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The incorporation of novel agents and monoclonal antibody-based therapies

into the treatment of multiple myeloma (MM) has significantly improved long-

term patient survival. However, the disease is still largely incurable, with high-risk

patients suffering shorter survival times, partly due to weakened immune

systems. Bispecific molecules, including bispecific antibodies (BisAbs) and

bispecific T-cell engagers (BiTEs), encourage immune cells to lyse MM cells by

simultaneously binding antigens onMM cells and immune effector cells, bringing

those cells into close proximity. BisAbs that target B-cell maturation antigen

(BCMA) and GPRC5D have shown impressive clinical activity, and the results of

early-phase clinical trials targeting FcRH5 in patientswith relapsed/refractory MM

(RRMM) are also promising. Furthermore, the safety profile of these agents is

favorable, including mainly low-grade cytokine release syndrome (CRS). These

off-the-shelf bispecific molecules will likely become an essential part of the MM

treatment paradigm. Here, we summarize and highlight various bispecific

immunotherapies under development in MM treatment, as well as the utility of

combining them with current standard-of-care treatments and new strategies.

With the advancement of novel combination treatment approaches, these

bispecific molecules may lead the way to a cure for MM.

KEYWORDS

multiple myeloma, immunotherapy, bispecific antibody, bispecific T-cell engager,
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Introduction

The treatment landscape of multiple myeloma (MM), the second most common

hematologic malignancy in America, has been revolutionized in recent decades by

proteasome inhibitors (PI), including bortezomib, and immunomodulatory drugs

(IMiDs), including thalidomide and lenalidomide (1–3). The second generation of
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these drugs, such as carfilzomib and ixazomib (PIs) and

pomalidomide (IMiDs), further improved the response rate,

survival and safety profile (4–6). Moreover, the incorporation

of autologous stem cell transplantation in eligible patients has

also resulted in better survival and more durable disease control

(7, 8). However, MM remains an almost incurable disease for

most patients, since treatment-resistant clones eventually

emerge and evolve, leading to a low 5-year overall survival

(OS) of about 50% (9). The clinical outcomes of patients with

relapsed or refractory MM (RRMM) are dismally poor because

of their diminishing physical performance and the gradually

decreased durability of response with successive lines of anti-

MM therapy (10, 11).

Immunotherapy has proven revolutionary in many cancer

fields, yet progress has been slow in MM due to its generally

immunosuppressive microenvironment, which impairs the

efficacy of immunotherapy (12). The malignant MM cells

closely interact with the surrounding bone marrow (BM)

accessory cells, including BM stromal cells (BMSC) (13),

osteoclasts (OC) (14, 15), regulatory T or B cells (Treg or Breg)

(16–18), myeloid-derived suppressor cells (MDSC) (19), tumor-

associated macrophages (TAMs) (20), and plasmacytoid dendritic

cells (21). These cells promote the growth and chemoresistance of

MM cells by inducing or secreting cytokines such as interleukin-6

(IL-6) (22), interleukin-10 (IL-10) (23), transforming growth

factor-beta (TGF-b) (24), a proliferation-inducing ligand

(APRIL) (25), and heat shock proteins (26). These accessory

cells and cytokines play key roles in promoting tumor immune

escape, inhibiting tumor-specific T effector cells, inducing T-cell

anergy, and increasing the number of Tregs, leading to an

immunosuppressive microenvironment.

In recent years, immunotherapies that not only target specific

tumor antigens but also reverse the immunosuppressive BM

microenvironment have shown promise. The anti-CD38

monoclonal antibodies (MoAbs) daratumumab and isatuximab,

which target MM cells and block immunosuppressive regulatory

cells (i.e., Treg, Breg, myeloid-derived suppressor cells), have a

significant treatment response in RRMM patients (16, 17). In

addition, immunotherapies based on chimeric antigen receptor

(CAR)-T cells, which are T cells engineered with a particular T cell

receptor, have an impressive overall response rate (ORR) in

several clinical trials. The high rates of response and minimal

residual disease (MRD) negativity led to the approval of

idecabtagene vicleucel (Abecma) in 2021 and ciltacabtagene

autoleucel (Carvykti) in 2022 by the US Food and Drug

Administration (FDA) for the treatment of heavily pretreated

RRMM patients.

The clinical success of anti-BCMA CAR-T cell therapy

prompted further development of different T-cell-directing

immunotherapies, such as bispecific antibodies (BiAbs) or

bispecific T-cell engagers (BiTEs). BiAb and BiTE commonly

target both CD3 on T cells and tumor-associated antigens on the

surface of MM cells, resulting in MM cell killing mainly via the
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release of perforins and granzymes from the T cells (27). In

addition, these bispecific molecules also mediate T-cell activation

and proliferation. The immunomodulatory effect of these

agents is independent of antigen presentation on the major

histocompatibility complex (MHC) class I, can occur in the

absence of co-stimulation, and bypass the normal dependence on

antigen-presenting cells or cytokines (28, 29), making them suitable

for use in the dysfunctional immune systems of MM patients. In

fact, some of these therapies -continue to show encouraging results

in early-phase trials in RRMM patients (30–32).
Mechanisms of action
of BiTEs and BiAbs

The structure and function of BiTEs and BiAbs are somewhat

similar, in that they both have two binding sites that either bind

two different antigens or two epitopes of the same antigen. BiAbs

are engineered artificial antibodies, whereas BiTEs are

recombinant proteins composed of two linked scFvs (single-

chain variable fragment). Either way, they can simultaneously

bind a tumor cell and an immune effector cell, creating an

immune synapse between the tumor cell and T cell, which

encourages T cell activation, tumor cell lysis, and T cell

proliferation (33, 34). The killing effect of BiTE involves

polyclonal T cell responses, which are independent of

recognition and costimulation via the MHC and T cell receptor

(TCR) (35). In fact, when T cells are incubated with tumor cells in

the presence of BiTEs, both CD8+ and CD4+ T cells become

activated, followed by significant tumor cell lysis, with more

pronounced MM cell killing by CD8+ over CD4+ T cells (36).

