
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Xiaojie Tan,
Second Military Medical University, China

REVIEWED BY

Kewei Xiong,
Shenzhen Bay Laboratory, China
Bo Ling,
Youjiang Medical University for
Nationalities, China
Shuo Li,
University of California, Los Angeles,
United States
Jinhui Liu,
Nanjing Medical University, China

*CORRESPONDENCE

Dongsheng Hu

dongshenghu563@126.com

Xizhuo Sun

sunxz632@126.com

Fulan Hu

hufu1525@163.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Epidemiology and Prevention,
a section of the journal
Frontiers in Oncology

RECEIVED 28 August 2022
ACCEPTED 28 December 2022

PUBLISHED 13 January 2023

CITATION

Huang H, Cao W, Long Z, Kuang L, Li X,
Feng Y, Wu Y, Zhao Y, Chen Y, Sun P,
Peng P, Zhang J, Yuan L, Li T, Hu H, Li G,
Yang L, Zhang X, Hu F, Sun X and Hu D
(2023) DNA methylation-based patterns for
early diagnostic prediction and prognostic
evaluation in colorectal cancer patients
with high tumor mutation burden.
Front. Oncol. 12:1030335.
doi: 10.3389/fonc.2022.1030335

COPYRIGHT

© 2023 Huang, Cao, Long, Kuang, Li, Feng,
Wu, Zhao, Chen, Sun, Peng, Zhang, Yuan, Li,
Hu, Li, Yang, Zhang, Hu, Sun and Hu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 13 January 2023

DOI 10.3389/fonc.2022.1030335
DNA methylation-based patterns
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colorectal cancer patients with
high tumor mutation burden
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Background: Immune checkpoint inhibitor (ICI) therapy has proven to be a

promising treatment for colorectal cancer (CRC). We aim to investigate the

relationship between DNA methylation and tumor mutation burden (TMB) by

integrating genomic and epigenetic profiles to precisely identify clinical benefit

populations and to evaluate the effect of ICI therapy.

Methods: A total of 536 CRC tissues from the Cancer Genome Atlas (TCGA) with

mutation data were collected and subjected to calculate TMB. 80 CRC patients

with high TMB and paired normal tissues were selected as training sets and

developed the diagnostic and prognostic methylation models, respectively. In

the validation set, the diagnostic model was validated in our in-house 47 CRC

tissues and 122 CRC tissues from the Gene Expression Omnibus (GEO) datasets,

respectively. And a total of 38 CRC tissues with high TMB from the COLONOMICS

dataset verified the prognostic model.

Results: A positive correlation between differential methylation positions and TMB

level was observed in TCGA CRC cohort (r=0.45). The diagnostic score that

consisted of methylation levels of four genes (ADHFE1, DOK6, GPR75, and

MAP3K14-AS1) showed high diagnostic performance in the discovery

(AUC=1.000) and two independent validation (AUC=0.946, AUC=0.857)

datasets. Additionally, these four genes showed significant positive correlations

with NK cells. The prognostic score containing three genes (POU3F3, SYN2, and

TMEM178A) had significantly poorer survival in the high-risk TMB samples than

those in the low-risk TMB samples (P=0.016). CRC patients with low-risk scores

combined with TMB levels represent a favorable survival.
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Conclusions: By integrating analyses of methylation and mutation data, it is

suggested that DNA methylation patterns combined with TMB serve as a novel

potential biomarker for early screening in more high-TMB populations and for

evaluating the prognostic effect of CRC patients with ICI therapy.
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Introduction

Colorectal cancer (CRC) is one of the most common primary

malignant tumors and the second leading cause of cancer-related

mortality worldwide (1). Although recent advances in diagnostic and

therapeutic methods for managing CRC have greatly improved the

survival of early CRC patients (CRCs), the majority of them are

diagnosed in the middle and advanced stages of the disease (2). The 5-

year survival rate was shown to be only 14% in late-stage CRCs, but

over 90% in early-stage CRCs (3). If a diagnosis can be made at any

stage before the advanced stage, patients will suffer from less tumor

burden and endure less treatment; hence, early diagnosis and suitable

treatments are crucial to improve the survival rate of CRC patients.

In addition to traditional therapies, immune checkpoint inhibitor

(ICI) treatments have proven promising treatments for CRCs,

including anti-PD-1, anti-PD-L1, and anti-CTLA4 (4). These anti-

tumor immunotherapies could normalize patients’ own immune

systems in the tumor microenvironment, possibly transforming

cancer into a chronic disease (5, 6). PD-L1 expression,

microsatellite instability (MSI), and deficient mismatch repair

(dMMR) have emerged as major predictive markers for the efficacy

of ICI therapy (7); however, not all the CRC patients predicted by PD-

L1 expression and MSI benefit from ICI therapy. Moreover, only

approximately 15% of CRCs are MSI with high PD-L1 expression (8,

9). Alongside PD-L1 expression and MSI, tumor mutation burden

(TMB), due to its relatively high positive screening rate (10, 11), was

also considered a promising effective biomarker in distinguishing

CRCs potentially responsive to ICI therapies. In MSI CRCs, high

TMB could favor the infiltration of immune cells, demonstrating

stronger anti-tumor immune response and better efficacy of ICI

therapy (12). Even in microsatellite stable (MSS) CRCs with DNA

polymerase epsilon mutations, high TMB could also favor heavy

infiltration of immune cells and represent better immune responses

and efficacy of therapy (13, 14). Nevertheless, the clinical application

of TMB is limited due to the high cost of whole exome sequencing

(WES) and the indefinite thresholds for high TMB (15, 16). Finding

an effective biomarker in combination with TMB may therefore be a

better way to precisely identify more populations that benefit from

CRC ICI therapies.

