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Navigating the contested
borders between
myelodysplastic syndrome
and acute myeloid leukemia

Alexander J. Ambinder and Amy E. DeZern*

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
School of Medicine, Baltimore, MD, United States
Myelodysplastic syndrome and acute myeloid leukemia are heterogeneous

myeloid neoplasms which arise from the accumulation of mutations in a

myeloid stem cell or progenitor that confer survival or growth advantages.

These disease processes are formally differentiated by clinical, laboratory, and

morphological presentations, especially with regard to the preponderance of

blasts in the peripheral blood or bone marrow (AML); however, they are closely

associated through their shared lineage as well as their existence on a spectrum

with some cases of MDS displaying increased blasts, a feature that reflects

more AML-like behavior, and the propensity for MDS to transform into AML. It is

increasingly recognized that the distinctions between these two entities result

from the divergent patterns of genetic alterations that drive each of them.

Mutations in genes related to chromatin-remodeling and the spliceosome are

seen in both MDS and AML arising out of antecedent MDS, while mutations in

genes related to signaling pathways such as RAS or FLT3 aremore typically seen

in AML or otherwise are a harbinger of transformation. In this review, we focus

on the insights into the biological and genetic distinctions and similarities

between MDS and AML that are now used to refine clinical prognostication,

guide disease management, and to inform development of novel

therapeutic approaches.
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Abbreviations: MDS, myelodysplastic neoplasms; AML, acute myeloid leukemia; WHO, World Health

Organization; CHIP, Clonal Hematopoiesis of Indeterminate Potential; CCUS, Clonal Cytopenias of

Undetermined Significance; sAML, secondary AML; MDS-RS, MDS with ring sideroblasts; VAF, variant

allele frequency; FAB, French-American-British; MDS-EB, MDS-excess blasts; alloHCT, allogeneic;

hematopoietic cell transplant.
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Introduction

Myelodysplastic neoplasms (MDS) and acute myeloid leukemia

(AML) are two disease entities that together form a spectrum of

myeloid neoplasms with a common pathogenesis. The diseases are

linked by similarities in their biology, clinical presentation,

management, and through the capacity of MDS to transform into

AML in the setting of clonal evolution or progression. The main

risk factor for both diseases is advanced age, though they may also

be predisposed by environmental exposures, and in a minority of

cases, germline mutations (1–3). However, at their extremes, these

disease entities are fundamentally distinct and can have

dramatically different clinical presentations and prognoses. The

approach to expectation management for an individual patient as

well as therapeutic planning may vary between MDS and AML as

well as within each individual disease. The two diseases can be

challenging to distinguish and also overlap in ways that may lead

clinicians to treat with one disease-specific paradigm when in fact

the biology calls for another, highlighting the importance of a

nuanced understanding of their association.

The notion that leukemia could be preceded by a pre-leukemic

bone marrow failure state characterized by cytopenias and

abnormal morphology began coalescing in the mid-1900s, nearly

100 years after acute leukemia was first described (4, 5). Even then,

the distinctions between the numerous disease states that fall under

the umbrella of bone marrow failure were poorly defined. It wasn’t

until 1970 that the termmyelodysplastic syndrome (now referred to

as myelodysplastic neoplasms) was first introduced to distinguish it

from other bone marrow failure states.

A key feature that distinguished MDS from other bone marrow

failure states was the observation in the 1980s that, like AML, MDS

is a clonal process (6). This insight was first deduced from a study in

the 1980s that showed skewed X-chromosome inactivation

mosaicism in the bone marrow of a patient with MDS. It was

subsequently determined that up to 50% of cases of MDS have

cytogenetic abnormalities indicative of clonality (7). When

combined with targeted genetic sequencing, nearly 90% of

patients are found to have a clonal abnormality, and with

research techniques including whole exome sequencing, genetic

abnormalities indicative of clonality can be identified in virtually all

cases (8–11). MDS has thus come to be defined by the World

Health Organization (WHO) as a clonal disease process of

hematopoietic precursors that exhibits abnormal morphology (i.e.

dysplasia), leads to ineffective hematopoiesis leading to cytopenias,

and has the potential to transform into AML (12).
The pathogenesis of MDS and AML

Understanding the connection between MDS and AML

hinges on an understanding of their shared pathogenesis. MDS

and AML both arise through a process of clonal evolution in
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which the sequential acquisition of selectively advantageous

mutations leads to clonal dominance, and eventually,

malignant behavior. These mutations result in clonal

hematopoiesis of indeterminate potential (CHIP), in which the

mutated clone predominates over unmutated clones but doesn’t

produce ineffective hematopoiesis or overt neoplasia as seen in

MDS and AML (13–17). Although not considered malignant,

CHIP may not be clinically silent, as it has been associated with a

variety of non-hematologic disease states (18, 19), most notably

atherosclerosis and myocardial infarction (15, 20).

CHIP is associated with an increased risk for progression to

a hematologic malignancy, though only a minority of patients

will develop overt malignancy (17). Some CHIP-associated

mutations are more highly associated with progression to

malignancy than others (21). Among those who do progress,

the onset of CHIP may precede the hematologic malignancy by

years or decades. An intermediary entity known as clonal

cytopenias of undetermined significance (CCUS), defined by

the presence of somatic mutations indicative of clonal

hematopoiesis accompanied by clinically significant cytopenias,

has been well described and represents a transitional state

between CHIP and overt malignancy (22). CHIP and CCUS

have different genetic features; CCUS is more likely to bear

mutations in genes such as U2AF1, ZRSR2, SRSF2, JAK2, and

RUNX1. CCUS is also more likely to harbor multiple co-incident

genetic mutations and the mutations tend to be found at higher

variant allele frequencies (VAFs) (21). This is not to say that

CHIP cannot have any of these features, but that the acquisition

of these features correlates with the development of cytopenias

leading to its redefinition as CCUS. Unsurprisingly, patients

with CCUS are at higher risk of developing overt malignancy

(23). Since CHIP represents the first step on the path to

leukemogenesis, it is also unsurprising that the same risk

factors that predispose to MDS and AML (e.g. age,

inflammation, DNA-damaging chemotherapies, and radiation)

also promote the development and increase selective pressure for

CHIP (24).