Moreover, these bispecific molecules modulate general T cell

function. For example, BiTEs and BiAbs targeting CD3 and

BCMA induce T-cell-mediated tumor cell killing accompanied

by significantly increased expression of T-cell-activation-related

parameters (27, 34, 37), and the differentiation of naïve T cells to T

cells with memory phenotypes (central memory and effector

memory T cells) (34), which could contribute to improved

MRD negativity. The anti-MM activity of BiTEs and BiAbs in

the MM BM microenvironment is shown in Figure 1.
BiTEs and BiAbs in MM treatment by
therapeutic target

B-cell maturation antigen (BCMA,
CD269, TNFRS17)

BCMA, a member of the tumor necrosis factor superfamily

(TNFRSF17), is highly expressed only on the surface of plasma

cells and somewhat on plasmacytoid dendritic cells, making it an

ideal target for immunotherapy in MM (38). BCMA binds to
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https://doi.org/10.3389/fonc.2022.1032775
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cho et al. 10.3389/fonc.2022.1032775
APRIL, which is predominantly secreted by monocytes and

myeloid-linage cells (macrophages and osteoclasts), and

together, they regulate plasma cell proliferation and long-term

survival in healthy contexts and MM cell growth, MM cell

survival, drug resistance and an immunosuppressive MM BM

microenvironment (25). Gamma (g)-secretase cleaves

membrane BCMA (mBCMA) into soluble BCMA (sBCMA),

which is released into circulation (39). MM patients have

significantly higher serum sBCMA levels than healthy

individuals, and these levels are associated with increased MM

burden and poorer overall and progression-free survival,
Frontiers in Oncology 03
suggesting that sBCMA levels represent a biomarker for MM

(40). Anti-BCMA therapy has shown impressive results in

several early-phase clinical trials, and subsequent trials led to

the FDA approval of the first CAR-T cell therapy in treating

RRMM. Now, the next generation of immunotherapy, BiTEs

and BiAbs, are targeting this promising protein.
Pacanalotamab (AMG 420, BI 836909)
Pacanalotamab (AMG 420, BI 836909) is the first BiTE

developed for myeloma treatment, and it binds both BCMA
FIGURE 1

Anti-myeloma activity of bispecific antibody (BiAb) and bispecific T-cell engager (BiTE) molecules in the bone marrow MM microenvironment.
T-cell–redirecting BiAb and BiTE simultaneously bind to the myeloma-specific antigens on MM cells and CD3 on T cells. MM antigens include
BCMA, CD38, CS1/SLAMF7, GPRC5D, and FcRH5, as indicated. Upon engagement, the immune synapse is formed, followed by the production
and secretion of cytolytic molecules, i.e., perforin and granzymes, from T cells, resulting in MM cell lysis. This further induces T-cell activation,
proliferation, and differentiation into various memory subsets. The BiAb/BiTE-mediated T-cell activation leads to increased levels of granzyme B,
IFN-g, IL2, IL6, IL8, IL10, and TNF-a. The BiAb/BiTE-mediated MM cell killing is negatively affected by cellular and molecular factors including
bone marrow stromal cells (BMSC), osteoclast (OC), regulatory T cells (Treg), a proliferation-inducing ligand (APRIL), transforming growth
factor-b (TGF-b), interleukin-6 (IL-6), soluble BCMA (sBCMA), and upregulation in PD-L1/PD1 axis. Conversely, upregulation in effector/target
(E/T) ratio, CD8+ T cell, and differentiated T cells with central and stem-like memory subsets are associated with improved BiAb/BiTE-mediated
MM cell lysis. Furthermore, the potency and durability of their ability to kill MM cells could be enhanced when combined with current standard-
of-care therapies including daratumumab (DARA), elotuzumab (ELO), lenalidomide (LEN), or pomalidomide (POM). Moreover, soluble BCMA
(sBCMA), constantly shed by gamma-secretase (GS), could antagonize optimal MM cell eradication by BCMA-targeting agents. The GS inhibitor
(GSI) rapidly blocks the release of sBCMA and augments BCMA protein retention on the MM cell membrane, thereby MM cell targeting and
killing are significantly improved. In a similar manner, the BiAbs or natural killer cell engagers (NKCEs) also target natural killer (NK) cell-related
receptor antigens (i.e., CD16A, NKG2D, NKp30) to activate NK cells and augment their anti-MM activities. For example, the anti-CS1 Ab
elotuzumab (ELO) enhances NK cell function via CS1 and NKG2D to kill MM cells. (Some elements of Figure 1 are created with BioRender.com).
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(on MM cells) and CD3 (on cytotoxic T cells). Pacanalotamab

effectively lysed BCMA-expressing myeloma cells in in vitro and

in vivo preclinical models (33). In ex vivo co-cultures of MM-

PBMC or T cells, it induced significant T cell proliferation, yet

sBCMA at higher concentrations reduced its killing of MM cells

in in vitro cytotoxicity assays. In the subsequent phase 1 study

(NCT02514239), pacanalotamab was administered to 42

patients with RRMM (≥ 2 prior lines) at various doses (0.2-

800 mg/d). Cytokine release syndrome (CRS) was observed in 16

patients, mostly at grade 1 or 2. The ORR was 70%, including

50% MRD-negative complete responses (CR) at the dose of 400

mg/d, the maximum tolerable dose (MTD) for this study (41).

These results are comparable to CAR-T cell therapy and the low

rates of neurotoxicity are promising, yet it had a somewhat high

incidence of serious infections (33%), which would need further

development to combat (41).

Pavurutamab (AMG 701)
Pavurutamab (AMG 701) is similar to pacanalotamab, but it

has an Fc moiety on the anti-CD3 domain that extends its serum

half-life to 112 hours, making weekly dosing a possible

approach, as compared to pacanalotamab, which needs a

continuous IV infusion (42). In addition, the 3-dimensional

model suggests that pavurutamab forms an immunological

synapse of ~100 Å between the tumor cell and T cell (43). In

preclinical studies, pavurutamab demonstrated potent anti-MM

activity in co-culture models, including with autologous patient

MM cells, and it induced the robust activation and proliferation

of CD4+ and CD8+ T cells as well as the differentiation of

memory T cells. The anti-MM effect could be further enhanced

by adding IMiDs (lenalidomide or pomalidomide) or immune

checkpoint inhibitors including an anti-programmed cell death

protein-1 (PD-1) antibody (34, 43).

In the first-in-human phase 1 study (NCT03287908), 75

heavily pretreated RRMM patients (≥ 3 prior lines) received

pavurutamab monotherapy with differing doses (0.14–12mg). A

SAE was noted in 29 patients including infection (n = 13) and

CRS (n = 7), with a milder form of CRS in 53% of patients (grade

1 or 2). The response rate was 36% at doses between 3–12 mg

(16/45). At the dose of 9 mg, the response rate was 83% (earlier

dose escalation, 5/6), with one response at 0.8 mg for a patient

with a low baseline of sBCMA (MRD-negative CR). The

minimal residual disease (MRD) analysis was done in 4 CR

patients (3 stringent CR [sCR], 1 CR), and the results were all

negative (32). Overall, it demonstrated a manageable safety

profile, encouraging activity, and favorable pharmacokinetic

profile. However, in 2022, the clinical development of

pavurutamab was discontinued due to a strategic decision of

the developer (Supplement Table 1).
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Teclistamab (JNJ-64007957)
Teclistamab (JNJ-64007957) is a humanized BCMA/CD3

bispecific IgG4 antibody (27). In preclinical studies, teclistamab

showed potent anti-MM activity against MM cells lines and

myeloma cells from MM patients. Soluble BCMA decreased the

ability of teclistamab, which could be overcome with higher

teclistamab concentrations. In addition, pretreatment or

combination with anti-CD38 MoAb, such as daratumumab, or

a g-secretase inhibitor further enhanced MM cell lysis (37).

