–Lemeshow analytical fit was

used to evaluate the calibration ability of the nomogram.

Mapping decision curve analysis (DCA) was adopted to

evaluate the clinical utility of the predictive models.
Statistics

Clinical features, including urine energy metabolism results,

age, gender, CT values, nodule diameter, and edge and nodule

position, were analyzed by t-test, Mann–Whitney U test, or c2

test. P values<0.05 were significantly considered and ultimately

used. For the repeatability of the features, Spearman’s rank

correlation coefficient was also used to calculate the correlation

between features and to retain one of the features with a

correlation coefficient >0.9 between any two features. To

maximize the ability to retain the depicted features, we used a

greedy recursive deletion strategy for feature filtering, that is, the

feature with the greatest redundancy in the current set is

removed each time. The LASSO regression model was used for

the signature-constructed discovery dataset. Subsequently, we

obtained a radiomic score for each patient by retaining a linear

combination of features, weighted by their model coefficients.

The Python scikit-learn package was used for LASSO

regression modeling.
Frontiers in Oncology 05
Results

Comparison of patient clinical
characteristics

A total of 107 cases of pulmonary nodules were analyzed and

separated into malignant and benign groups according to the

pathology results (80 vs. 27 cases). The mean age of the malignant

and benign groups was 63.84 ± 9.69 years vs. 56.57 ± 13.16 years,

respectively (P = 0.005). There was no significant difference in

terms of gender between the two groups (P = 0.389). Table 1

shows the baseline clinical characteristics of patients in our cohort.

Age, long diameter, short diameter, diameter, and energy level

showed significant differences (P< 0.05) in our cohort for clinical

feature construction, but the differences between CT value,

position, and edge were not significant (P > 0.05).
Feature selection and Rad score
establishment

All radiomic features were extracted, and prediction models

were constructed using the selected features. A total of 13

features with non-zero coefficients were selected to establish

the Rad score with a LASSO LR model. Figure 3 shows the

coefficients and mean standard error (MSE) for the 10-fold
TABLE 1 Baseline clinical characteristics of patients in our cohort.

Features All (n=107) Malignant (n=86) Benign (n=21) P value

Age (years) 62.41±10.79 63.84±9.69 56.57±13.16 0.005

Long diameter(mm) 23.24±17.73 25.06±18.14 15.78±13.97 0.031

Short diameter(mm) 16.08±11.77 17.45±12.37 10.45±6.49 0.014

Diameter(mm) 19.66±14.54 21.26±15.07 13.11±9.95 0.021

CT value (HU) -172.83±326.18 -154.69±333.26 -247.08±290.95 0.246

Gender 0.389

0 60 (0.561) 50 (0.581) 10 (0.476)

1 47 (0.439) 36 (0.419) 11 (0.524)

Position 0.222

0 27 (0.252) 24 (0.279) 3 (0.143)

1 24 (0.224) 18 (0.209) 6 (0.286)

2 5 (0.047) 4 (0.047) 1 (0.048)

3 32 (0.299) 28 (0.326) 4 (0.191)

4 19 (0.178) 12 (0.139) 7 (0.333)

Edge 0.744

0 39 (0.365) 32 (0.372) 7 (0.333)

1 68 (0.636) 54 (0.628) 14 (0.667)

Urine energy metabolism 0.048

Negative(0) 27 (0.252) 17 (0.198) 10 (0.476)

Weak positive(1) 22 (0.206) 19 (0.221) 3 (0.143)

Positive(2) 50 (0.467) 44 (0.512) 6 (0.286)

Strong positive(3) 8 (0.075) 6 (0.069) 2 (0.095)
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validation. Figure 3C shows the coefficient values for the final

selection of non-zero features.

Rad score is shown as follows:

Rad _ score = 0:21873191752687882 + 0:003986*
exp onential _ glszm _ SmallAreaEmphasis