Expansion or evolution of the hematopoietic clone in CHIP

or CCUS then leads to a progressively increased risk of

developing a myeloid malignancy. The complex interplay of

the underlying genetic and epigenetic changes determines the

phenotype of the disease with respect to the MDS-AML

spectrum. Additional genetic changes may drive further clonal

and phenotypic evolution, resulting in the transformation of one

disease phenotype (i.e. MDS) to another (i.e. AML) (Figure 1).
The genetic landscape of myeloid
malignancies

Broadly, the genes that are implicated in myeloid clonal

evolution and leukemogenesis are involved in a narrow set of
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cellular functions: DNMT3A, TET2, IDH1/2 are involved in the

coordination of DNAmethylation; ASXL1, BCOR, and EZH2 are

involved in histone modification; SF3B1, SRSF2, ZRSR2, and

U2AF1 encode components of the spliceosome; STAG2, SMC3,

SMC1A, and RAD21 form components of the cohesin complex;

RUNX1, GATA2, and ETV6 are transcription factors; TP53 is a

tumor suppressor gene; and JAK2, NRAS, KRAS, FLT3, WT1,

NF1, CBL, and PTPN11 are all involved in cell signaling. With

some exceptions, mutations infrequently occur in multiple genes

of the same category within the same clone. This is exemplified

by the rarity of mutations in multiple spliceosome genes (9) and

the relative exclusivity of mutant TET2 and mutant IDH2. There

is little advantage to accumulating additional mutations within a

pathway once it has already been disrupted (or activated).

Conversely, mutations in genes from multiple categories are

often required for malignant transformation (25–28).

Among the most commonly mutated genes in CHIP are

DNMT3A, ASXL1, TET2, JAK2, TP53, PPM1D, SRSF2, and

SF3B1 (13, 15, 16 ,29). DNMT3A and TET2 may be

somatically mutated in MDS and AML, suggesting that the

acquisition of these mutations is part of a common pathway in

the development of both diseases; in these cases, it may be the

specific subsequent mutations that determine whether a patient

develops MDS or AML. Mutations in other genes such as SF3B1

and SRSF2, however, are more commonly found in MDS and

MDS/AML, indicating that cases of CHIP bearing these

mutations may be skewed towards the development of MDS

over AML at an early stage in clonal evolution (9). Founder

mutations also synergize with specific subsequent mutations to

promote clonal advantage. Therefore, one mutation predisposes
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to the acquisition of another specific mutation. In this manner, a

founder mutation sets in motion a stereotyped cascade of

mutational events leading to a predictable disease phenotype (9).

Cancer is a clonal phenomenon, but multiple subclones may

emerge in the course of disease evolution, as is particularly

evident in the case of MDS. Multiple subclones, united by a

shared, common clonal ancestor and distinguished by unique

genetic mutations that have accumulated since then, exist in

competitive stasis within the MDS bone marrow (30). These

subclones span the gamut of residual healthy bone marrow,

dysplastic elements with limited residual capacity for

hematopoiesis, and myeloblasts, which have experienced a

complete arrest of maturation and therefore make no

contribution to hematopoiesis. This is reflected in the high

allelic burden of MDS-associated somatic mutations and the

relatively low bone marrow blast percentage. The opportunity

for any individual subclone to acquire new, advantageous

mutations within this environment results in the stochastic

nature of MDS.
MDS and AML are biologically
distinct

Despite similarities in their origins, MDS and AML, at their

extremes, are biologically quite distinct. AML is a proliferative

neoplasm that produces cytopenias through blocks in

differentiation that prevent leukemic blasts from maturing and

by displacing normal hematopoietic elements. In contrast, low

risk MDS leads to cytopenias through dysfunctional maturation
FIGURE 1

A diagram illustrating the progression from clonal hematopoiesis to MDS, AML, and sAML.
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and increased rates of cell turnover and death in the neoplastic

cells. Furthermore, neoplastic cell death through inflammatory

(pyroptosis and necroptosis) mechanisms generates a highly

inflammatory bone marrow microenvironment, which stifles

normal hematopoiesis and drives further clonal evolution (31,

32). Thus, most of the hematopoietic cells in circulation in

patients with MDS are actually derived from the neoplastic

clone, though they may be abnormal and insufficient in

quantity and function. The mechanistic differences between

the cytopenias observed in AML and MDS have important

implications for the hematologic effects of anti-neoplastic

therapies. Whereas cytotoxic therapies that eliminate leukemic

blasts in AML can restore normal hematopoiesis, the effect in

MDS is the destruction of the bulk of the residual hematopoietic

(albeit dysfunction) elements.
MDS and AML are genetically
distinct

The biological and phenotypic differences between MDS and

AML are underpinned by genetic differences.

Figure 2 shows the distribution of mutations in MDS, AML

without antecedent myeloid neoplasm (de novo AML), and AML

with antecedent myeloid neoplasm (secondary AML, sAML) (7,

39). While mutations such as DNMT3A and TET2 may be seen

in all three entities, unbalanced chromosomal abnormalities and

mutations in genes involved in the spliceosome are seen in both

MDS and sAML (9, 40). These MDS-specific mutations produce

the MDS phenotype. Deletion 5q is one of the most common

mutations in MDS and when it is present in relative isolation, it

is associated with the so-called 5q minus syndrome, an indolent

form of MDS with a predominant anemia and sometimes,

thrombocytosis. In mouse models, deletion of individual genes

on the short arm of chromosome 5 including RPS14, HSPA9 and

CD74, miRNA-145, Fli1, and CSNK1A1, recapitulate the

macrocytic anemia, neutropenia, and thrombocytosis observed

in 5q minus syndrome (41).
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MDS with mutations in SF3B1 is another example in which

the specific mutation correlates closely with the presence of ring

sideroblasts. SF3B1 is seen in approximately 80% of patients with

MDS with ring sideroblasts (MDS-RS) and single lineage

dysplasia and 40% of those with MDS-RS with multilineage

dysplasia (35, 42–44). Furthermore, the SF3B1 mutant variant

allele frequency (VAF) correlates with the burden of ring

sideroblasts in the marrow. It is not entirely clear how SF3B1

mutation produces the RS phenotype (45), however, knock out

or inhibition of SF3B1 in mouse models and in vitro also results

in the development of RS, confirming the causative

association (46).