In a phase 1/2 trial (Majes TEC-1, NCT03145181, and

NCT04557098), a total of 165 RRMM patients (at least 3 prior

treatment lines) received teclistamab intravenously (range 0.3

−19.2 mg/kg [once every 2 weeks] or 19.2−720 mg/kg [once

weekly]) or subcutaneously (range 80−3000 mg/kg [once

weekly]). The ORR was 63% (104/165), including 97 patients

who achieved a very good partial response (VGPR) or better and

65 patients achieving CR or better. The median progression-free

survival (PFS) and overall survival (OS) were 11.3 and 18.3

months, respectively. CRS was observed in 119 patients (72.1%),

with most being grade 1 or 2 in severity. Neurotoxic events,

including immune effector cell–associated neurotoxicity

syndrome, were found in 24 patients (14.5%), and no patients

discontinued teclistamab treatment because of neurotoxicity

(44). Overall, teclistamab induced durable responses that

deepened over time, and it was recently approved by the

European Medicines Agency (EMA) for the treatment of adult

patients with RRMM. Teclistamab (TECVAYLI) is thus the first

T-cell redirecting BiAb available for adults with RRMM.

Elranatamab (PF-06863135)
Elranatamab (PF-06863135) is a humanized anti-BCMA/CD3

bispecific IgG2a antibody (45). In preclinical studies, elranatamab

was effective as a single agent in ex vivo 3D primary MM cultures

(EC50 = 0.2 nM) and could be augmented with anti-PD-1 or

IMiDs including lenalidomide. Furthermore, pretreatment with g-
secretase inhibitor (GSI) inhibited the formation of soluble

BCMA, which promoted MM cell lysis.

In a phase 1 clinical trial (MagnetisMM-1 trial,

NCT03269136), 58 patients with RRMM received weekly

subcutaneous elranatamab administration, either alone (n =

50), with lenalidomide (n = 4) or with pomalidomide (n = 4)

(46). CRS was observed in 48 patients (83%, none higher than

grade 2). In terms of efficacy, there were 14 patients with

confirmed responses, including 5 sCRs, 1 CR, 7 VGRPs, and 1

PR. The ORR in patients who received the recommended Phase

2 dose was 83% (5/6). The updated data was reported in 2022

(47). Among 55 patients who received elranatamab with a dose

of ≥ 215 mg/kg, the ORR was 64%, with 31% of patients

achieving CR or better. CRS was observed in 67% of patients
frontiersin.org
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who received the recommended dose (1000 µg/kg or 76 mg),

with no grade 3 or higher CRS. Overall, due to its manageable

safety profile and durable responses, elranatamab was granted an

Orphan Drug Designation by the FDA and EMA for the

treatment of MM.

Linvoseltamab (REGN5458)
Linvoseltamab (REGN5458) is a fully humanized BCMA/

CD3 BiAb, which is generated by Regeneron’s proprietary

‘human antibody mouse’ technology (VelocImmune) and ‘full-

length BiAb’ platform (VelociBiTM) (48, 49). In pre-clinical

studies, linvoseltamab potently induced T-cell mediated killing

of MM cell lines and primary human plasma cells, as well as T

cell activation and cytokine production. The binding of

linvoseltamab to MM cells led to increased surface BCMA

accumulation on MM cell lines, and in animal model

experiments, linvoseltamab showed similar anti-MM activity

as anti-BCMA CAR-T cells but with different kinetics.

In the phase 1/2 first-in-human clinical trial (LINKER-

MM1) (NCT03761108) reported recently, 73 RRMM patients

(at least 3 lines of prior therapy) in the dose-escalating cohort

received linvoseltamab treatment (full dose: 3–800 mg) (50).

Treatment-related AEs were reported in 73 patients (100%),

including 55 patients (75.3%) who experienced grade 3 or higher

AE. Common AEs included fatigue (45.2%) and CRS (38.4%, no

≥ grade 3). Nausea was noted in 24 patients (32.9%). Treatment

responses were noted at all dose levels. Among the patients at the

200–800 mg dose levels, the response rate was 75.0% (18/24).

Overall, it showed a manageable safety and tolerability profile

(lower severe CRS rate than other anti-BCMA BiAbs), with

early, deep, and durable responses.
TNB-383B (ABBV-383)
TNB-383B (ABBV-383) is a next-generation fully human

bispecific monoclonal IgG4 antibody targeting BCMA and CD3

(51). In preclinical studies, TNB-383B showed potent anti-MM

activity and T-cell activation in in vitro and ex vivo experiments.

It significantly reduced tumor burden and increased host

survival in animal models. TNB-383B had a half time of ~13–

16 days in cynomolgus monkey, consistent with an IgG4 Ab.

TNB-383B also induced T-cell-mediated lysis of primary MM

cells from relapsed patients, with a higher percentage of lysis and

cytotoxic T lymphocyte degranulation in higher BCMA-

expressing MM cells (52).

In the phase 1 trial (NCT03933735), 124 patients with RRMM

(≥ 3 prior lines), including 73 in the dose escalation cohort (dose:

0.025–120 mg) and 51 in the dose expansion cohort (60 mg),

received TNB-383B treatment (53). The most common AEs was

CRS (n = 71, 57%). In the dose-escalation cohorts (≥ 40 mg Q3W,

n = 79), the response rate was 68% (54/79), with a VGPR or better

rate of 54% (43/79), and a CR rate (CR + sCR) of 36% (29/79). In

patients with triple-class refractory disease treated with a dose ≥
Frontiers in Oncology 05
40 mg (n= 64) or 60mg (n= 41), the ORR were 63% and 54%,

respectively. Overall, the treatment was well tolerated, and though

the follow-up period was short, the ORR rates are promising.

Alnuctamab (CC-93269, EM 801)
Alnuctamab (CC-93269, EM 801) is a BiAb with 2

asymmetric arms carrying humanized IgG1 T-cell engagers

that bind bivalently to BCMA and monovalently to CD3ϵ in a

2 + 1 format (38). In preclinical studies, alnuctamab induced

robust MM cell death at nanomolar concentrations, activation of

CD4+/CD8+ T cells, and production of IFN-g, granzyme B, and

perforin. In an autologous model, alnuctamab also induced lysis

of BCMA+ cells, including those from high-risk or

RRMM patients.

In the first-in-human phase 1 trial (NCT03486067), 19

pat ients with RRMM received weekly a lnuctamab

administration (doses from 0.15 mg to 10 mg) (54). Most of

the patients (n=15, 78.9%) experienced treatment-related grade

3 to 4 AEs. CRS was observed in 89.5% of patients, resulting in

one death in this trial. In terms of clinical efficacy, no clinical

response was observed in patients who received <3mg of

alnuctamab, but at doses of ≥6 mg, the ORR was 83.3%.

Overall, the authors claim alnuctamab has a manageable safety

profile and promising efficacy, though the safety profile appears

at first glance to be worse than the other candidates.
G-protein coupled receptor family C
group 5 member D (GPRC5D)

GPRC5D is a recently identified MM antigen that is highly

expressed on malignant MM plasma cells in the BM and lowly

expressed on hair follicles, but not on other healthy cells (55).