CRC is a multi-step and complex disease that involves a series of

genetic and epigenetic alterations. In terms of molecular subtypes of

CRC, CRCs can be classified into three distinct molecular signatures

based on integrated DNA methylation and mutation profiling,

including CpG island methylator phenotype (CIMP) 1,
02
characterized by MSI (80%) and BRAF mutations (53%) and rare

KRAS and TP53 mutations (17, 18). CRCs can also be further

categorized into four consensus molecular subtypes (CMS). Among

them, CMS1 represents a hypermutated phenotype, frequently

characterized by BRAF mutations, highly enriched in CIMP and

MSI (76%) (19–21). DNA methylation may therefore be correlated

with tumor mutation in CRC. In addition, aberrant DNAmethylation

is involved in the initiation and progression of CRCs by

reprogramming the epigenetic landscape (22). Recent studies have

demonstrated that DNA methylation was an effective predictive

marker for clinical benefits of ICI treatment in tumors, including

CRC (23, 24). Low-dose decitabine has the function of demethylation,

which can increase the expression of immune-related antigens in

tumor cells, thereby making tumor cells more easily recognized by the

immune system and creating more suitable immunotherapy

conditions for CRC patients (24, 25). Moreover, Cai et al. found

that there was a significant positive correlation between DNA

methylation changes and TMB, which could identify lung cancer

patients who have a clinical response to immunotherapy (26).

However, the direct correlation between DNA methylation and

TMB in CRCs and its impact on immunotherapy has not been

explored to date.

In this study, we integrated DNA methylation profiling and

tumor mutation data to investigate the direct correlation of DNA

methylation with TMB and to discover and better understand novel

early diagnostic and prognostic biomarkers for ICI therapies in CRC.
Materials and methods

Patients and datasets

A total of 24 CRC patients with high TMB from the Third

Affiliated Hospital of Harbin Medical University were included in

this study in 2017. The study was ethically approved by the

Institutional Ethics Committee of Harbin Medical University and

written informed consent was collected from each study subject. After

obtaining informed consent, CRC tissues were obtained for WES, and

CRC (N=24) and normal tissues (N=23) were performed for DNA

methylation profiling. Moreover, all publicly available databases used

in this study were obtained from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/repository) and the Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo) databases. The

profiles of somatic mutation data for CRC (N=536) were directly
frontiersin.org
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downloaded from the TCGA GDC Data Portal. DNA methylation

data of Illumina Human Methylation 450 arrays and the

corresponding clinical information of TCGA CRCs were acquired

from the UCSC Xena Browser (https://xena.ucsc.edu/) (N=448),

including 403 CRC tissues and corresponding 45 adjacent non-

tumor tissue samples. In the GEO database, four methylation

datasets of the Illumina 450K and 850K EPIC arrays were obtained

as a validation set by a systematic search (N = 122): GSE107352 (27),

GSE128067 (28), GSE148766 (29), and GSE68060 (30), including 92

CRC tissue samples and corresponding 30 adjacent tissue samples,

and a batch correction was conducted using the ComBat method. A

methylation dataset of the Illumina 850k EPIC array with three cell-

free DNA (cfDNA) blood samples from CRC with metastases liver

and four cfDNA samples from healthy controls were acquired from

GSE122126 (31). An additional Illumina 850k EPIC array

methylation-based dataset (GSE175699) with 44 melanoma patients

was obtained to predict the response to ICI therapy (32). Additionally,

a total of 38 CRC patients with high-TMB from the COLONOMICS

database (https://www.colonomics.org/) containing tumor mutation

data, DNA methylation data, and prognosis information to evaluate

the prognosis of CRCs. The detailed information from the datasets

used in this study is summarized in Figure S1 and Table 1.
WES and DNA methylation data analysis

DNA libraries preparation, exome capture and sequencing, and

data processing were conducted by Sz-acegen Biotechnologies

(Shenzhen, China). Genomic DNA was captured and amplified

with Agilent SureSelect Human All Exon version 6 (Agilent

Technologies, USA). Sequencing reads were depicted to the human

genome (hg19) by the Burrows‐Wheeler Alignment tool (BWA).

According to Genome Analysis Toolkit (GATK), the mapped reads

with known deletions were locally compared in order to improve the

overall quality of alignment. In TCGA, somatic mutation annotation

was processed by VarScan2 for the “Masked Somatic Mutation” data.

The somatic mutations in the Mutation Annotation Format (MAF)

were conducted by the “maftools” R package for visualization and

summarization of MAF files. The TMB was defined in two ways: 1)
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the number of mutations of each sample in proportion to the size of

33.4 Mb (UCSC Refseq annotations)(Number of mutation/33.4); 2)

the total amount of non-synonymous coding somatic mutation

(NOMs) per tumor sample containing single nucleotide variations

(SNVs) and short insertion or deletion polymorphisms (INDELs)

(26). Consistent with the estimating approach of mutational burden

from MSK-IMPACT (33), high-TMB and low-TMB groups were

defined as the top 20% of TMB CRCs and the bottom 20% of TMB

CRCs, respectively. High-TMB and low-TMB CRCs were selected in

the following analysis.