While deletion 5q and SF3B1 mutation most clearly

demonstrate the relationship of genotype to phenotype, there

are a variety of other mutations that are associated with an MDS

phenotype including idic(X)(q13), isochromosome 17q, 17p

deletion or loss of 17p, monosomy 13 or 13q deletion, 12p

deletion or loss of 12p, 11q deletion, monosomy 7, 7q deletion,

or loss of 7q, complex karyotype, and pathologic mutations in

ASXL1, BCOR, EZH2, SRSF2, STAG2, U2AF1, and ZRSR2 (8,

12). Common themes in the mutational profile of MDS are the

loss of chromosomal material, unbalanced translocations, and

spliceosome mutations (SF3B1, SRSF2, ZRSR2, and U2AF1).

While some of the mutations in the spliceosome genes are

hotspot mutations that may alter function, many of the MDS-

associated mutations lead to loss of function and are therefore

less amenable to drug targeting.

De novo AML, on the other hand, frequently bears

mutations in genes such as FLT3, NPM1, IDH1/2, CEBPA,

WT1, PTPN11, and KRAS (16). These mutations tend to be

activating and many of the genes are involved in signaling

pathways (FLT3, NPM1, WT1, PTPN11, KRAS), thus leading

to a proliferative phenotype (47). This proliferative phenotype

renders de novo AML more sensitive to conventional cytotoxic

chemotherapy agents and the activating mutations provide more

opportunities for pharmaceutical inhibition.

Secondary AML is a disease process in which MDS has

undergone further clonal evolution and acquired additional
(b) (c) (d)(a)

FIGURE 2

A bar graph demonstrating the prevalence of commonly mutated genes in CHIP, MDS, De Novo AML, and sAML. The graphs were generated
using cBioPortal (33, 34) and data from the referenced datasets (25, 35–38).
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mutations that lead to the development of an AML phenotype.

SAMLs bear gene mutations that are frequently seen in MDS,

but also have additional genetic mutations in genes that are

associated with AML such as NRAS, FLT3, WT1, NPM1, IDH1/

2, and PTPN11 (48, 49). The presence of MDS-associated

chromosomal abnormalities or somatic gene mutations are

actually specific to sAML and distinguish it from de novo

AML. The WHO classification system has included the

presence of MDS-associated chromosomal abnormalities as a

defining characteristic of sAML for some time, however it is only

in the most recent versions of the WHO and ICC that specific

somatic mutations were included in the definition. This change

is based largely on results from a study comparing the genetic

profiles of de novo AML and rigorously clinically defined sAML

in which the presence of mutations SRSF2,SF3B1, U2AF1,

ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was highly specific

for a diagnosis of sAML (50). Furthermore, the investigators

identified a subset of patients who were either elderly or had

therapy-related AML who had clinically diagnosed de novo

AML, but had genetic profiles and clinical outcomes most

consistent with sAML. Biologically and behaviorally, their

disease was sAML, even if an antecedent myeloid neoplasm

had not been formally diagnosed.
The evolution of myeloid neoplasm
classification

Historically, the presence of blasts in the peripheral blood or

bone marrow has been a defining feature of AML, and blast

percentage has been one of the key features used to distinguish

MDS from AML. The first efforts to define and classify AML and

later, MDS, were undertaken by the French-American-British

(FAB) group. AML was defined by the presence of ≥30% blasts,

whereas MDS was defined according to the percentage of blasts,

the presence of ring sideroblasts, and the presence of monocytes

(51). The categories included: refractory anemia (<5% blasts,

<15% ring sideroblasts), refractory anemia with ring sideroblasts

(≥ 15% ring sideroblasts, < 5% marrow blasts), refractory anemia

with excess blasts (5-19% blasts in the marrow and 1-5% in the

peripheral blood), refractory anemia with excess blasts in

transformation (20-29% marrow blasts, > 5% peripheral blood

blasts), and chronic myelomonocytic leukemia (absolute

monocyte count in the peripheral blood > 1000).

Despite the reality that the FAB system is now mostly

considered in an historical fashion, it did highlight two

important features of the natural history of MDS that remain

relevant today: first, that cases with higher percentages of blasts

were more likely to progress and transform into overt AML, an

association that was captured by other prognostic scoring

systems (52); second, some cases never progress to acute

leukemia, yet still result in significant disease chronicity,
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tremendous morbidity and eventual mortality attributable to

MDS. It is now known that approximately 20-30% of cases of

MDS progress to overt AML while approximately 30% of cases

of AML are thought to arise out of an antecedent hematologic

disorder such as MDS (53).
Updates in the classification of MDS
and AML

The advent of next generation sequencing has led to an

ongoing process of redefining the borders of MDS, AML, and the

subtypes within each of them. Tables 1, 2 compare and contrast

the most recent classification systems from the World Health

Organization (WHO) and the International Consensus

Classification for MDS and AML, respectively. The most

recent iterations of MDS and AML classification systems

emphasize genetic factors over morphological and clinical

features in defining disease subtypes. In the WHO

classification schemas, MDS and AML are first divided into

those with defining genetic abnormalities and those without. It is

only those subtypes without genetically defining features that are

further characterized according to morphology. The same

genetically defined MDS and AML subtypes are also included

in the ICC classification schemas, however, in the case of MDS

with ring sideroblasts and AML as a whole, the ICC goes even

further and discards morphological classification altogether.

Genetic features increasingly supersede blast percentage in

the distinction and classification of MDS and AML as well. In

the 2008 WHO classification, the presence of RUNX1::

RUNX1T1, CBF::MYH11, PML::RARA alone was sufficient to

make a diagnosis of AML (or in the case of the latter, APL),

regardless of the blast percentage. In the most recent 2022

edition, this exception now extends to all AML subtypes with

recurrent genetic abnormalities including AML with t(9;11)

(p21.3;q23.3)/MLLT3::KMT2Ac, t(6;9)(p22.3;q34.1)/DEK::

NUP214, inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2,

MECOM(EVI1), other rare recurring translocations, and

mutated NPM1. While the ICC still requires a blast percentage

of ≥ 10% in the setting of a genetically-defining lesion, the WHO

does not include a lower limit in its definition of genetically-

defined AML.