Notably, the expression of GPRC5D on CD138+ MM cells is

independent of BCMA, supporting that GPRC5D is a novel MM

antigen. Specifically, in a preclinical study, anti-GPRC5D CAR-

T cells demonstrated potent and selective MM cell killing (55),

validating GPRC5D as a promising target for BiAbs and BiTEs.

Talquetamab (JNJ-64407564)
Talquetamab (JNJ-64407564) is the first bispecific IgG4

antibody targeting GPRC5D on MM cells and CD3 on T cells

(56, 57). In preclinical studies, talquetamab induced activation

and degranulation of T cells, as well as lysis of MM cells collected

from newly diagnosed or relapsed MM patients. It also induced

T cell activation–related cytokines, including IFN-g, TNF-a, IL-
2, and IL-10, but its anti-MM activity was adversely affected by

Treg, BMSC, or T cells expressing a high level of PD1 or HLA-

DR. Combining it with daratumumab or pomalidomide

enhanced its MM cell lysis activities.

In the phase 1 MonumenTAL-1 trial (NCT03399799),

patients with RRMM received subcutaneous talquetamab
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treatment (405 mg/kg QW [n = 30]/800 mg/kg Q2W [n = 44])

(58). The most common treatment-related AEs were cytopenias

(67%/36%) and CRS (77%/80%, no grade 3). Skin-related and

nail disorders were found in 83%/75% of patients (most

common: skin exfoliation: 37%/39%, all grades 1 and 2).

Regarding clinical efficacy, the ORRs were 70% (21/30)/64%

(28/44). Because talquetamab showed substantial clinical

efficacy, the FDA granted it a Breakthrough Therapy

Designation (BTD) in July 2022 for the treatment of adult

patients with RRMM who have previously received at least 4

prior lines of therapy, including a proteasome inhibitor, an

immunomodulatory agent, and an anti-CD38 antibody.

RG2634 (RO7425781)
RG2634 (RO7425781) is a BiAb with a novel 2:1 format for

anti-GPRC5D:anti-CD3 (59). RG2634 is also characterized by a

silent Fc region that reduces toxicity and increases its half-life. In

the phase 1 trial (NCT04557150), 41 patients with RRMM

received intravenous or subcutaneous infusions of RG2634 in

a step-up dosing regimen. CRS occurred in 85.4% of patients,

generally confined to the first cycle. Three patients (7.3%)

experienced CNS toxicity related to RG6234. Skin-related AEs

were observed in 66% of patients (Grade 3: 7.3%). After the first

cycle, 93% of evaluable patients (14/15) had <1% of MM cells in

BM based on flow cytometry. The ORR in 34 efficacy-evaluable

patients across all doses was 68%, with 50% achieving a VGPR or

better response. These early promising data could further clinical

development of this novel agent in treating patients with MM,

alone or in combination.

GPRC5D TRAB
GPRC5D TRAB is an anti-GPRC5DxCD3 bispecific T-cell–

redirecting IgG-based antibody (TRAB) (60). In preclinical

studies, GPRC5D was confirmed as an MM-specific antigen.

Then four Mabs targeting GPRC5D were generated (GPA0018,

GPA0021, GPA0032, and GPA0039), with GPA0018 and

GPA0039 demonstrating potent T-cell activation and cytotoxic

effects on MM cells in in vitro and in vivo models. In a mouse

model, the gene expression profile showed the genes related to

immune activation were upregulated. These data further support

clinical development of GPRC5D TRAB.
Fc Receptor Homolog 5 (FcRH5,
FcRL5, CD307)

FcRH5 is a type I membrane protein that is selectively

expressed on B cells and plasma cells. The expression levels of

FcRL5 are variable but are generally elevated on BM plasma cells

derived from MM and MGUS patients compared with plasma

cells from normal individuals (58). Immunotherapy targeting

FcRH5 was once evaluated in a phase 1 trial (NCT01432353),

with the antibody-drug conjugate (ADC) DFRF4539A showing
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limited anti-myeloma activity in RRMM patients. Despite low

ORR, this study revealed FcRH5 was widely expressed on MM

cells and can be occupied by antibodies after DFRF4539A

treatment (61). The investigations of BiAb targeting FcRH5

are ongoing.

Cevostamab (BFCR4350A)
Cevostamab (BFCR4350A) is an IgG-based T-cell-engager

BiAb, which is able to target the most membrane-proximal

domain of FcRH5 on MM cells and CD3 on T cells (62). In

preclinical studies, it effectively eradicated human MM cell lines

and primary myeloma cells at picomolar concentrations. Robust

T cell activation and proliferation were also noted. In animal

model experiments, complete depletion of B cells and bone

marrow plasma cells was observed in cynomolgus monkeys.

Importantly, blockade of PD-1/PD-L1 by an anti-PD-L1 agent

enhanced the activity of BFCR4350A.

The results of 51 patients with RRMM in a dose-escalating

cohort were reported in 2020 in the phase 1 trial (GO39775

study, NCT03275103) (63). Common treatment-related AEs

included CRS (74.5%, mainly grade 1/2), neutropenia (11.8%),

and lymphopenia (11.8%). In terms of efficacy, 46 patients were

evaluated. Treatment responses were observed at the 3.6/20mg

dose level and above in 15 patients (15/29, 51.7%), including 3

sCRs, 3 CRs, 4 VGPRs, and 5 PRs. At the 3.6/20 mg dose level

and above, responses in patients with high-risk cytogenetics,

triple refractory disease, and prior anti-CD38 treatment were

52.9% (9/17), 50% (10/20), and 50% (11/22), respectively.

The updated data of the GO39775 study was reported in

2021 (64). The most effective doses for single step-up (SS) and

double step-up (DS) administration were 3.6 mg and 0.3/3.6 mg,

respectively. The incidence of CRS was similar. The incidence

rate of CRS was lower in the patients who received the 0.3/3.6 mg

DS regimen (77.3% vs 88.2%). In the dose-escalation cohort,

clinical responses were observed at the 20–198 mg target dose

levels. The clinical efficacy of two dose-expansion cohorts was

investigated (90 mg, n = 44; 160 mg, n = 60), with higher ORR in

the 160 mg cohort vs the 90 mg cohort (54.5% vs 36.6%). The

estimated median duration of response was 15.6 months.

Overall, cevostamab showed clinically meaningful activity,

with a dose-dependent increase in ORR (without an increase

in CRS rate) and responses that appear durable.
CD38

CD38 is a type II transmembrane glycoprotein first

identified as a marker of cell activation and proliferation in

1990. In the BM of MM, CD38 is highly expressed on the surface

of myeloma cells and is closely associated with the

immunocompromised tumor microenvironment (65, 66). MM

cells can utilize aerobic glycolysis to promote an acidic BM,

which together with CD38, promotes the generation of AMP
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and adenosine, a molecule with immunosuppressive activity.

Recently, a study revealed CD38 was downregulated by IL-6,

which is secreted by BMSCs via activation of IL-6-induced

JAK1/2-STAT1/3 signaling pathways, and this can be reversed

by JAK1/2 inhibitor (67, 68). The success of anti-CD38 MoAb

daratumumab and isatuximab led to more studies exploring

bispecific antibodies targeting CD38.