Genomic DNA of tumor and adjacent tissues were obtained using

the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany) and

stored at –80°C, and then DNA was modified with bisulfite through

the EpiTect Fast DNA Bisulfite Kit (Qiagen, Hilden, Germany) and

stored at –20°C based on the manufacturer’s instructions. According

to the next-generation sequencing for the analysis of multiple targeted

CpG methylation, methylation levels of candidate genes were

es t imated by Methyl Targeted sequencing (Sz-acegen

Biotechnologies Inc., China). The targeted DNA sequences were

firstly amplified by the method of Multiplex PCR and the designed

DNA fragments were sequenced by Illumina Hiseq 2000. The samples

with bisulfite conversion rate < 98% and with high missing rates (>

20%) were filtered out. After the quality control procedures, CRC

patients remained for further study. In addition, TCGA CRC

methylation data were analyzed by the minfi R package. The

methylation level of the CpG sites (CpGs) was expressed as b value

and calculated according to the average of all the methylation sites of

CpG island located at the promoter region, including translation start

sites (TSS)1500, TSS200, and 1st Exon region and 5’ untranslated

region (5’ UTR). TCGA CRC methylation data were analyzed by the

minfi R package. The differential methylated positions (DMPs) of

each sample were identified by the b value of tumor and adjacent

normal tissues with a false discovery rate (FDR) q-value < 0.05. Then,

the differential methylation regions (DMRs) were identified as the

following criteria: 1) the promoter region with more than five CpG

sites; 2) differentially methylated between tumor and adjacent tissues,

with a mean b value difference of at least 0.2 (Db ≥ 0.2). Based on the

distribution of DMR, differential methylated genes (DMGs) were

subsequently identified. DMGs were defined as a class of genes whose
TABLE 1 Overview of the datasets used in this study.

Dataset Source Assay Sample type Number of samples

Discovery set (N=448)

TCGA CRC Infinium 450K Tissue Normal=45; CRC=403

Test set

Test set A (N=122) GSE107352 Infinium 450K Tissue Normal=18; CRC=30

GSE128067 Infinium 450K Tissue Normal=6; CRC=17

GSE148766 Infinium EPIC Tissue CRC=36

GSE68060 Infinium 450K Tissue Normal=6; CRC=9

Test set B (N=47) Inhouse study Targeted sequencing Tissue Normal=23; CRC=24

Test set C (N=7) GSE122126 Infinium EPIC cfDNA Normal=4; CRC=3

Test set D (N=44) GSE175699 Infinium EPIC Tissue melanoma=44
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promoter regions overlapped with DMR. A total of 468 DMGs were

identified in the promoter regions.
Construction and validation of methylation-
based diagnostic score

According to the DMR results obtained, two algorithms were

performed to screen novel diagnostic biomarkers for high-TMB CRC,

including the least absolute shrinkage and selection operator (LASSO)

logistic regression and support vector machine recursive feature

elimination (SVM-RFE) (34, 35). Finally, a four-gene methylation

diagnostic risk-score (DRS) was constructed by the logistic regression

model in the TCGA discovery set. Four GEO methylation datasets

were used to validate and evaluate the robustness of the four-gene

methylation DRS in the validation set. In addition, we also verified the

diagnostic performance of four-gene methylation DRS in our CRC

samples. The GSE122126 methylation dataset was further used to

initially evaluate the applicability and generalizability of the four-gene

score in cfDNA samples. The receiver operating characteristic (ROC)

curve was performed to assess the diagnostic performance of the four-

gene model for distinguishing high TMB CRC and adjacent normal

tissues or blood samples.
Construction and validation of methylation-
based prognostic score for high-TMB CRC

Additionally, univariate Cox regression analysis was utilized to

screen prognostic genes associated with the overall survival (OS) of

high TMB CRCs based on the results of 468 DMGs differential

methylated genes (DMGs). Then, the high-TMB CRC-related

methylation prognostic model was constructed according to the

methylation of survival-related genes and their relevant coefficients

from multivariate Cox regression analysis. The median value of the

prognostic risk score (PRS) was defined as the cut-off value and used

to divide high-TMB CRCs into high-risk and low-risk groups. The

time-dependent ROC and Kaplan-Meier curves were used to evaluate

the prognostic capacity of PRS. Further, univariate and multivariate

Cox regression analyses were performed to investigate whether the

PRS was an independent predictor of CRCs. The gene set enrichment

analysis (GSEA) method based on the KEGG and GO gene sets were

used to explore differential methylation genes and related functions in

high- and low-risk groups.
Comprehensive analysis of methylation and
immune characteristics and ICI therapy

To identify different immune characteristics of high TMB CRC

samples, the methylation data of these samples were analyzed using

the “Epigenetic Dissection of Intra Sample Heterogeneity (EpiDISH)”

R package to estimate the relative proportions of 6 types of immune

cells, including B cells, CD4+ T cells, CD8+ T cells, NK cells,

monocytes, and granulocytes (36, 37). We separately assessed the

proportions of six tumor-infiltrating cells between two groups in
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diagnostic and prognostic models and further analyzed the prognostic

value of candidate biomarkers in ICI therapy.
Statistical analysis

All statistical analyses were conducted using the R software

version 4.1.2. Spearman correlation coefficient was calculated to

evaluate the correlation between DNA methylation and TMB.

