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Chordoma is a rare malignant bone tumor that mainly occurs in the sacrum and

the clivus/skull base. Surgical resection is the treatment of choice for chordoma,

but the local recurrence rate is high with unsatisfactory prognosis. Compared with

other common tumors, there is not much research and individualized treatment

for chordoma, partly due to the rarity of the disease and the lack of appropriate

disease models, which delay the discovery of therapeutic strategies. Recent

advances in modern techniques have enabled gaining a better understanding of

a number of rare diseases, including chordoma. Since the beginning of the 21st

century, various chordoma cell lines and animal models have been reported,

which have partially revealed the intrinsic mechanisms of tumor initiation and

progression with the use of next-generation sequencing (NGS) techniques. In this

study, we performed a systematic overview of the chordoma models and related

sequencing studies in a chronological manner, from the first patient-derived

chordoma cell line (U-CH1) to diverse preclinical models such as the patient-

derived organoid-based xenograft (PDX) and patient-derived organoid (PDO)

models. The use of modern sequencing techniques has discovered mutations

and expression signatures that are considered potential treatment targets, such as

the expression of Brachyury and overactivated receptor tyrosine kinases (RTKs).

Moreover, computational and bioinformatics techniques have made drug

repositioning/repurposing and individualized high-throughput drug screening

available. These advantages facilitate the research and development of

comprehensive and personalized treatment strategies for indicated patients and

will dramatically improve their prognoses in the near feature.
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Introduction

Chordomas are extremely rare malignant bone tumors

originating from the remnant notochord (1, 2). The estimated

annual incidence is approximately 0.8–1 out of 1,000,000, with

male dominance (3, 4). Almost all primary tumors accumulate in

the axial skeleton, with a predilection of the sacrum and the

clivus/skull base. According to the WHO classification (5th

edition), chordomas are pathologically classified into three

subtypes: conventional (including the chondroid), poorly

differentiated, and dedifferentiated (5). The conventional

subtype is the most common, accounting for more than 95%

of all cases (6).

Chordomas are considered as low- to intermediate-grade

malignancies with a moderate growth rate, but with locally

aggressive features. The ideal treatment is en bloc resection of

the primary tumor without metastasis (7, 8). However, most

patients with chordoma lack the typical clinical symptoms in the

early stage due to the indolent characteristic of this tumor. Most

chordoma tumors are large at the first diagnosis, with a pseudo-

capsule that is vulnerably violated intraoperatively. On the other

hand, as most chordoma tumors originate from the cranio-

caudal ends of axial skeletons, vital structures such as the

pituitary, spinal cord or cervical/sacral nerve roots, vertebral/

iliac arteries, rectum, and the sigmoid colon are often involved or

even enrolled by the tumor mass, which constitutes a great

challenge in the surgical intervention of this malignancy.

Subtotal resection with adjuvant radiotherapy is considered as

an alternative treatment, but insufficient resection of the tumor

often leads to a high risk of subsequent local recurrence or even

metastasis (9).

The 5-year recurrence-free survival (RFS) of chordoma is

over 50% for patients with adequate resection margins, but the

rate may drop dramatically to less than 20% in the presence of

contamination (7, 9, 10). Few advanced cases can be cured

radically by surgery, and systemic treatment is required, but the

effect is limited (6, 8, 9). Conventional chordomas are considered

as indolent to cytotoxic chemotherapy, while the poorly

differentiated and dedifferentiated subtypes are considered as

sensitive to chemotherapy. Systemic treatment is considered as

upfront management for chordoma by most researchers and

clinicians, but more evidence-based verification is required

(11–14).

To some extent, the current clinical dilemma is attributed to

the lack of basic research on chordoma compared with other

tumors. Given the low occurrence rate and the indolent biological

feature of chordoma, it is usually difficult to develop stable cell

lines and suitable xenograft animal models, which hinders gaining

a deeper understanding of the intrinsic mechanism of the

biological processes of chordoma. It was not until 2001 that the

first chordoma cell line was established and well characterized

(15). With the joint efforts of clinicians, biologists,
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pharmacologists, and numerous other multidisciplinary teams,

chordoma research has made great progress in the new century.