ISB 1342 (GBR 1342)
ISB 1342 (GBR 1342) is the first CD38/CD3 BiAb

engineered (using the Glenmark Bispecific Engagement by

Antibodies based on the T cell receptor [BEAT] platform) to

direct T cells to CD38-expressing myeloma cells, leading to MM

cell lysis (69). Importantly, the fragment antigen-binding arm of

ISB 1342 specifically recognizes CD38 and does not compete

with daratumumab. In preclinical studies, ISB 1342 effectively

induced robust CD38+ MM cell lysis (EC50: 12 to 90 pM)

and overcame the resistance to anti-CD38 MoAbs by binding

to a different CD38 epitope. Furthermore, ISB 1342 showed

better in vivo anti-MM activity than daratumumab in an

animal study. The phase 1 trial of ISB 1342 in RRMM patients

is ongoing (NCT03309111).

AMG 424
AMG 424 is a humanized T cell-recruiting BiAb targeting CD3

and CD38 that contains an XmAb Fc domain and cross-reacts with

nonhuman primate CD3 and CD38 (70), allowing studies in

monkeys. In preclinical studies, AMG 424 induced CD38+ MM

cell lysis, as well as T-cell activation and proliferation. AMG 424 had

potent antitumor activity in BM–invasive cancer mouse models and

depleted peripheral B cells in a cynomolgus monkey model. Despite

its therapeutic potential, the clinical trial of AMG 424

(NCT03445663) was terminated by the sponsor.

Other anti-CD38 bispecific formats
The anti-CD38/CD3 BiAb developed by Sorrento

Therapeutics induced robust T cell-dependent lysis of CD38+

cancer cells in vitro (71) and was a more potent tumor cell killer

than daratumumab. BI38-3, a BiTE reported in 2021, induced T-

cell-mediated cytotoxicity on CD38+ MM cells (72), specifically

against cells expressing high levels of CD38, whereas cells with

weaker CD38 expression were insensitive, including

hematopoietic progenitor cells, B cells, T cells and NK cells.
CD138 (Syndecan-1)

CD138, belonging to the syndecan family of type I

transmembrane proteoglycan, is highly and specifically expressed

on the surface ofMM cells. Increased expression of CD138 supports

the proliferation and survival of MM cells, as well as angiogenesis

and IL-6 receptor sensitivity in MM cells (73). CD138 is cleaved by

metalloproteinases and heparinase to form soluble CD138
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and prognosis of MM (74) . The first anti-CD138

immunotherapeutic agent was an antibody-drug conjugate,

BT062/Indatuximab ravtansine (75, 76), which had encouraging

results alone or combined with other MM agents in clinical trials.

Recently, a new anti-CD138 MoAb VIS832 showed enhanced

membrane CD138-binding affinity, resulting in significant anti-

MM activity in in vitro and in vivo preclinical models (77). When

combined with bortezomib, completeMM eradication was seen in a

xenograft murine model, suggesting the potential combination use

of VIS832 with bortezomib in MM.

Regarding the development of anti-CD138/CD3 agents,

some preclinical studies have shown encouraging results. First,

STL001 (BiTE-hIgFc), a BiTE with two scFv arms and an IgG1

Fc region for binding NK cells, induced T-cell activation and

MM cell lysis (78). Another study showed that BiAbs h-STL002

and m-STL002 also exhibit potent cytotoxic effects against MM

cells via T cell activation (79).
Beyond bispecific antibodies:
Trispecific antibodies and natural
killer cell engagers

The above BiAbs and BiTEs target T cells. However,

bispecific formats targeting natural killer (NK) cells are also

under clinical development. Indeed, a novel form of TriAbs

characterized by a combination of a single-chain Fv against

CD16 and two tumor-associated antigens has shown promising

anti-tumor activity in preclinical studies (80). These molecules

activate NK cells via CD16 to augment NK cell cytotoxic activity

and cytokine production to kill tumor cells by targeting specific

antigens. Other novel bispecific/trispecific formats are under

rigorous investigation. For example, the BCMA/CD200/CD16A

specific antibody is a tetravalent ‘aTriFlex’ TriAb characterized

by a fusion protein bivalently engaged to CD16A on NK cells

and two low-affinity binding single-chain antibodies targeting

BCMA and CD200 on MM cells (81). The dual-targeting design

may increase the specificity to MM cells and improve safety. In

preclinical studies, the BCMA/CD200/CD16A-specific antibody

demonstrated potent and specific anti-MM activity.

Another format, AFM26, targeting BCMA and CD16A, is

the first bispecific NK-cell engager (82). A novel BiAb was also

developed to target another MM-specific antigen, CS1

(SLAMF7), and NKG2D on cytolytic immune cells (including

NK cells, CD8+ T cells, gd T cells, and NK-T cells), leading to

effective MM lysis (83). In addition, 2A9-MICA is a novel BiAb

targeting BCMA and MICA, which effectively activated induced

NK cells to kill BCMA+ human myeloma cells in a preclinical

study (84). CTX-8573 is a BiAb targeting BCMA and NKp30,

characterized by an IgG1-like afucosylated Fc region to

additionally bind to CD16A on NK cells and gd-T cells (85),

leading to potent cytotoxicity of BCMA+ cells in preclinical
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studies. CTX-8573 also demonstrated anti-tumor efficacy in

humanized mouse models and displayed standard biphasic

pharmacokinetics, with a 16-day b-phase half-life in

cynomolgus monkey.

A novel idea for TriAb design is to stimulate T cells via two T

cell antigens (not only CD3) to enhance activation (86). CD28, a

well-known second signal on T cells, has been utilized as the

costimulatory domain in CAR-T cell therapy. A preclinical study

evaluating an anti-CD3, CD28, and CD38 TriAb revealed that

targeting CD3 and CD28 enhanced T cell activation and

prolonged survival (87). In an animal model, this TriAb

further suppressed MM growth, stimulated memory/effector T

cell proliferation and reduced the number of Tregs.
Using BiAbs and BiTEs in
combination therapies

BiAb and BiTE treatment approaches have produced

remarkable anti-MM effects in heavily pretreated patients with

RRMM. To further optimize BiAb/BiTE treatment, several novel

strategies to augment their potency are under investigation. For

example, a high MM tumor burden adversely affects the potency of

BiAb, which is related to T cell exhaustion, but it can be overcome

by combining it with another cytotoxic chemotherapy (88).

Moreover, the combination of BiAb/BiTE with another

immunotherapeutic agent, including IMiDs or anti-PD1 agents,

may have synergistic anti-MM effects with prolonged responses (34,

43, 56). In addition, combining it with an anti-CD38MoAb, such as

daratumumab and isatuximab, may improve response by

overcoming the immunosuppressive BM microenvironment (16,

17). For example, subcutaneous teclistamab combined with

daratumumab in RRMM patients (TRIMM-2 study,

NCT04108195) caused a rapid treatment response and a high

response rate (78%, 29/37), including 73% with VGPR or better.