Principal component analysis (PCA) were used to show the

difference and separation between tumor and normal samples in

high- and low-TMB. P < 0.05 was considered statistically significant.
Results

DNA methylation difference between high
TMB and low TMB CRCs

According to the screening criteria for the high confident somatic

mutation (No. of mutation>=5, TMB>=10%) (38), we included 533

CRC samples with mutation data for the following analysis in TCGA

dataset, which contains 398 colon and 135 rectum tumor samples.

The median number of NOMs per tumor was 92 (ranging from 25 to

10717) when calculating TMB per tumor (Figure 1A). According to

the approach of mutational burden fromMSK-IMPACT, we classified

CRCs into high-TMB group (top 20% by TMB, N=107) (155-10717

mutations or 4.6-320.9 mutations/Mb) and low-TMB group (bottom

20% by TMB, N=107) (25-65 mutations or 0.7-1.9 mutations/Mb). To

further explore the correlation between DNA methylation and TMB,

we selected 80 high-TMB (155–8208 mutations or 4.6–245.7

mutations/Mb) and 65 low-TMB (25–65 mutations or 0.7–1.9

mutations/Mb) tumor samples with both DNA methylation and

mutation data, and corresponding 13 high-TMB (156–2803

mutations or 4.7–83.9 mutations/Mb) and 11 low-TMB (39–64

mutations or 1.2–1.9 mutations/Mb) paired adjacent normal samples.

In TCGA CRC dataset, DNA methylation levels in tumor and

adjacent normal tissues were measured by the Illumina Infinium

HumanMethylation 450k BeadChip platform which cover the

methylation status of 485,577 CpGs of the human genome.

According to the methylation level of 485,577 sites, the differential

global methylation level was higher in tumor (median beta-value of

0.516) than in normal tissues (median beta-value of 0.477) in the

high-TMB CRCs, but it was slightly lower in tumor (median beta-

value of 0.452) than in normal tissues (median beta-value of 0.468) in

the low-TMB CRCs (Figure 1B). We further evaluated the global

methylation status in tumor and normal tissues by principal

component analysis (PCA) of the CpGs, revealing that the

distribution of global methylation in tumor tissues differed from the

corresponding normal tissues in both high- and low-TMB CRCs

(Figure 1C); however, compared with low-TMB CRCs, high-TMB

CRCs indicated a wider distribution in global methylation patterns. In

addition, we conducted differential methylation analyses between

high-TMB tumor and matched normal of a single patient, and

found that the differential methylation sites were significantly more

in high-TMB CRCs (DMPs: 42,004~87,046, median = 67,651) than in
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FIGURE 1

The correlation between differential DNA methylation and TMB in colorectal cancer. (A) The number of non-synonymous coding somatic mutations
(NOMs) for every CRC patient (represented by the x-axis). Blue/Black lines represent the high/low TMB cutoff value. The samples of above 3000 NOMs
were not shown in the figure. (B) Bar plot. (C) PCA analysis for the average value of all 450K methylation CpG sites in high/low TMB. (D) The comparison
of differences in DNA methylation between high TMB and low TMB groups; with yellow representing the value of log (TMB) and blue indicating the
positions of differential methylation. (E) The Volcano plot between delta-beta value (high TMB tumor versus normal) and corresponding –log (FDR) for all
450K methylation CpG sites, with the blue indicating hypermethylated CpGs and the yellow representing hypomethylated CpGs. (F) The correlation
analysis of differential methylation sites and TMB of CRC patients. (G) Consensus clustering of the DNA methylation distinguishing high and low TMB
CRC groups of DNA methylation, the rows and columns represent DMPs and samples in the consistent clustering matrix heatmap, respectively. (*P <
0.05; ***P < 0.001).
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low-TMB CRCs (DMPs: 23,971~58,938, median = 44,733)

(Figure 1D). DMRs were also significantly more in high-TMB

CRCs (735 DMRs) than in low-TMB CRCs (265 DMRs)

(Supplementary Table S1).

In light of so many DMPs in the high-TMB CRCs, we conducted

differential methylation analysis between 80 high-TMB CRC tumor

and 13 adjacent normal tissues and calculated the Db value

(Figure 1E). From over 450,000 informative probes, 31,237

methylation variable positions (MVPs) were identified according to

the criteria of |Db| > 0.2 and FDR q-value < 0.01, indicating less than

6% of the total CpGs. The top 3,000 MVPs are shown in

Supplementary Table S2. We identified 18,837 hypermethylated

CpGs and 12,400 hypomethylated CpGs in the high-TMB CRCs.

DMPs comparing the tumor and matched adjacent normal tissues for

each CRC patient were used to estimate their relationship with TMB

by Spearman correlation. The DMPs of CRC were significantly

associated with TMB (Spearman correlation coefficient = 0.45, P-

value =0.029) (Figure 1F). To further identify whether DMPs can

distinguish high-TMB CRCs from low-TMB CRCs, we clustered 640

most significant DMPs from 24 CRCs with paired tumor and normal

tissues by the K-Means consensus method with the following

parameters: s.d. > 0.2 between high- and low-TMB CRCs, s.d. < 0.2

in high- or low-TMB CRCs, |Db| > 0.2, and FDR q-value < 0.05

(Supplementary Table S3). The consensus clustering of 640 DMPs

could significantly distinguish high- and low-TMB CRCs (Figure 1G).
Construction and validation of the
methylation-based diagnostic model
in high TMB CRCs

To further explore the differential methylation status of these 80

high-TMB CRC and 13 adjacent normal tissues in TCGA dataset and

to identify methylation-related markers for high-TMB CRCs

prediction, we screened 735 DMRs, covering 6012 methylation CpG

sites, by comparing high-TMB CRCs with normal tissues. We further

calculated the methylation levels of the DMRs at the promoter region,

discovering 468 significant DMGs (Supplementary Table S4).