Similarly, the finding of dysplasia has lost some significance

in the most recent ICC system. Historically, MDS required the

presence of dysplasia in at least 10% of a single lineage; cases of

cytopenias and clonal genetic abnormalities without dysplasia

have more recently been classified as CCUS. The most recent

ICC classification system, however, allows for the diagnosis of

MDS, even without a finding of dysplasia if 5q deletion,

monosomy 7/7q deletion, complex karyotype, or multi-hit

TP53 are found. Furthermore, the finding of multilineage

dysplasia is no longer used to distinguish de novo AML from
frontiersin.org
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TABLE 1 A comparison of the WHO and ICC classification systems for MDS. Criteria specific to the ICC classification system are color coded red. Classification of Myelodysplastic Neoplasms
(MDS)1,2,3.
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TABLE 1 Continued

WHO 20222 ICC3 Dysplastic
lineages

Cytopenias Cytoses4 Blasts Cytogenetics Mutations Diagnostic
Qualifiers5
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–

1 Defined by cytopenias and dysplasia (≥10% for all lineages). In general, there should b
2 Khoury J, et al, 5th Edition WHO Classification of Haematolymphoid Tumours: M
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5 Therapy-relatedness and underlying germline predisposition conditions are applied
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7 Defined as two distinct TP53 mutations (each VAF>10%) OR a single TP53 mutat
8 If TP53 locus LOH information is not available.
9 ≤25% bone marrow cellularity, age adjusted.
10 MDS-IB2 (MDS/AML) may be regarded as AML-equivalent for therapeutic consid
y
a
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TABLE 2 A comparison of the WHO, ICC, and ELN 2022 classification systems for AML. Criteria specific to the ICC, ELN 2022, or both
classification systems are color coded red, blue, and purple, respectively. Classification of Acute Myeloid Leukemias (AML)1,2,3.

WHO 20221 ICC2 Blasts Cytogenetics Mutations Differentiation Diagnostic
Qualifiers4

Acute myeloid leukaemia with defining genetic abnormalities Therapy-related,
progressing from
myelodysplastic

syndrome,
progressing from
myelodysplastic/
myeloproliferative

neoplasm
(specify), germline
predisposition

APL with PML::
RARA fusion

APL with t
(15;17)(q24.1;
q21.2)/PML::

RARA

≥ 10%5 t(15;17)(q24.1;q21.2)/PML::RARA

APL with other
RARA

rearrangements

≥ 10%5 t(1;17)(q42.3;q21.2)/IRF2BP2::RARA; t
(5;17)(q35.1;q21.2)/NPM1::RARA; t
(11;17)(q23.2;q21.2)/ZBTB16::RARA;

cryptic inv(17q) or del(17)(
q21.2q21.2)/STAT5B::RARA, STAT3::
RARA; Other genes rarely rearranged
with RARA:TBL1XR1 (3q26.3), FIP1L1

(4q12), BCOR (Xp11.4)

AML with RUNX1::
RUNX1T1 fusion

= ≥ 10%5 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1

AML with CBFB::
MYH11 fusion

= ≥ 10%5 inv(16)(p13.1q22) or t(16;16)(p13.1;
q22)/CBFB::MYH11

AML with DEK::
NUP214 fusion

= ≥ 10%5 t(6;9)(p22.3;q34.1)/DEK::NUP214

AML with RBM15::
MRTFA fusion

Included in
"AML with
other rare
recurring

translocations"

≥ 10%5 t(1;22)(p13.3;q13.1)/RBM15::MRTF1

AML with BCR::
ABL1 fusion

= ≥ 20%6 t(9;22)(q34.1;q11.2)/BCR::ABL1

AML
with KMT2A rearrangement

AML with t
(9;11)(p21.3;

q23.3)/MLLT3::
KMT2A

≥ 10%5 t(9;11)(p21.3;q23.3)/MLLT3::KMT2A

AML with
other KMT2A
rearrangements

≥ 10%5 *Includes AMLs with: t(4;11)(q21.3;
q23.3)/AFF1::KMT2A; t(6;11)(q27;

q23.3)/AFDN::KMT2A; t(10;11)(p12.3;
q23.3)/MLLT10::KMT2A; t(10;11)

(q21.3;q23.3)/TET1::KMT2A; t(11;19)
(q23.3;p13.1)/KMT2A::ELL; t(11;19)

(q23.3;p13.3)/KMT2A::MLLT1 (Occurs
predominantly in infants and children)

AML
with MECOM rearrangement

AML with inv
(3)(q21.3q26.2)
or t(3;3)(q21.3;
q26.2)/GATA2;

MECOM
(EVI1)

≥ 10%5 inv(3)(q21.3q26.2) or t(3;3)(q21.3;
q26.2)/GATA2; MECOM(EVI1)

AML with
other MECOM
rearrangements

≥ 10%5 Includes AMLs with: t(2;3)(p11~23;
q26.2)/MECOM::?; t(3;8)(q26.2;q24.2)/
MYC, MECOM; t(3;12)(q26.2;p13.2)/
ETV6::MECOM; t(3;21)(q26.2;q22.1)/

MECOM::RUNX1

AML
with NUP98 rearrangement

Included in
"AML with
other rare
recurring

translocations"

≥ 10%5

AML
with NPM1 mutation

= ≥ 10%5 NPM1

(Continued)
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TABLE 2 Continued

WHO 20221 ICC2 Blasts Cytogenetics Mutations Differentiation Diagnostic
Qualifiers4

AML
with CEBPA mutation

= ≥ 20%7 in-frame
bZIP CEBPA

AML and
MDS/AML
with mutated

TP53

WHO:
≥ 20%
blasts
in BM
or PB

ICC
and
ELN:
MDS/
AML if
10-19%
blasts in
BM or
PB;

AML if
≥ 20%
blasts in
BM or
PB.