New treatment strategies, including tumor vaccines, targeted

therapies, and immunotherapies, have been developed and have

shown promising prospects. In the current review, we focus on the

progress in the basic research of chordoma in recent years and its

far-reaching impact on clinical practices. In addition, we provide

an overview of modern individualized drug screening systems

for chordoma.
The research tools: Chordoma cell
lines and animal models

The importance of cell lines and animal models for disease

research cannot be doubted. However, since the identification of

the first case in 2000, chordoma research has mainly focused on

the clinical symptoms, radiological expressions, and pathological

manifestations. Compared with other types of malignant

tumors, the lack of understanding of the pathogenesis of

chordoma and effective medical therapies is the partial reason

for the delayed establishment of model systems. There is limited

basic research in identifying karyotype abnormalities and

characteristic molecules from clinical samples. It was not until

2001 that the first human chordoma cell line, U-CH1, was

established (15), and about 10 years later, the first xenograft

model was reported (16). Today, over 20 chordoma cell lines and

several different types of animal models have been established,

which substantially expands our understanding of the

pathogenesis of chordoma.
Cell lines

The U-CH1 cell line was developed from a sacrum tumor of

a 46-year-old male patient who received radiotherapy for local

recurrence of the tumor 4 years after the primary resection.

Further characterization proved typical physaliphorous

morphological features and stable expression of several

markers, including Brachyury, vimentin, and cytokeratin (15).

Since its establishment, the U-CH1 cell line has become one of

the most widely used chordoma cell lines worldwide. Several

interesting intrapersonal models of cell line families with unique

characteristics have been established. The U-CH11 and U-

CH11R cell lines were established from the primary and the

recurrent sacral chordoma (recurred 4 years after primary

resection) of the same patient, respectively (17). The primary

tumor tissue, the U-CH11 cell line, and the corresponding

recurrent cell lines were compared using RNA sequencing

(RNA-seq). The results demonstrated that transcriptomic

reprogramming occurred during chordoma recurrence, which

did not derive from genomic events. Similar conclusions were
frontiersin.org

https://doi.org/10.3389/fonc.2022.1029670
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2022.1029670
also drawn from another series of cell lines originating from the

same patient. U-CH17P, U-CH17M, and U-CH17S were

established from the primary site, lung metastasis, and skin

metastasis, respectively (18). Although there was some loss of

genetic variations compared with the parental chordoma tissues,

such cell line model systems are meaningful for the investigation

and understanding of the intrinsic mechanisms underlying the

process of tumor progression.

Compared with cell lines established from sacrococcygeal

tumors, clivus-originated chordoma cell lines are even more

difficult to breed. Lucia et al. reported a technical note on

establishing three clival chordoma cell lines from patients, but

the cells were not permanent (19): the cells underwent crisis with

continued passaging for about 40 generations. Owen et al.

established the first permanent human clival chordoma cell

line, UM-Chor1, and successfully transduced it with a

luciferase lentiviral vector (20). A para-sacral xenograft model

in non-obese diabetic/severe combined immunodeficiency

(NOD/SCID) mice was also built, which showed slow growth

via bioluminescence. The lack of clival chordoma cell lines could

possibly be explained by the role of aggressive telomerase in

chordoma and the destruction or damage of tumor cells

intraoperatively (19). Gellner et al. thoroughly analyzed such

suspects and successfully bred the clival cell line MUG-CC1

using a full endoscopic technique under suitable culture

conditions (21). Since non-tumorigenic notochordal cell lines

are unlikely to be available in near future, their team also

creatively presented a non-tumorigenic, spontaneously

established lymphoblastoid cell line originating from the same

chordoma patient (termed as MUG-CC1-LCL) for comparative

analysis. Recently, Kino et al. have established a novel skull base

chordoma cell line, TSK-CHO1 (22), which has been proven to

be neoplastic and which exhibited pleomorphic features. It was

also revealed that the TSK-CHO1 cell line secretes Brachyury

and SOX9 into conditioned medium (CM), which can further

induce human dental pulp stem cell differentiation and promote

the production of hyaluronic acid and type II collagen. This new

cell line is expected to be used for elucidating the pathogenesis of

skull base chordoma and investigating the mechanism

underlying the production of fibrocartilage.

Most currently available cell lines have been derived from

conventional chordomas, but the origin of the other subtypes is

unknown. Kim et al. successfully established a chordoma cell line

from a patient with recurrent dedifferentiated chordoma and named

it DTC (23). Compared with U-CH1 cells, DTC cells showed a

unique polygonal morphology and higher clonogenic activity.