According to the algorithms of machine learning, 7 DMGs were

identified as key biomarkers by LASSO logistic regression algorithm

(Figure S2), while 22 DMGs were determined as vital biomarkers by

the SVM-RFE algorithm (Figure S3). Finally, ADHFE1, DOK6,

GRP75, and MAP3K14-AS1 were overlapping hypermethylated

genes according to the two algorithms (Figure 2A). The AUCs of

the four genes were 1.000, 1.000, 0.988, and 1.000, respectively,

indicating that the four genes had a high accuracy in discriminating

between high-TMB CRCs (N=80) and adjacent normal tissues

(N=13) (Figure S4). Sensitivities and specificities under the different

cut-off values of methylation levels were shown in Supplementary

Table S5.

In addition, we constructed the DRS using a logistic regression

method. The DRS was the sum of the methylation levels of the four

genes at the promoter region weighted by the corresponding

regression coefficient from the logistic regression model

(Supplementary Figure S5): (130.82 × ADHFE1) + (52.36 × DOK6)

- (74.95 × GPR75) + (96.49 × MAP3K14-AS1). The AUC of the DRS

was 1.000 in TCGA CRC discovery set, with a sensitivity and
Frontiers in Oncology 06
specificity of 100% and 100% respectively (Figure 2B). Moreover,

consistent with the previous reports that over 80% of MSI-high

tumors display high TMB (39), we observed that 83.3% of high-

TMB CRCs (N=90) exhibited MSI in the TCGA dataset (Figure 2C).

We therefore used MSI to estimate high-TMB, screening122 possible

high-TMB CRCs as a validation set in the GEO CRC datasets. We

found the DRS showed robust performance (AUC = 0.946) in

distinguishing 92 CRC tissues from 30 adjacent normal tissues in

the GEO validation set A. The sensitivity and specificity of DRS were

93.3% and 91.3%, respectively (Figure 2D and Figure S6). Meanwhile,

the DRS also demonstrated good performance (AUC = 0.857) in

distinguishing 24 CRC tissues from 23 normal tissues in our CRC

validation set. The sensitivity and specificity of DRS were 70.8% and

91.3%, respectively (Figure 2E and Figure S7). We further explored

the methylation level of these four genes in cfDNA samples from the

GSE122126 dataset. They were hypermethylated in all three CRC

patients with metastases liver (3 out of 3) but not in healthy controls

(0 of 4) (Figure 2F).
Correlations between methylation of the
four genes and immune infiltration cells

According to the EpiDISH algorithm, we calculated the composition

of infiltrating immune cells in high-TMB CRC and adjacent normal

tissues (Figure 3A). Compared with normal tissues, CRC tumor tissues

contained a higher proportion of NK cells (Wilcox test, P<0.001) and

granulocytes (Wilcox test, P<0.001), but a relatively lower proportion of B

cells (Wilcox test, P<0.001) (Figure 3B). In addition, we explored the

correlations between methylation levels of the four genes and immune

infiltrating cells, noting that ADHFE1 showed significantly positive

correlations with NK cell (r = 0.725, Spearman correlation test,

P<0.001) and CD4+ T cell (r = 0.334, Spearman correlation test,

P=0.001), but significantly negative correlations with CD8+ T cell (r =

-0.239, Spearman correlation test, P=0.022) and B cell (r = -0.482,

Spearman correlation test, P<0.001). DOK6 displayed a positive

correlation with NK cell (r = 0.260, Spearman correlation test,

P=0.013) but a negative correlation with B cell (r = -0.389, Spearman

correlation test, P<0.001). Meanwhile, GPR75 displayed a strong positive

correlation with NK cell (r = 0.336, Spearman correlation test, P=0.001)

and CD4+ T cell (r = 0.256, Spearman correlation test, P=0.014), while

GPR75 displayed a strong negative correlation with B cell (r = -0.492,

Spearman correlation test, P<0.001).MAP3K14-AS1 displayed a positive

correlation with NK cell (r = 0.308, Spearman correlation test, P=0.003)

and CD4+ T cell (r = 0.218, Spearman correlation test, P=0.037), but a

strong negative correlation with B cell (r = -0.346, Spearman correlation

test, P<0.001) (Figure 3C).
Construction and validation of methylation-
based prognostic model in high-TMB CRCs

We further estimated the association of CRCs’ OS with methylation

levels of the above screened 468 DMGs between CRC tumor and

adjacent normal tissues using univariate and multivariate Cox

regression analysis. Three genes (POU3F3, SYN2, and TMEM178A)

were strongly associated with the survival of 80 high-TMB CRCs
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(Figure S8). We then constructed a 3-gene methylation PRS model using

TCGA CRC methylation data. The PRS = (2.221 × methylation level of

POU3F3) - (0.635 × methylation level of SYN2) + (2.378 × methylation

level of TMEM178A). In accordance with the PRS, we used themedian as

the cutoff value to divide CRCs into a high-risk group and a low-risk

group. The Kaplan-Meier survival analysis showed high-risk group CRCs

had poorer survival than low-risk group CRCs (log-rank test, P=0.016)

(Figure 4A). In validation set, similar result was found in the

COLONOMICS project dataset (log-rank test, P=0.001) (Figure S9).