TP53

AML, myelodysplasia-
related

AML and
MDS/AML

with
myelodysplasia-
related gene
mutations

ASXL1,
BCOR,
EZH2,
SF3B1,
SRSF2,
STAG2,
U2AF1,
ZRSR2,
RUNX1

AML with
myelodysplasia-

related
cytogenetic
abnormalities

Complex karyotype (≥3 abnormalities),
del(5q)/t(5q)/add(5q), -7/del(7q), +8,
del(12p)/t(12p)/add(12p), i(17q), -17/
add(17p) or del(17p), del(20q), and/or

idic(X)(q13)

AML, myelodysplasia-
related (following a known
history of MDS or MDS/
MPN)

WHO:
≥ 20%
blasts
in BM
or PB

AML with other defined
genetic alterations

AML with
other rare
recurring

translocations

WHO:
≥ 20%
blasts
in BM
or PB

≥10% t(1;3)(p36.3;q21.3)/PRDM16::RPN1; t
(1;22)(p13.3;q13.1)/RBM15::MRTF1; t
(3;5)(q25.3;q35.1)/NPM1::MLF1; t(5;11)
(q35.2;p15.4)/NUP98::NSD1; t(7;12)
(q36.3;p13.2)/ETV6::MNX1; t(8;16)
(p11.2;p13.3)/KAT6A::CREBBP; t

(10;11)(p12.3;q14.2)/PICALM::MLLT10;
t(11;12)(p15.4;p13.3)/NUP98::KMD5A;
NUP98 and other partners; t(16;21)

(p11.2;q22.2)/FUS::ERG; t(16;21)(q24.3;
q22.1)/RUNX1::CBFA2T3; inv(16)
(p13.3q24.3)/CBFA2T3::GLIS2

Acute myeloid leukaemia,
defined by differentiation8

AML, NOS

AML with minimal
differentiation

WHO:
≥ 20%
blasts
in BM
or PB

ICC
and
ELN:
MDS/
AML if
10-19%
blasts in
BM or
PB;

AML if
≥ 20%
blasts in
BM or
PB.

Any except other AML defining
cytogenetics

Any except
other AML
defining
mutations

• Blasts are negative
(<3%) for MPO and
SBB by cytochemistry
• Expression of two
or more myeloid-
associated antigens,
such as CD13, CD33,
and CD117

AML without maturation • ≥3% blasts positive
for MPO (by
immunophenotyping
or cytochemistry) or
SBB and negative for
NSE by
cytochemistry
• Expression of two
or more myeloid-
associated antigens,
such as MPO, CD13,
CD33, and CD117

(Continued)
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TABLE 2 Continued

WHO 20221 ICC2 Blasts Cytogenetics Mutations Differentiation Diagnostic
Qualifiers4

• Maturing cells of
the granulocytic
lineage constitute
<10% of the
nucleated bone
marrow cells

AML with maturation • ≥3% blasts positive
for MPO (by
immunophenotyping
or cytochemistry) or
SBB by cytochemistry
• Maturing cells of
the granulocytic
lineage constitute
≥10% of the
nucleated bone
marrow cells
• Monocyte lineage
cells constitute < 20%
of bone marrow cells
• Expression of two
or more myeloid-
associated antigens,
such as MPO, CD13,
CD33, and CD117

Acute basophilic
leukaemia

• Blasts & immature/
mature basophils
with metachromasia
on toluidine blue
staining
• Blasts are negative
for cytochemical
MPO, SBB, and NSE
• No expression of
strong CD117
equivalent (to
exclude mast cell
leukemia)

Acute myelomonocytic
leukaemia

• ≥20% monocytes
and their precursors
• ≥20% monocytes
and their precursors
• ≥3% of blasts
positive for MPO (by
immunophenotyping
or cytochemistry)

Acute monocytic leukaemia • ≥80% monocytes
and/or their
precursors
(monoblasts and/or
promonocytes)
• <20% maturing
granulocytic cells
• Blasts and
promonocytes
expressing at least
two monocytic
markers including
CD11c, CD14, CD36
and CD64, or NSE

(Continued)
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secondary AML. AML is now either classified as myelodysplasia

related on the basis of specific genetic abnormalities or may be

amended by the diagnostic qualifiers “progression from MDS”

or “progression from MDS/MPN.”

The emphasis of genetics over morphology is particularly

notable in the ICC classification of TP53-mutated myeloid

neoplasms, which are now grouped together and set apart

from other MDS and AML subtypes in order to convey the

uniquely aggressive nature of these diseases, regardless of the

blast percentage or presence of dysplasia.

Overall, the new classification schemas reflect the

understanding that genetics determine disease behavior, which

in turn correlates with blast percentage. Thus, MDS’ with

indolent behavior, such as isolated 5q deletion or SF3B1 rarely

presents at diagnosis with excess blasts, whereas MDS with
Frontiers in Oncology 11
AML-like mutations (DNMT3A, NPM1, FLT3, IDH1, and

RUNX1) almost exclusively presented with excess blasts (54).

In the absence of informative genetic data, blast percentage is

the next best surrogate for disease behavior. In a retrospective

analysis of 2,043 patients with MDS, Bersanelli et al. used

Bayesian networks and Dirichlet processes to reclassify MDS

using demographic data, clinical features, and genetic

characteristics (54). Overall, clinical characteristics explained

42% (95% CI 34%-54%) of the variability in overall survival,

with blast percentage being the largest factor amongst all clinical

characteristic considered. In contrast, the percentage of

variability explained by genetic factors were gene mutations

13% (95% CI 8-24%), chromosomal abnormalities 4% (95% CI

2-8%), and gene-gene interactions 3% (95% CI 0-8%). For

patients in whom the genetic data does not provide prognostic
TABLE 2 Continued

WHO 20221 ICC2 Blasts Cytogenetics Mutations Differentiation Diagnostic
Qualifiers4

positivity on
cytochemistry

Acute erythroid leukaemia • ≥30% immature
erythroid cells
(proerythroblasts)
• Bone marrow with
erythroid
predominance,
usually ≥80% of
cellularity

Acute megakaryoblastic
leukaemia

• Blasts express at
least one or more of
the platelet
glycoproteins: CD41
(glycoprotein llb),
CD61 (glycoprotein
IIIa), or CD42b
(glycoprotein lb)