The most common AE included CRS (54.5%, all grades 1 and 2),

neutropenia (36.4%), and thrombocytopenia (36.4%), which were

all manageable (89). A phase 3 trial evaluating teclistamab/

subcutaneous daratumumab versus daratumumab/pomalidomide/

dexamethasone or daratumumab/bortezomib/dexamethasone in

RRMM is ongoing (MajesTEC-3 trial, NCT05083169).

With respect to other anti-BCMA/CD3 bispecific molecules,

several trials investigating combination strategies are also

ongoing in patients with RRMM. The combination of

pavurutamab (AMG 701) with pomal idomide and

dexamethasone is being evaluated in patients with RRMM

post ≥ 3 lines of prior treatments (NCT03287908).

Elranatamab (PF-06863135) monotherapy or combined with

daratumumab versus daratumumab/pomal idomide/

dexamethasone is also being evaluated in patients with RRMM

(phase 3 MagnetisMM-5 study, NCT05020236). Furthermore,

the combination of REGN5458 with other anti-MM agents is

also under investigation (NCT05137054).
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Comparing BiAbs and BiTEs to
existing immunotherapies

Following the success of BCMA-targeting antibody-drug

conjugates (ADC) and CAR-T cell therapies, BiAb/BiTEs

represent additional effective mono-immunotherapies for MM,

with impressive clinical activity and acceptable safety in various

early-phase clinical trials (Table 1 and Supplemental Table S1).

Compared with ADC and CAR-T cell therapy, bispecific molecules

have unique characteristics that make them stand out as another

feasible therapeutic option. For example, CAR-T cells are

engineered from living cells, which may take a month (median:

34, range: 33-68) according to the KarMMa study (NCT03361748)

with a manufacturing failure rate of ~10% (90). Some patients with

a rapid progression of MM may need bridging therapy or to

withdraw in favor of another available treatment (91, 92). On the

other hand, BiAb/BiTEmolecules are off-the-shelf agents, providing

superior availability and manufacturing reliability.

In addition, BiAb/BiTEs may have a lower risk of severe

immune cell activation–related AEs, like CRS or neurotoxicity,

and a lower chance of target antigen loss than CAR-T cell

therapy (93). Importantly, based on the findings in clinical trials,

these BiAb/BiTEmolecules continue to achieve treatment responses

better than those of ADC and close to those of CAR-T cell therapy,

with an adequate safety profile, if an adequate therapeutic dose is

defined (94). The comparison between T-cell directing BiAb/BiTE

and CAR-T cell therapy is listed in Table 2.
Perspectives

Most of the current BiAb/BiTEs target BCMA, yet BCMA-

based immunotherapy is a highly competitive and crowded field.

Moreover, the COVID-19 pandemic also significantly affected the

enrollment of clinical trials (95). These factors may negatively

impact the development of certain anti-BCMA agents. Exploring

other MM-specific antigens could be a potential solution to

overcome BCMA-treatment failure and would serve as a strategy

for developers to move into less crowded fields.

To reduce the risk of low antigen expression or antigen loss–

related relapse, combining bispecific molecules that target different

tumor antigens would be a logical solution. For example,

talquetamab (anti-BCMA) and teclistamab (anti-GPRC5D) are

under evaluation in RRMM patients (NCT04586426). Moreover,

pharmacologic modulation to increase antigen expression is also an

attractive strategy for clinical investigation. The utilization of g-
secretase inhibitor at low doses to increase BCMA expression was

evaluated in combination with anti-BCMA agents (Table 3).

Since BiAb/BiTEs have shown encouraging treatment

outcomes in RRMM patients, some studies exploring their role in

earlier lines of treatment are ongoing. In fact, the anti-CD19 BiTE

blinatumomab increases the MRD negativity rate after

chemotherapy in patients with acute lymphoblastic leukemia. A
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TABLE 1 Summary of clinical trials of BiTE/BiAb therapy.

Agents
(target)

Trial and
participant data

Protocol Efficacy Safety

Teclistamab
(JNJ-
64007957)
BCMA x CD3

1. Phase 1/2 (NCT03145181
and NCT04557098).
2. RRMM, n= 165.
3. Median age: 64 years
(range: 33-84).
4. Prior lines of Tx: 5 (2-14)
5. EMD: 17%.
6. Prior HSCT: 81.8%
7. Refractory to anti-CD38
MoAb: 89.7%.
8. Triple/Penta refractory:
77.6%/30.3%.

1. Once-weekly SC teclistamab at a
dose of 1.5 mg/kg (step-up doses of
0.06 and 0.3 mg/kg).

1. ORR: 63% (104/165), including
97 ≥ VGPR, 65≥ CR.
2. Median time to the first/best
response: 1.2/3.8 months.
3. MRD- (10-5): 26.7% (44/165).
4. mPFS/mOS: 11.3/18.3 months.

1. AEs (any/Gr 3 or 4): 100%/94.5%.
2. Neutropenia (70.9%), anemia (52.1%),
thrombocytopenia (40%).
3. Infection: 76.4%, including 44.8% of Gr 3/4.
4. Hypogammaglobulinemia: 74.5%.
5. CRS: 72.1% (most Gr 1 or 2).
6. Neurotoxicity: 14.5% (most Gr 1 or 2),
including headache (8.5%).

Elranatamab
(PF-06863135)
BCMA x CD3

1. Phase 1 (MagnetisMM-1,
NCT03269136)
2. RRMM, n=58
3. Median age: 64 years
(range: 32-86).
4. Prior lines of Tx: 6
5. Triple refractory: 98%
6. Prior HSCT: 45%.
7. Prior BCMA-targeted Tx:
22%.
8. Black/African American or
Asian: 26%.

Dosing:
Part 1: 80, 130, 215, 360, 600, and
1000mg/kg weekly
Parts 1.1 and 2A: single 600mg/kg
or equivalent fixed dose of 44mg
first, followed 1 week later by
1000mg/kg or equivalent fixed dose
of 76mg weekly (Q1W) or every 2
weeks (Q2W) thereafter.
LEN or POM combination therapy:
single priming dose (32mg),
followed 1 week later by the 44mg
Q1W thereafter plus LEN (25mg)
or POM (4mg) on Days 1 to 21 of
a 28-day cycle

14 patients with confirmed
responses.
1. ORR
Part 1 (215-1000mg/kg): 70% (14/
20), including 6 CR/sCR.
At RP2D dose: 83% (5/6)
Prior BCMA-targeted Tx: 75%
(3/4).
2. Median time to response: 22
days.

TEAEs:
1. CRS: 48 (83%), none higher than Gr 2.
2. Lymphopenia (n=37, 64%; Gr 3/Gr 4:12%/
52%), neutropenia (n=37, 64%; Gr 3/Gr
4:31%/29%), anemia (n= 32, 55%; Gr 3/Gr 4:
38%/0%), injection site reaction (53%), and
thrombocytopenia (52%).
3. 2 DLT: 1 Gr 4 thrombocytopenia (part 1.1),
1 Gr4 neutropenia (POM).