We further incorporated the detailed clinicopathologic characteristics of

80 high-TMB CRC patients in TCGA CRC cohort into Cox regression

analyses. PRS were significantly associated with CRC prognosis in the

univariate Cox regression analyses. Multivariate Cox regression analysis

confirmed that 3-gene methylation PRS was an independent prognostic

factor after adjusting for the TNM stage, T stage, and N stage. (HR=
Frontiers in Oncology 07
2.499, 95%CI: 1.475- 4.232, Cox test, P=0.001) (Table 2). In addition, the

predictive performance of the 3-gene methylation PRS showed that the

AUCs were 0.703, 0.783, and 0.837 for 1-, 3-, and 5-year survival

respectively by time-dependent ROC curve (Figure 4B).

To further clarify the biological function of high-risk and low-risk

CRCs, we conducted GSEA analysis, observing that the gene sets of

the high-risk CRCs were enriched in cell adhesion (Figure 4C)

whereas the gene sets of the low-risk CRCs were enriched in

stimulus (Figure 4D). The detailed results of GSEA are summarized

in Supplementary Table S6. We further identified that the mutation

rates of TTN and MUC16 were higher than 60% in both low- and

high-risk CRCs in screening genome-wide mutation. BRAF, KMT2B

gene mutations were more common biomarkers in the high-risk

CRCs (Figure 4E), whereas ZFHX3 and KRAS gene mutations were

more common biomarkers in the low-risk CRCs (Figure 4F).
D

A B

E F

C

FIGURE 2

The diagnostic performance of the 4-gene methylation diagnostic score for colorectal tumor and adjacent normal tissues. (A) Screening of diagnostic
markers via the Least absolute shrinkage and selection operator (LASSO) logistic regression algorithm and support vector machine-recursive feature
elimination (SVM-RFE) algorithm of machine learning. (B) ROC curves of the diagnostic score constructed by the logistic regression model in the TCGA
discovery set. (C) Alluvial diagram showing the changes of TNM stage, high TMB samples, and MSI type. (D, E) ROC curves of the diagnostic score
validated in the GEO validation set A (D) and our in-house CRC validation set B (E). (F) Methylation status of 4 genes in cell-free DNA samples from three
colorectal cancer patients and four healthy controls in the GEO validation set C.
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Immune characteristics and the benefit of
ICI therapy in high-TMB CRCs

Evaluating the landscape of the tumor microenvironment (TME)

could contribute to improving the effectiveness of immunotherapies

for CRC. We therefore further evaluated the composition of

infiltrating immune cells in high- and low-risk CRCs by the

EpiDISH algorithm, revealing that high-risk CRCs contained higher

levels of infiltrating NK cells than low-risk CRCs (Wilcox test,

P<0.01) (Figures 5A, B). We estimated the associations of high-

TMB CRC prognosis with the infiltrating levels of six immune cells.

We observed that low infiltrating granulocyte (log-rank test, P=0.017)

or monocyte (log-rank test, P=0.002) levels showed a poorer survival

rate than high infiltrating granulocytes or monocyte levels (Figures

S10, S11). Additionally, we observed a significant survival advantage

in high-TMB CRCs with high infiltrating granulocyte levels regardless

of risk score by conjoint survival analysis with PRS (log-rank test,

P=0.004) (Figure 5C). Meanwhile, high-TMB CRC patients with a

low-risk score and low infiltrating monocyte levels also displayed a

better survival advantage (log-rank test, P<0.001) (Figure 5D).
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To explore the prognostic performance of PRS in clinical response to

anti-PD-1/PD-L1 immunotherapy, we first compared the difference of

PD-L1 methylation levels between high- and low-risk CRCs, observing

higher PD-L1 methylation levels in low-risk CRCs (Figure 5E). The

Kaplan-Meier survival analysis showed that low-risk CRCs with low PD-

L1 methylation had a great survival advantage compared with other

groups (log-rank test, P=0.001) (Figure S12). Furthermore, we did not

identify a significant difference in TMB between low- and high-risk CRCs

(Wilcox test, P=0.07) (Figure S13). In the high-TMB CRC patients, we

used the best cutoff value (35.71 mutations/Mb) to divide CRCs into

high- and low-TMB groups. In the survival analysis, we observed that

regardless of high- and low-TMB, low-risk PRS showed both a favorable

survival (log-rank test, P=0.011) (Figure 5F).