−0:027538*lbp _ 3D _ k _ gldm _DependenceVariance +

0:037759*lbp _ 3D _ k _ glszm _ LowGrayLevelZoneEmphasis −

0:039335*lbp _ 3D _ k _ glszm _ SmallAreaHighLevelEmphasis −

0:015027*lbp _ 3D _m2 _ glszm _GrayLevelVariance −

0:041688*lbp _ 3D _m2 _ glszm _ SmallAreaLowGrayLevel

Emphasis + 0:056017*original _ firstorder _Minimum −

0:018478*wavelet _HHL _ firstorder _Kurtosis −

0:010406*wavelet _HLH _ firstorder _Kurtosis +

0:004868*wavelet _HLH _ glcm _ClusterShade −

0:013882*wavelet _HLH _ glcm _ Idn +

0:012870*wavelet _ LLH _ glcm _ClusterShade

+0:005921*wavelet _ LLL _ firstorder _Minimum

Several models were built and compared to find the best

performing model. Supplementary Table S1 shows all of the

models we used to predict benign and malignant pulmonary

nodules, and the XGBoost model had the best performance

compared to the other models. XGBoost achieved the best value

of area under the curve (AUC) in the training and testing

cohorts, with AUCs of 0.999 and 0.945 for predicting benign

and malignant lung nodules, respectively. Therefore, when

building clinical features, XGBoost was chosen as the base

model. The optimal model was obtained by comparing the

radiomic features with LR, SVM, k-nearest neighbor (KNN),

decision tree, random forest, extra trees, XGBoost, and

lightGBM classifier. Figure 4 showed the ROC analysis of

different models on radiomic signatures.
Comparison of clinical, radiomic, and
nomogram models

For the AUC, the clinical features [0.997, 95% confidence

interval (CI) = 0.990–1.000) and the radiomic features (0.999,

95% CI = 0.996–1.000) were perfectly fitted for the training

cohort. In the testing cohort, the clinical characteristics appeared

to be overfitted (0.700, 95% CI = 0.473–0.953), but the radiomic

signature remained well fitted (0.945, 95% CI = 0.858–1.000).

The nomogram using the LR algorithm, combining clinical

features and radiomic features, showed the best performance

(0.982, 95% CI = 0.940–1.000). In order to compare the clinical

signature and radiomic signature and nomogram, DeLong test

was used. The results indicated that the AUC comparison

between the nomogram and the clinical signature achieved

0.019 and that the nomogram model outperformed the clinical

model in the discrimination between malignant and benign

nodules. The AUC comparison between the nomogram and

radiomic achieved 0.457, which means that both models

performed well in differentiating malignant and benign
Frontiers in Oncology 06
nodules. Figure 5 showed the AUC in both the training and

testing cohorts.

Nomogram calibration curves showed good agreement

between predicted and observed benign and malignant

pulmonary nodules in the training and testing cohorts. The P

values for the Hosmer–Lemeshow test were 0.109, 0.832, and

0.123 in respect of clinical signature, radiomic signature, and

nomogram, suggesting that the nomogram fitted perfectly in

both the training and testing cohorts. Figure 6 showed the

calibration curves in the training and testing cohorts.

In this study, we also evaluated each model through the

DCA. The DCA for the clinical features, radiomic features, and

radiomic nomogram is presented in Figure 7. Compared to the

scenario without the prediction model (i.e., all treatment or no

treatment regimen), the radiomic nomogram significantly

improved the patient’s intervention outcome with a prediction

probability of 0.05–0.78 compared to 0.05–0.38 for the clinical

features and 0.12–0.43 for the radiomic signature. Nomograms

were higher than other signatures. The preoperative use of

radiological nomograms to predict benign and malignant

pulmonary nodules showed better clinical benefit. Figure 8

shows the nomogram for clinical use, with the total score

reflecting the probability of malignancy in pulmonary nodules.
Discussion

This study showed that for the diagnosis of pulmonary

nodules, the combined model based on radiomic features and

clinical features including urine energy level had higher

diagnostic performance than the radiomic features and clinical

features alone. The prediction probability was higher than that of

a single method, suggesting that the combination of the two

methods is more advantageous in identifying benign and

malignant pulmonary nodules.

Radiomics aims to develop new imaging biomarkers to

better understand the microbiology of cancer (17) and to

provide additional data on the biological composition of lung

nodules, which is frequently used for lung cancer screening and

diagnosis. Multiple studies have demonstrated the effectiveness

of radiomics in discriminating between malignant and benign

nodules. Our study showed that the radiomic features performed

better than clinical features in both the training cohort and

testing cohort. Several radiomic features contribute to the

identification of malignant nodules, such as kurtosis and

entropy, which have a sensitivity of 83% and specificity of 69%

for assessing lung nodule identification. These findings were also

reported in previous studies by Sacconi et al. (9), and these CT

texture parameters (e.g., skewness and entropy) are also good

predictors of epidermal growth factor receptor (EGFR)

mutations and lung adenocarcinoma patient survival. Several

studies have demonstrated that radiomics was an effective tool in

differentiating between malignant and benign tumors, with an
frontiersin.org
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accuracy of 79.06%–81%, a sensitivity of 76.2%–78.00%, and a

specificity of 76.11%–91.7% (18, 19). Another study (20) showed

that radiomic signatures achieve an AUC of 72% for the

classification of malignant and benign nodules but with

limited accuracy (11). Radiomic texture analysis and CT

features are more effective in distinguishing persistent

pulmonary nodules from transient pulmonary tuberculosis

than clinical and CT features alone (21). In addition, it is

difficult to distinguish the invasion degree of lung

adenocarcinoma only by traditional CT features alone (22, 23).