Linvoseltamab
(REGN 5458)
BCMA x CD3

1. Phase 1/2 (NCT03761108).
2. RRMM, n=73.
3. Median age: 64 years
(range: 42-81).
4. 20.5% patients≥ 75 years).
5. Prior lines of Tx: 5 (2-17).
6. Penta refractory: 38.4%.
7. Prior auto-HSCT: 64.4%.

1. Weekly doses of REGN5458,
followed by a maintenance phase
administered every 2 weeks (doses
ranging from 3-800 mg).

1. ORR:
At 200-800 dose levels: 75.0%
(18/24)
At all dose levels, 86.5%
(32/37) of all responders achieved
VGPR and 43.2% (n=16) of
responders had a CR or SCR.
2. Estimated DOR ≥8 months:
90.2%

1. AEs: 73 (100%), including 31 Gr 3 (42.5%)
and 24 Gr 4 (32.9%).
2. Fatigue (n= 33, 45.2%), CRS (n= 28, 38.4%)
3. CRS: Gr 1 in 25 pts and Gr 2 in 3 pts.
4. No Gr ≥3 neurotoxicity events
5. Nausea: 24 (32.9%)

TNB-383B
(ABBV-383)
BCMA x CD3

1. Phase1 (NCT03933735).
2. RRMM, n=124. (ESC,
n=73; ESP (60mg), n=51)
3. Median age: 68 years
(range: 35-92).
3. Prior lines of Tx: 5 (3-15).
4. Triple/penta-refractory:
82%/35 (≥ 40mg: 81%/41).
5. Prior HSCT: 81% (≥ 40mg
ESC+ EXP: 83%).

1. IV infusion over 1–2 hours every
3 weeks (Q3W).
2. Dose range: 0.025–120 mg
3. RP2D: 60mg

Evaluable, n=122
1. ORR:
≥ 40mg ESC + EXP (n=79): 68%,
43 ≥VGPR (54%), 13CR, 16sCR.
60mg EXP: 59% (29/49), 19
≥VGPR (39%), 7CR, 4sCR.
2. PFS
All: 10.4 months
≥ 40mg ESC + EXP/60mg EXP:
NR/NR

Evaluable, n=124
1. Three DLTs (Gr 4 thrombocytopenia,
60mg; Gr 3 CRS, 90 mg and 120 mg)
3. TEAEs: CRS (n= 71, 57%), neutropenia (n=
46, 37%), and fatigue (n= 37, 30%).
3. Infection (≥ Gr3): Pneumonia, COVID-19,
sepsis (all n=19, 6%)
4. Seven deaths from TEAEs.

Alnuctamab
(CC-93269)
BCMA x CD3

1. Phase1 (NCT03486067).
2. RRMM, n=19 (received
Tx).
3. Median age: 64 years
(range: 51-78).
4. Prior lines of Tx: 6 (3-12).
5. Prior auto-HSCT: 73.7%.
6. Prior allo-HSCT: 10.5%.
7. Prior lenalidomide/
bortezomib: 100%/100%.
8. Prior carfilzomib: 84.2%.
9. Prior pomalidomide:
84.2%.

IV CC-93269 on days 1, 8, 15, and
22 of cycles 1 to 3, on days 1 and
15 of cycles 4 to 6, and on day 1 of
cycle 7 (28-day cycle, up to 2 tears)

1. ORR:
<6 mg: No response.
≥ 6mg: 83.3% (10/12) (MRD-:
75%).

1. Gr 3-4 AE: 15 (78.9%)
2. Common AEs: Neutropenia (52.6%),
anemia (42.1%), infections (26.3%),
thrombocytopenia (21.1%).
3. CRS: 89.5% (n=17), including 11 Gr 1 and
2 Gr2.
4. One death due to CRS (≥ 6mg cohort).

(Continued)
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TABLE 1 Continued

Agents
(target)

Trial and
participant data

Protocol Efficacy Safety

10. Prior daratumumab:
94.7%.

Talquetamab
(JNJ-
64407564)
GPRC5D x
CD3

1. Phase 1 (MonumenTAL-1,
NCT03399799).
2. RRMM, n=74.
405 mg/kg QW (n=30).
800 mg/kg Q2W (n = 44).
3. Prior lines of Tx: 6 (405)/5
(800).
4. Triple exposed: 100%
(405)/98% (800).
Triple refractory: 77% (405)/
75% (800).

1. 405 mg/kg SC QW or 800 mg/kg
SC Q2W

ORR (405/800)
1. 70% (21/30)/64% (28/44)
2. ≥ VGPR:57%/52%

AEs (405/800)
1. Cytopenia: 67%/36% (Gr 3/4: 53%/23%).
2. Infections: 47%/34% (Gr 3/4: 7%/9%).
3. CRS: 77%/80% (Gr 3: 3%/0%)
4. Skin-related and nail disorder: 83%/75%
(skin exfoliation: 37%/39%, all Gr 1 and 2).
5. Dysgeusia: 63%/57%.

RG6234
(RO7425781)
GPRC5D x
CD3

1. Phase 1 (NCT04557150).
2. RRMM, n= 41 (IV,
0.006mg to 10mg)
3. Median age:63
4. Prior lines of Tx: 5 (2-15)
5. HR-cytogenetics: 58% (17/
29)
6. Triple/Penta refractory:
67%/36%
7. Prior BCMA-direct Tx:
14.6% (6/41)

1. Weekly step-up doses followed
by a q2w regimen at a peak ‘target
dose’ for up to 1 year.

Efficacy evaluable, n=34
1.ORR: 68% (50% ≥ VGPR)
2. Median time to first response:
1.3 months.

1. CRS: 85.4% (Gr1: 56.1%, Gr2: 24.4%, Gr3:
2.4%).
2. CNS toxicity: 7.3%
3. Gr 3/4: Thrombocytopenia (19.5%), anemia
(12.2%), neutropenia (9.8%).
4. Infection: 46.3%, one died of an E. coli
sepsis (not related to RG6234).
5. Skin-related AEs: 66% (Gr3: 7.3%),
dysgeusia/ageusia (36.6%, all Gr1/2), dry
mouth (36.6%, all Gr1/2), dysphagia (17.1%,
all Gr1/2), and nail changes (12.2%, all
Gr1/2).

Cevostamab
(BFCR4350A)
FcRH5 x CD3

1. Phase 1 (NCT03275103).
2. RRMM, n=160.
3. Median age: 64 years
(range: 33-82).
4. Prior lines of Tx: 6 (2-18).
5. Triple refractory: 85%
6. ≥ 1 prior CAR-T: 17.5%
7. ≥ 1 prior BiAb: 8.1%
8.≥ 1 prior ADC: 16.9%
9.≥ 1 anti-BCMA: 33.8%

1. Single set-up cohort (SS): set-up
dose (0, 05-3.6mg) on cycle (C) 1
day (D) 1, target dose (0.15-198
mg) on C1D8.
2. Double set-up cohort (DS): set-
up dose on C1D1 (0.3-1.2mg) and
C1D8 (3.6mg), target dose (60-
160mg) on C1D15.
3. IV cevostamab was administered
on a 21-day cycle, up to a total of
17 cycles.