In order to evaluate the predictive performance of PRS in other

tumors, we investigated whether the three-gene methylation PRS could

predict a clinical response to ICI therapy in the metastatic melanoma

immunotherapy cohort (GSE175699). 44 metastatic melanoma patients

in both the high- and low-risk groups did not exhibit significant clinical

benefits from ICI therapy (Wilcox test, P=0.69) (Figure S14); however, we

separately explored the effect of the methylation level of these three genes
A

B C

FIGURE 3

The relationship between immune cell infiltration characteristics and diagnostic biomarkers in CRC patients with high TMB. (A) The composition of tumor
immune infiltrating cells in every high TMB sample. (B) Violin diagram of the difference in infiltration between the two groups of samples. (C) Correlation
between diagnostic markers and immune infiltrating cells with the size of the dots representing the strength of the correlation between genes and
immune cells and the color of the dots indicating the P-value.
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(POU3F3, SYN2, and TMEM178A) on immunotherapy, finding that

patients with low SYN2 methylation levels showed a poorer clinical

response to ICI therapy than those with high methylation levels (Wilcox

test, P=0.024) (Figure 5G).
Discussion

Previous studies have demonstrated that CRCs with dMMR/MSI-

H exhibited dense immune infiltrate and tended to respond to ICI

therapy, especially in CRCs with metastatic dMMR/MSI-H. CRCs

with MSI-H only accounted for 15% of CRCs, however. In recent
Frontiers in Oncology 09
years, TMB has been recognized as a potential biomarker for

stratifying CRCs’ response to ICI therapy. Moreover, as well as 83%

of MSI CRC patients showing high TMB, some MSS CRC patients

also showed a high TMB while possibly heavily infiltrated by immune

cells and responsive to ICI therapy (40). High TMB may therefore be

more widely used than dMMR/MSI. In addition, the TMB landscape

from 100,000 cancer genomes found that only 16% of tumor patients

with high TMB were classified as MSI-H (39), indicating that high

TMB may be involved in different tumor stages rather than just

metastatic stages; hence, TMB may be an effective biomarker for a

clinical response to immunotherapy in CRC patients. The high cost of

WES sequencing and the inconsistent cut-off values of high TMB,
D
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FIGURE 4

The prognostic performance of the 3-gene methylation prognostic score in CRC patients with high TMB. (A) The Kaplan–Meier survival curve on
comparing survival between the high- and low-risk groups in the discovery set. (B) Time-dependent ROC curves analysis for the 1-, 3-, and 5-year
survival prediction by prognostic model. (C) Gene sets enriched in the high-risk subgroup (P < 0.05, FDR < 0.25). (D) Gene sets enriched in the low-risk
subgroup (P < 0.05, FDR < 0.25). The waterfall plot of tumor somatic mutation established by those in the high-risk group (E) and the low-risk group (F).
Mutated genes (rows top 30) are ordered by mutation rate. Each column represents individual patients. The right bar plot shows the proportion of each
variant type.
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however, limit the clinical application of TMB. TMB combined with

other biomarkers may therefore be an efficient mean of screening

CRCs with a clinical response to immunotherapy.

Interestingly, recent studies proposed that DNA methylation-

based pattern change was associated with PD-L1 expression and

TMB, which may serve as a predictive biomarker to select lung

cancer patients with a clinical response to ICI therapy (23, 26). In

this study, we identified a significant positive correlation between

TMB and DNA methylation in CRCs, especially CRC-related global

methylation changes in high-TMB CRC tumor tissues. Although

earlier studies reported a positive correlation between DNA

hypomethylation and cell karyotype instability and higher mutation

rates, these hypomethylated regions did not perform a biological

function (41). Biological functions of CRC-related DNAmethylations

were mainly hypermethylation of CpG islands in the promoter region

accompanied by multiple gene mutations, including BRAF mutation

(20, 42). Moreover, due to the robustness and reasonable cost of the

DNA methylation method, we also estimated the potential predictive

effect of DMG together with TMB in screening CRCs with a clinical

response to ICI therapy by systematically integrating DNA

methylation profiling and gene mutation data.

To further explore the correlation between DNA methylation

and high TMB, we identified 468 DMGs genes that were significant

differential methylated regions in this study. According to the

algorithms of machine learning (LASSO regression and SVM-

RFE), ADHFE1, DOK6, GRP75, and MAP3K14-AS1 were selected
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to construct a diagnostic model and were successfully validated in

GEO and our CRC samples datasets. Additionally, CRCs with high

TMB showed high infiltrating NK cells and low infiltrating B cell

levels. These four genes were also positively correlated with NK

cells. It may therefore be necessary to further explore the biological

functions of these four genes in CRC-related NK cells. Additionally,

ADHFE1methylation at the promoter region has been reported as a

potential early diagnostic biomarker with high sensitivity and high

specificity in CRC tumor tissues, stool, and adenomas tissues (43–

45). A recent study found that hypermethylation of ADHFE1

promotes cell proliferation by modulating cell cycle progression

in CRC (46). These findings may explain the high accuracy of

ADHFE1 hypermethylation in discriminating high-TMB CRCs and

normal controls. A previous study reported that GPR75

hypermethylation may serve as a diagnostic biomarker for CRC

in African-Americans, and that it was very closely related to the

insulin/TGF-b1 pathway (47). Moreover, we found in a recent

study (48), surprisingly, that hypermethylation of the MAP3K14-

AS1 gene in cfDNA samples can be used to monitor treatment

response in CRCs with metastasis. All of the above results

encouraged us to find more CRC patients with high TMB who

were responsive to ICI treatment. DOK6 (Docking Protein 6), a

member of the DOK family of intracellular adaptors, was associated

with Hirschsprung Disease 1; however, DOK6 has not been

reported as a diagnostic marker for CRC, and the biological

mechanism in CRC has not yet been discovered.
TABLE 2 Univariate and multivariate Cox regression analysis of the 3-gene methylation signature.