Myeloid Sarcoma = Absence of bone
marrow

involvement

Any Any Any

Myeloid neoplasms post
cytotoxic therapy

Myeloid neoplasms
associated with germline
predisposition
1.Khoury J, et al, 5th Edition WHO Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022; https://doi.org/10.1038/s41375-022-
01613-1.
2. Arber D, et al, The International Consensus Classification (ICC) of Myeloid Neoplasms and Acute Leukemias: Integrating Morphological, Clinical, and Genomic Data. Blood 6/14/2022.
3. Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. Blood. 2022;
4. Only used as modifiers in the ICC and ELN 2022 classification systems.
5. The WHO does not require any specific blast percentage cutoff for a diagnosis of AML in the presence of AML-defining genetic abnormalities.
6. AML with t(9;22)(q34.1;q11.2)/BCR::ABL1 requires bone marrow or peripheral blood blast count of ≥20% due to overlap with progression of chronic myeloid leukemia, BCR::
ABL1-positive.
7. AML with and biallelic CEBPA mutations requires bone marrow or peripheral blast count count of ≥20%.
8. Shared diagnostic criteria include: 1) ≥ 20% blasts in bone marrow and/or blood (except for acute erythroid leukaemia); Criteria for AML types with defined genetic alterations are not met;
Criteria for mixed-phenotype acute leukemia are not met (relevant for AML with minimal differentiation); Not fulfilling diagnostic criteria for myeloid neoplasm post cytotoxic therapy; No
prior history of myeloproliferative neoplasm.
Abbreviations: APL Acute promyelocytic leukemia, AML Acute myelocytic leukemia, BM bone marrow, MPO myeloperoxidase, NSE nonspecific esterase, PB peripheral blood, SBB Sudan
Black B.
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clarity, the blast percentage may still serve as a proxy for genetic

or epigenetic features that are present but have not yet been

characterized. Blast percentage is therefore still used to

distinguish MDS from AML, but the introduction of a new

entity within the ICC classification system, MDS/AML, which

includes all myeloid neoplasms without defining genetic lesions

and 10-19% blasts, softens the distinction and acknowledges the

fact that these diseases exist on a continuum.

Nonetheless, the optimal blast threshold remains a source of

controversy. In defense of the original FAB cutoff of 30%, a

retrospective analysis of 1652 patients found that patients with

20-29% blasts (previously classified as refractory anemia with

excess blasts in transformation) were more similar to patients

with MDS (<20% blasts) in terms of their clinicopathology,

molecular characteristics, and outcomes than they were to

patients with ≥ 30% blasts (55). On the other hand, others

have found comparable outcomes between AML and MDS-EB2

(56, 57). In another analysis comparing patients with MDS-EB2

with complex karyotype and TP53 mutation to patients with

AML and similar genetic characteristics, the two groups were

largely indistinguishable and had uniformly poor outcomes

regardless of blast count (58).

While the use of a rigid threshold to define MDS and AML

seems to compromise the nuanced conception of MDS and AML

as representing sides of a spectrum of disease, it also has practical

benefits. A blast threshold is used for trial enrollment to ensure a

trial is enrolling the target population; it is helpful in providing

guidance to community practitioners when deciding between

the use of an MDS vs. AML treatment paradigm; and as a means

for providing clinical annotation for translational research

efforts. To balance the need for nuance and discrete disease

categories, the term MDS/AML has been adopted by the

European Leukemia Network and the International Consensus

Classification to denote myeloid neoplasms with 10-19%

peripheral or bone marrow blasts (59, 60). A welcomed

consequence of this change might be the inclusion of patients

with MDS/AML, as defined in the new ICC guidelines, into

clinical trials that would otherwise have been restricted to either

MDS or AML (57).
The practical importance of
understanding the relationship
between MDS and AML

An understanding of clonal evolution and the genetics of

MDS and AML is critical for informed clinical decision making

at the bedside. Clinical treatment paradigms have been designed

to fit an either-or binary, but now must increasingly be adapted
Frontiers in Oncology 12
to a more nuanced biology-driven understanding of these

diseases. Expectation management, deciding whether to pursue

an MDS or an AML-oriented treatment paradigm, choosing the

most appropriate AML therapy within an AML paradigm, and

the decision of whether or not to pursue transplant all hinge on

an understanding of a myeloid neoplasm’s past and future clonal

trajectories. An extensive baseline characterization of the disease

is of course a prerequisite in developing an accurate conception

of the disease biology and behavior, but iterative reassessment

over time is also crucial to the process of defining the disease. In

patients without overt AML, there isn’t necessarily a penalty to

deferring treatment (61), so providers should be patient and

methodical, gathering more information over time if necessary,

in defining the contours of the disease and in formulating the

optimal treatment plan. Increasingly, measurable residual

disease (MRD) is of interest for AML (and MDS, to a lesser

extent) therapeutic optimization (62–64). This does requires an

ongoing understand of the details of the sAML and what MDS-

associated mutations were present prior to AML.
Diagnosing AML masquerading as
MDS: AML with < 20% blasts

Infrequently, a case of AML may present with a bone

marrow blast percentage < 20%, contradicting the historical

rule of thumb used for distinguishing MDS and AML. Unlike

their true MDS counterparts, these cases typically lack the tell-

tale dysplasia seen in MDS and they will have mutations that are

otherwise exclusively seen in AML such as RUNX1::RUNX1T1,

CBF::MYH11, or mutated NPM1. These patients have

demographic and disease characteristics similar to patients

with de novo AML, and the disease behavior is also more akin

to that of de novo AML. They are also responsive to AML-type

therapy, regardless of blast percentage at presentation (65–67).

The presence of these mutations should lead to clinicians to

consider whether the disease may be biologically and

behaviorally more consistent with AML. Overreliance on

morphology and a failure to recognize that genetically, these

cases are more consistent with AML than MDS, might lead to

misguided discussions regarding prognosis, the need for

allogeneic hematopoietic cell transplant (alloHCT), and the

adoption of an MDS-based therapeutic paradigm. Recognizing

that biologically and behaviorally these cases are actually most

consistent with favorable risk AML leads to an entirely different

prognostic outlook and therapy plan in which intensive

chemotherapy may very well be curative. The precedence of

genetics over morphology in such cases has now been codified in

the most recent WHO diagnostic guidelines (12).
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Acknowledging the harbingers of
progression from MDS to AML

One of the most feared outcomes of MDS, with or without

therapy, is progression to sAML. Survival after progression is

short, and treatment outcomes for sAML are inferior to those for

de novo AML (68, 69). The risk of progression is therefore used

to inform prognosis and to guide clinical decision making;

aggressive therapies, such as hypomethylating agents and

alloHCT, are typically reserved for patients with a high risk of

progression to sAML and poorer overall prognosis. Historically,

the risk of progression has been estimated on the basis of the

depth of cytopenias, the percentage of bone marrow blasts, and

cytogenetic characteristics (70, 71), however, more recent studies

have demonstrated that somatic gene mutations are also

powerful, independent predictors of both progression to sAML

and mortality. MDS with mutations in genes such as TP53, CBL,

EZH2, RUNX1, U2AF1, and ASXL1 are more likely to progress

to sAML than expected based on traditional scoring systems

alone, whereas SF3B1 is associated with a lower risk of

progression (72–77). Of course, mutations frequently co-occur

and the complex interactions between them frustrates efforts to

integrate these factors into prognostic scoring systems, though a

better understanding of them also promises to lead towards

more precise prognostication and treatment. Clinical

reassessment for patients with MDS is suggested at times of

clinical change such as falling blood counts, increasing systemic

symptoms, or recurrent infection which likely are precipitated by

changing disease biology and possible progression to AML.