1. Responses (+) at the 20-198mg
target dose level.
2. Median time to response: 29
days
3.ORR:
160mg level: 54.5% (24/44).
90mg level: 36.7% (22/60).
4. ORR (> 90mg)
Prior CAR-T: 44.4% (4/9).
Prior BiAb: 33.3 (3/9).
Prior ADC: 50% (7/14).
Prior anti-BCMA Tx: 36.4% (8/
22).

1. ≥1 TEAE: 99.4%.
2. CRS: 80% (128/160), only 2 Gr 3.
3. Most CRS (83.4%) resolved within 2 days.
4. ICANS: 13.1%
5. Any SAE: 55.6% (Tx related: 25%)
6. Any Gr 5 AE: 15% (Tx related: 0.6%).
ADC, antibody-drug conjugate; AE, adverse event; CAR-T, chimeric antigen receptor T cell; CNS, central nervous system; CR, complete remission; CRS, cytokine releasing syndrome; DLT,
dose-limiting toxicity; EMD, extramedullary disease; ESC, dose escalation; EXP, dose expansion; Gr, grade; HR, high-risk; HSCT, hematopoietic stem cell transplantation; ICANS, immune
effector cell-associated neurotoxicity syndrome; IMiDs, immunomodulatory drugs; IV, intravenous; MoAb, monoclonal antibody; MRD, minimal residual disease; NR, non-reached; ORR,
overall (objective) response rate; PI, proteasome inhibitor; PR, partial response; RP2D, Recommended Phase 2 Dose; SAE, serious AE; SC, subcutaneous; TEAE, treatment emerged AE; Tx,
treatment; URI, upper respiratory tract infection; VGPR, very good partial response.
TABLE 2 T-cell-redirecting BiAb/BiTE vs CAR-T cell therapy in MM.

BiAb/BiTE CAR-T

Structure BiAb: Engineered artificial antibodies to recognize two epitopes
of an antigen or two antigens.
BiTE: A recombinant protein composed of two linked scFvs, with
one targeting CD3 and the other one targeting MM antigen.

A synthetic receptor composed of a target antigen-binding domain (scFv), a
hinge region, a transmembrane domain, and intracellular signaling domains.

Immune synapse Typical Atypical

Effector cells CD4 and CD8 cells CD4 and CD8 cells

Availability Off the shelf 1. Maybe > 2 weeks for manufacture.
2. Rapid manufacturing process is under development.

Manufacturing
failure

Not applicable Around 10%

(Continued)
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TABLE 2 Continued

BiAb/BiTE CAR-T

Administration 1. No conditioning treatment.
2. Pretreatment: steroid.
3. Repeat dosing.

1. Conditioning treatment (+).
2. Pretreatment: anti-histamine, acetaminophen.
3. One-time infusion.

The treatment
response rate in
RRMM

1. Generally lower.
2. It may be similar to CAR-T therapy in patients treated with
top doses or at the RP2D.

Generally higher

Target antigen loss Lower risk Higher risk

CRS risk (≥ Gr 3) 1. Generally lower.
2. Increase with a higher dose.

Generally higher.

Neurotoxicity (≥ Gr
3)

Lower Higher

Financial burden Expensive Expensive

FDA approval Talquetamab (2022). Idecabtagene vicleucel (2021)
Ciltacabtagene autoleucel (2022).

EMA approval Teclistamab (2022). Idecabtagene vicleucel (2021).
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Gr, grade; scFV, single-chain fragment variable
TABLE 3 Summary of combination strategies of bispecific antibodies in clinical trials.

Strategy 1: Combination with other anti-myeloma agents

Rationale: Potential synergistic effect, reduced tumor burden.

Trial No. Agents

NCT03287908
(Phase 1)

Pavurutamab (AMG 701) monotherapy
Pavurutamab + pomalidomide
Pavurutamab + pomalidomide + dexamethasone

NCT04108195
TriMM-2
(Phase 1)

Talquetamab + daratumumab
Teclistamab + daratumumab
Then ± pomalidomide

NCT05090566
MagnetisMM-4
(Phase 2)

Sub-study B
Elranatamab + lenalidomide + dexamethasone

NCT05020236
MagnetisMM-5
(Phase 3)

Elranatamab vs daratumumab+ pomalidomide+ dexamethasone
Elranatamab + daratumumab vs daratumumab+ pomalidomide+ dexamethasone

NCT05137054
(Phase 1)

Linvoseltamab (REGN5458) + daratumumab + dexamethasone
Linvoseltamab + carfilzomib + dexamethasone
Linvoseltamab + lenalidomide + dexamethasone
Linvoseltamab + bortezomib + dexamethasone

Strategy 2: Combination of 2 bispecific molecules targeting various MM antigens

Rationale: To reduce the risk of antigen loss related disease relapse.

NCT04586426
(Phase 1)

Part 2: Dose expansion cohort
Talquetamab + teclistamab
Talquetamab + teclistamab + daratumumab

Strategy 3: Combined agent which enhances expression of target antigen

Rationale: Enhanced antigen expression increased anti-MM activity of bispecific molecules

NCT04722146
(Phase 1)

Talquetamab + nirogacestat

NCT05090566
MagnetisMM-4
(Phase 2)

Sub-study A
Elranatamab + nirogacestat
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phase 3 trial evaluating elranatamab vs lenalidomide in newly

diagnosed MM after autologous transplantation has been initiated

(MagnetisMM-7, NCT05317416). For the BiAb teclistamab, there

are 2 clinical trials are ongoing. The first one is a phase 2 trial aiming

to investigate the role of the teclistamab in post-transplantation

maintenance therapy (Master-2, NCT05231629). The other one is a

phase 3 trial of teclistamab in combination with lenalidomide versus

lenalidomide alone as the maintenance therapy in patients with

newly diagnosed MM following autologous stem cell

transplantation (MajesTEC-4, NCT05243797).

Recently, a study demonstrated that utilization of treatment-

free intervals (between treatment cycles) may transcriptionally

reprogram and functionally reinvigorate T cells to lower the

possibility of T cell exhaustion, an important factor related to

suboptimal treatment results or treatment failure in cancer

immunotherapy. The findings provide important reference for

further protocol optimization of T-cell-recruiting therapies (96).
Conclusion

Despite significant advances in MM therapy, the existing anti-

MM agents are still largely ineffective for patients with high-risk and

RR MM. Impressively, novel targeted immunotherapies, especially

BiAb/BiTEs, have emerged as promising monotherapies in heavily

pretreated RRMM. With more clinical studies showing favorable

clinical efficacies, more bispecific molecules will enter clinical

development and be approved for myeloma treatment. Moreover,

we can expect the introduction of more optimized treatment

protocols incorporating these cutting-edge immunotherapeutic

agents to further restore overall anti-MM immunity and improve

the quality of life.
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