Variables
Discovery set (N=80)

HR(95%CI) P HR(95%CI) P

Univariate analysis Multivariate analysis

Age

≥65 vs <65 years 1.368(0.482−3.879) 0.556 ≥65 vs <65 years

Sex

Female vs Male 0.507(0.164−1.566) 0.237 Female vs Male

TNM stage

III+IV vs I + II 2.694(0.923−7.859) 0.070 III+IV vs I + II 4.601(0.494−42.860) 0.180

T Stage (Primary tumor)

T3+T4 vs T1+T2 3.146(0.690−14.336) 0.139 T3+T4 vs T1+T2 3.047(0.619−15.003) 0.171

M Stage (Distant metastasis)

M1 vs M0 2.073(0.464−9.237) 0.340 M1 vs M0

N Stage (Regional lymph nodes)

N1+N2 vs N0 3.054(0.910−10.244) 0.071 N1+N2 vs N0 0.352(0.026−4.710) 0.430

Microsatellite instability

MSS+MSI-L vs MSI-H 0.829(0.287−2.391) 0.728 MSS+MSI-L vs MSI-H

Tumor location

Rectum vs Colon 1.248(0.279−5.574) 0.772 Rectum vs Colon

3-gene methylation prognostic score

High risk vs low risk 2.468(1.476−4.129) 0.001 High risk vs low risk 2.499(1.475−4.232) 0.001
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We further identified three genes (POU3F3, SYN2, and

TMEM178A) as biomarkers for prognostic evaluation in high TMB

CRC patients, and we built and verified a prognostic risk model

consisting of these three genes. The 3-gene methylation PRS was an

independent predictor for high-TMB CRC prognosis. In addition,

BRAF was frequently mutated in the high-risk PRS CRCs, whereas

KRAS was frequently mutated in the low-risk PRS CRCs. This result

supports the previous finding that DNA hypermethylation was

accompanied by high BRAF mutation. Moreover, high-TMB CRC

patients with low-risk scores exhibited hypermethylation of PD-L1,

indicating a potential response to anti-PD-1/PD-L1 therapy. High-

TMB CRCs with low-risk PRS had a significant survival advantage.

The 3-gene methylation PRS may be a potential biomarker for high-

TMB CRC prognosis and clinical response assessment of
Frontiers in Oncology 11
immunotherapy. Further, we observed a great survival advantage in

high-TMB CRC patients with high infiltrating granulocytes regardless

of the high- or low-risk score, and in high-TMB CRC patients with

low infiltrating monocyte and low-risk PRS. The 3-gene methylation

PRS combined with immune infiltrating cells may be a surrogate

marker for the prognosis of high-TMB CRCs.

To the best of our knowledge, this is the first study to investigate a

direct correlation between DNA methylation and TMB in CRCs. By

integrating analysis of genomic and epigenetic data, we identified and

constructed methylation-based early diagnostic and prognostic

models for high-TMB CRC, estimating their predictive effect for

immunotherapy in high-TMB CRCs. Moreover, the diagnostic model

has been successfully validated in our CRC dataset, while these

methylation markers have also been reported in other CRC tumor
D

A B

E F G

C

FIGURE 5

Distribution and characteristics of immune cells infiltration and the prognostic value of risk score in patients with ICI therapy. (A) The composition of
tumor immune cells infiltration in every high- and low-risk sample. (B) Differences in six type of infiltration cells between the two groups of samples (**P
< 0.01. (C) The survival of patients with high (low) risk and high (low) infiltrating granulocytes levels. (D) The survival of patients with high (low) risk and
high (low) infiltrating monocyte levels. (E) Differences in PD-L1 methylation between high- and low-risk score subgroups. (F) The survival of patients with
high (low) risk and high (low) TMB. (G) Differences in SYN2 methylation between distinct immunotherapy clinical response groups.
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tissues, cfDNA, and fecal samples. The combination of PRS and

infiltrating cells could effectively identify CRC patients with a

significant survival advantage and improve the precision

management of CRC ICI therapies, while the three-gene

methylation PRS may be a surrogate marker for immunotherapy.

We nevertheless acknowledge possible limitations in the present

study. Firstly, although hypermethylation of these diagnostic

biomarkers was observed in CRC cfDNA samples, whether the

diagnostic panel can be applied as a non-invasive biomarker should

be further determined in larger studies. Secondly, as the thresholds

used for TMB in different tumor types have obvious differences,

further studies are warranted to define high TMB and low TMB using

cancer-specific thresholds or uniform thresholds. Thirdly, in the PRS

validation set, there are currently only 38 high-TMB CRCs, and only

two cases in the low-risk group. A large number of prospective high-

TMB CRCs may be needed to validate our prognostic methylation

model for the future. Finally, the current study limits accurate

assessment of the association between prognostic methylated PRS

and immunotherapy response in high TMB CRC patients due to the

lack of CRCs with immunotherapy. Subsequent studies may need to

collect immunotherapy CRC patients to fill in this gap in the future.

In summary, this study discovered and validated that ADHFE1,

DOK6, GRP75, and MAP3K14-AS1 gene methylation hold great

promise as a diagnostic panel for screening CRCs with high TMB.

POU3F3, SYN2, and TMEM178A methylation could be a promising

marker for improving the clinical prognostic evaluation of CRCs with

high TMB. In addition, PRS combined with high granulocytes or low

monocyte infiltrating levels represented favorable survival for high-

TMB CRCs. More comprehensive studies with larger sample sizes and

PD-L1 clinical outcomes are warranted to shed light on the effect of

DNA methylation patterns on the diagnosis and prognosis of high-

TMB CRCs and the clinical response of immunotherapy.
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