This was consistent with the study by Kumar et al. (18), which

showed that the accuracy of differentiation between malignant

and benign nodules reached 79.06%, with a sensitivity of 78.00%

and specificity of 76.11%. In the study by Wu et al. (20),

radiomic signature allowed the classification of malignant and

benign nodules with an AUC equal to 72%.
Frontiers in Oncology 07
In order to more accurately identify the macroscopic and

microscopic changes of lung nodules and comprehensively

demonstrate the changes of tumor heterogeneity in lung

nodules, the combined prediction method can not only absorb

the morphological changes of lung nodules but also reflect the

characteristics of the microstructure of lung nodules in

combination with radiomic features (24). In our investigation,

the clinical signature (0.997, 95% CI = 0.990–1.000) and

radiomic signature (0.999, 95% CI = 0.996–1.000) both achieve

the ideal fitting in the training cohort. Clinical signatures in the

testing cohort appear to be overfitting those who attained 0.700,

95% CI = 0.473–0.953, although radiomic signatures continued

to match well (0.982, 95% CI = 0.940–1.000). Several studies

have tried to compare the added value of clinical features with

these radiomic features. In fact, they could improve the

performance of machine learning methods to differentiate
A B

C

FIGURE 3

Radiomic feature selection based on LASSO algorithm and Rad score establishment. (A, B) Ten-fold cross-validated coefficients and 10-fold
cross-validated MSE. (C) The histogram of the Rad score based on the selected features.
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between focal pneumonia and adenocarcinoma (25) or NSCLC

(26). The addition of clinical features could not also produce an

improvement in the model performance (27), highlighting the

importance of the radiomic features. In nearly all cases, the

diagnostic accuracy is improved by combining the radiomic

model with clinical data, such as serum markers, demographics,

histopathology, and genomics (28). These results were consistent

with our results that the combined nomogram model based on

radiomic and clinical features performed best in the

differentiation of malignant and benign nodules.
Frontiers in Oncology 08
Urinary tests had been used as noninvasive cost-effective

tools for cancer detection (29), the components of which can

reflect the circulome of the tumor. Studies have shown that urine

can indicate lung cancer by proteomic biomarker panels (30).

Urine cellular energy metabolism as a body fluid for lung nodule

diagnosis has several advantages. First, it can be easily obtained.

Second, urinary metabolism index was reliably detected by mass

spectrometry (MS) (31–33). Studies (34–37) have shown

significant differences between patients with lung cancer and

healthy subjects based on urine metabolomic profiles. A cross-
A B

FIGURE 4

Comparison of radiometric feature model predictions for the training (A) and testing cohorts (B). XGBoost achieved the best performance in
both the training and testing cohorts.
A B

FIGURE 5

AUC Comparison of clinical, radiological, and nomogram models in the training (A) and testing (B) cohorts. The combined nomogram
performed optimally in both the training and testing cohorts.
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validated model based on nuclear magnetic resonance (NMR)

spectroscopy differentiated lung cancer (n = 71) from healthy

controls (n = 54) with a sensitivity and specificity of 93% and

94%, respectively (35). Our result showed that the combined

model including clinical features and urine energy metabolism

index showed the best predicting performance. This is consistent

with the opinion of Zhang et al. (38) that urinary biomarkers

help discriminate lung cancer from control groups, which may

be an auxiliary diagnostic tool for lung cancer detection along

with radiology features. Considering the complexity of the

pathways and metabolites in the disease processes, many
Frontiers in Oncology 09
biological explanations are hypothetical and unsupported by

evidence. Metabolites may increase during the initial stages of

the disease process but decrease rapidly as the disease progresses

(29). The urinary metabolomic test has promising clinical utility;

these studies still need additional distinct validation as the next

step toward clinical implementation.

This study has the following limitations: 1) the sample size is

small, and there may be selection bias; 2) The boundary of

lesions was manually delineated, and some small blood vessels or

bronchi may not be completely avoided, and human error is

unavoidable. In conclusion, radiomic analysis of pulmonary
A B

FIGURE 6

Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing cohorts (B).
FIGURE 7

Decision curves of the clinical, radiomic, and nomogram models in the testing cohort. Nomogram model shows the best clinical benefit in
predicting benign and malignant lung nodules compared to the clinical and radiological models.
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nodules and clinical features including urine energy levels are

valuable for the differential diagnosis of benign and malignant

pulmonary nodules, and their combined model has a high

diagnostic efficiency.
Conclusions

The combined nomogram model based on radiomic and

clinical signature-urine including cellular energy features is

helpful for the prediction of benign and malignant pulmonary

nodules. The model has higher predictive performance

compared with models based on radiomic and clinical features

only and is expected to provide more information for future

decisions on pulmonary nodules.
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