Surveillance bone marrow assessments are advocated by some

but not routinely preformed in clinical practice.

Close attention to the genetic evolution of the disease over

time can alert a provider to the imminent transformation to

AML. The acquisition of new gain-of-function mutations in

signaling genes (FLT3, WT1, PTPN11, NRAS), NPM1, or IDH1/

2 in the setting of MDS heralds transformation to AML (49, 73).

In some cases, mutations in signaling pathway genes such as

NRAS and PTPN11, as well as chromatin regulators such as

ASXL1 and EZH2, can be seen at low VAFs in the MDS state.

The presence of these “second hits,” even at very low VAFs is

associated with a higher risk of transformation than would be

predicted by standard prognostic scoring systems (9, 48, 78). In

the course of progression to sAML, the allelic burdens of these

mutations rise, reflecting an expansion of these subclones, which

drives the transformation to sAML (79). This transformation

can occur rather rapidly over the course of weeks to months.

Therefore, monitoring for newly acquired mutations and close

attention to changing allelic burdens can be informative and

guide expectation management and decision making.
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The presence of a new gain-of-function mutation may also

reveal new avenues of treatment. The mutations that tend to

precipitate transformation to AML are gain-of-function

mutations that are more amenable to FDA-approved targeted

therapies such as FLT3 inhibitors and IDH1/2 inhibitors (80).

Finally, recognition of a new mutation heralding the onset of

AML can prompt a more rapid adoption of an AML treatment

paradigm and pursuit of curative alloHCT.

Another illustrative example is that of MDS with an isolated

del 5q (one other abnormality other than del 7q is allowed),

which is often referred to as 5q minus syndrome. This form of

MDS has a distinctive clinical phenotype characterized by a

predominant anemia, normal or even increased platelets, few

blasts with a low risk of transformation to AML, and a high rate

of responsiveness to lenalidomide (41). In most cases, patients

with 5q minus syndrome have relatively long overall survival

when managed with a combination of supportive care and

lenalidomide and therefore, attempting a curative approach

alloHCT is generally unlikely to prolong survival. A subset,

however, may present with or acquire, as a result of natural

history or selective pressure from lenalidomide, a “second-hit”

mutation in TP53. Whenever it is present, a coincident TP53

mutation is associated with an increased risk of progression to

sAML. In clinical practice, surveillance and testing for new TP53

mutations, particularly in the setting of a loss of response to

lenalidomide, can foreshadow transformation and may serve as a

trigger to pursue curative alloHCT in an otherwise

indolent disease.
Classifying secondary AML

As previously noted, the definition of secondary AML has

come to rest largely on the genetic features of the disease. In the

most recent WHO and ICC classification systems, sAML

(referred to as AML, myelodysplasia-related) is defined as

AML with defining genetic abnormalities such as unbalanced

loss of chromosomal material and mutations in genes involved

in the spliceosome. In the WHO system, patients with AML and

a known history of MDS or MDS/MPN are classified together

with those patients with AML and MDS-related genetic

abnormalities, while in the 2022 ICC classification system, a

history of MDS or MDS/MPN is denoted as a diagnostic

qualifier. In both the WHO and ICC, the finding of dysplasia

in AML is no longer used to distinguish de novo and

secondary AMLs.

Properly distinguish sAML from de novo AML is a clinically

important task. sAML is well-known to be associated with lower

rates of complete remission and worse overall survival than de
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novo AML (68, 69). This is due in part to the greater underlying

intratumoral heterogeneity of the disease, which increases the

likelihood of primary resistance to any given drug regimen and

increases the likelihood of developing secondary resistance.

Outcomes in sAML are also affected by prior MDS-directed

therapy. Patients who develop sAML after prior HMA treatment

have particularly poor outcomes. The treatment of sAML is

made more complicated by the coexistence of transformed AML

and residual MDS subclones. Treating sAML is therefore like

treating two co-existing diseases. AML-directed therapies may

be effective against the AML subclone, but not the antecedent

MDS. Treatment with AML-directed therapy may therefore

eliminate the AML, but still result in relapse of the initial

MDS, which in turn, may progress once again. Similarly,

MDS-directed therapies, take the example of lenalidomide in

5q minus syndrome, are not effective by themselves in the

treatment of sAML bearing a 5q deletion due to the presence

of transformed subclones that are no longer entirely dependent

on the advantages of the 5q deletion for survival. There is some

data to support the use of conventional 7 + 3 (cytarabine and an

anthracycline) in combination with lenalidomide for such cases,

but it is limited to phase 2 data (81). Thus, patients with sAML

who are relatively fit should be recommended for alloHCT to

mitigate the increased risk of relapse associated with

antecedent MDS.

Patients with sAML also derive greater benefit from

treatment with a new liposomal formulation of conventional

cytarabine and daunorubicin (“7+3”) called CPX-351. In a phase

2 study, outcomes were most improved in the subset of patients

with secondary and treatment-related AML (82), leading to the

completion of a randomized phase 3 trial of CPX-351 vs. 7 + 3 in

patients with newly-diagnosed, untreated secondary and

therapy-related AML (83). Patients in treated on the CPX-351

arm had significantly higher overall remission rates (47.7% v

33.3%; two-sided P = .016) and median overall survival (9.56 v

5.95 months; hazard ratio, 0.69; 95% CI, 0.52 to 0.90; one-sided P

= .003). Furthermore, in a subset analysis, outcomes for patients

who underwent alloHCT after achieving complete remission

with 7 + 3 vs. CPX-351 were compared (84). Patients who

achieved CR with CPX-351 had decreased rates of relapse and

better overall survival compared to patients who had previously

received 7 + 3, hinting at the possibility that CPX-351 leads to

deeper remissions. These data provide further support for the

use of CPX-351 over 7 + 3 in older patients with sAML. The

excitement surrounding CPX-351 is tempered by the cost of the

drug (85), and recent data suggesting that outcomes with CPX-

351 are similar to those with HMA/Ven, a regimen that is

considered non-intensive (86–88). Furthermore, it does not
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appear to be more effective than 7 + 3 in patients with biallelic

TP53-mutated AML, the subset of sAML patients with the

worst outcomes.
Higher risk MDS vs. AML

As previously noted, the bone marrow blast percentage cut

off that distinguishes MDS from AML in cases without AML-

defining genetic features remains at 20%. We can acknowledge

the need for such a cutoff without being dogmatic. There are

some cases in which a patient with properly categorized high risk

MDS, particularly those with excess blasts, may benefit from

AML-type therapy such as intensive chemotherapy or

venetoclax-based therapy. Some centers routinely consider

patients with MDS-EB2 eligible for AML-type therapy (57)

and intensive chemotherapy remains an option for higher risk

MDS according to the NCCN guidelines (89). Although there

are some patients who may benefit from such an approach, there

is no reliable strategy for identifying these patients and outcomes

with intensive chemotherapy in this context are poor. It is not

yet known whether use of CPX-351, a novel liposomal

formulation of conventional cytarabine and daunorubicin (“7

+3”) that is approved for use in sAML, in this setting might yield

better results (90).

Venetoclax-based therapy, on the other hand, has

demonstrated acceptable safety and efficacy in early phase

trials of untreated higher risk MDS, albeit dose-reduced

compared to AML dosing (91). There is not yet enough

evidence to support the routine use of azacitidine and

venetoclax in the upfront setting, but the ongoing phase 3

Verona trial (NCT04401748), which compares azacitidine

monotherapy with azacitidine plus venetoclax in patients with

higher-risk MDS (defined as fewer than 20% bone marrow

blasts, overall IPSS-R greater than 3) should provide more

definitive data. Although the use of HMA/Ven in the upfront

setting is still being investigated, there is data to support the

addition of venetoclax to an HMA in patients who have not

responding to HMAs alone (92–94). In patients who had not

responded to ≥ 4 cycles of HMA, salvage HMA/Ven resulted in a

44% overall response rate and a median overall survival of 11.4

months (95% CI 5.7 to not estimable). It is important to

recognize in these circumstances that the optimal duration of

venetoclax in this patient population has not been identified.

Furthermore, these patients are prone to developing profound

and prolonged aplasias that require close monitoring, likely due

to the fact that most of the patient’s residual hematopoiesis is

derived from the MDS clone that is being targeted.
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Biallelic loss of TP53: When the MDS
vs. AML label may no longer matter
at all

TP53 loss-of-function mutations are common in both MDS

and AML, but their clinical significance depends largely upon

whether the loss of function is monoallelic, biallelic (BiTP53), or

is accompanied by a complex karyotype (CK). Biallelic loss of

function may result from the acquisition of multiple point

mutations or a single point mutation on one allele combined

with loss of genetic material from 17p on the other allele

resulting in copy neutral loss of heterozygosity. Patients with

either MDS or AML with BiTP53 or CK-TP53mut have similarly

dismal outcomes. In contrast, patients with monoallelic TP53

mutation without CK have outcomes that are intermediate

between that of BiTP53/CK-TP53mut and Non-CK-TP53wt

(95, 96). BiTP53 and CK-TP53mut myeloid neoplasms are

poorly responsive to both MDS and AML-type treatment

paradigms (97, 98) and have poor outcomes even with

alloHCT (99, 100).

Distinguishing between MDS and AML in these cases

doesn’t seem to be of much biological or clinical importance;

regardless of where they fall on the MDS-AML spectrum or

treatment paradigm, the disease biology, patient characteristics,

and outcomes are similar. Patients with BiTP53/CK-TP53mut

myeloid neoplasms should therefore be prioritized for treatment

on clinical trials that specifically target their unique biology.

Promising novel agents currently under investigation in this

patient population include those that target the CD47-signal

regulatory protein alpha (SIRPa) interaction and agents

engineered to restore the function of mutated TP53 proteins.

CD47 is an immune checkpoint cell surface marker that is

upregulated in high risk MDS and AML myeloblasts that

binds SIRPa on circulating immune cells including

macrophages, sending a “don’t eat me” signal that inhibits

phagocytosis. Blocking this interaction through anti-CD47

(magrolimab) or SIRPa antibodies has shown promising

efficacy in early phase studies, particularly in TP53-mutated

myeloid neoplasms (101). APR-246 (eprenetapopt) is first-in-

class small molecule that induces apoptosis in TP53-mutated

neoplasms by compelling mutant-TP53 protein into a functional

conformation, thereby restoring activity (102). In a phase 2 study

of patients with TP53-mutated MDS and AML, APR-246 plus

azacitidine had a side-effect profile similar to that which is

expected with azacitidine monotherapy and resulted in an

overall response rate of 71% with 44% achieving CR and a

median OS of 10.8 months (103). Unfortunately, in a

preliminary analysis, the phase 3 study comparing APR-246

and azacitidine and azacitidine alone did not meet its primary

endpoint of complete remission rate (104). Nonetheless, the

concept still holds promise and further investigation may reveal
Frontiers in Oncology 15
a role for APR-246 or a related, second generation agent to target

mutated TP53.
MDS/AML agnosticism in clinical
trials

Greater emphasis on drug development that targets the

specific genetic drivers of disease will necessitate further

relaxation of the boundaries that distinguish MDS from AML

(57, 103, 105). Not only does it make biological sense to include

patients with either MDS or AML when testing a targeted agent

against a shared driver mutation, but it is practical; these genetic

targets occur in small enough subsets of patients that it may be

necessary for accrual. In turn, the development of drugs that are

agnostic to the distinction of MDS and AML will further de-

emphasize the clinical relevance of this distinction.
Conclusion

MDS and AML are inextricably intertwined through their

shared pathogenesis, overlapping clinical features, and MDS’s

predilection for transformation. Appropriate treatment of these

entities requires an expertise with the biological characteristics of

each and how these characteristics shape the treatment

paradigms that come to be associated with each of them.
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