Compared with conventional chordomas, a distinct expression

spectrum was also identified, with a high expression of platelet-

derived growth factor receptor-b (PDGFR-b) and stemness- and

epithelial-to-mesenchymal transition (EMT)-related proteins, but

low levels of Brachyury and cytokeratins. DTC cells were also

demonstrated to have a high surface expression of CXCR4 and

the capacity to form xenograft subcutaneous tumors in nude mice.
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3D cultures of chordoma cell lines

It is well documented that chordoma cells are embedded in

a massive extracellular myxoid matrix in vivo. The extracellular

components not only function as a passive scaffold within the

tumor architecture but also play a more active role, thus

fac i l i tat ing the communicat ion between ce l l s and

participating in the regulation of cellular proliferation,

differentiation, and motility. Therefore, 3D cultures are

considered to have obvious superiority over traditional 2D

cultures (24, 25). Cao et al. reported their experience using 3D

cultures of chordoma cell lines (26). They cultured three cell

lines (U-CH1, CH8, and GB60) the growth factor-reduced

Matrigel by using an assay medium with the addition of extra

growth factor 12 (DMEM/F12) containing 2% horse serum,

0.5 g/ml hydrocortisone, 100 ng/ml cholera toxin, 10 g/ml

insulin, 100 U/ml penicillin G, and 100 mg/ml streptomycin

after the tumor was seeded on the reconstituted basement

membrane. The clusters and acini-like spheroids formed by the

cells partially restored the in vivo morphology. Locquet et al.

prepared 3D cellular models using cell lines representative of

three different stages of the disease: U-CH12 for primary, U-

CH1 for relapsed, and CH22 for metastatic tumor (27). Their

tumor spheroids recapitulated the main histological and

morphological features, as well as the radioresistant

environment of chordoma.

The 3D cultures of the patient-derived primary tumor cells

were named as organoids (patient-derived organoids, PDOs).

More advantages of organoids over conventional 2D patient-

derived cell cultures (PDCs) have been recognized and

documented (28–30). However, similar obstacles, such as

indolent tumor growth and difficulty in stable passage, need

to be overcome by establishing chordoma organoid models in

tumor cell lines. Scognamiglio et al. reported their experience

in predicting the response of patients to the checkpoint

inhibitors (ICIs) programmed cell death 1/programmed

death l igand 1 (PD-1/PD-L1) (31) . In their br ie f

communication, they reported the first evidence of using

chordoma PDOs to examine individual responses to

treatment. In a recent report, Shihabi et al. have documented

their experience in establishing the PDO model with a 100%

success rate , stating that the model mimicked the

immunohistopathological characteristics of the parental

tumor (32). Furthermore, they built an effective and timely

high-throughput drug screening platform with their PDO

model. Additionally, the PDO model was obviously more

cost-effective than the patient-derived xenograft (PDX)

model. Details are presented in the subsequent section.

Collectively, the 3D culture and PDO models can serve as

important supplements to traditional in vitro and in vivo animal

models, which can greatly accelerate the study of such a rare

disease and help in the discovery of potential therapeutic drugs.

Details are presented in subsequent discussions.
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Animal models

Two types of animal models have been established: the

xenograft tumor model and the zebrafish tumor model. The

former was derived based on chordoma cell lines or patient-

derived tumors, while the latter is mostly a spontaneous animal

model used to facilitate the understanding of the mechanisms of

tumor initiation and progression.

Wesley et al. injected JHC7 cells into immunodeficient mice

subcutaneously and successfully constructed the first cell line-

derived (CLD) chordoma xenograft animal model (16). Further

experiments demonstrated that the injected tumor vividly

resembled the parental tumor phenotype. Siu et al. established

the first serial transplantable PDX model (33). Compared with

the CLD model, the PDX model more closely mimicked the

original tumor and was more valuable for effective therapeutics

(34). Using this model, Siu et al. (35) further evaluated the

efficacy of the epidermal growth factor receptor (EGFR)

inhibitor erlotinib in vivo. Subsequently, several PDX models

reflecting different tumor characteristics were established,

including primary or recurrent tumors involving the cervical

spine or sacrum (36–38). However, all these tumors were

subcutaneously injected; in situ transplanted models continue

to be pursued.

Diaz et al. (34) established a clival chordoma xenograft to

mimic in situ tumor characteristics (34). The tumors were

harvested intraoperatively, digested, resuspended, and mixed

with Matrigel. NOD/SCID gamma (NSG) mice were prepared

by scraping the outer cortex of the parietal bone with a scalpel.

The obtained tumor cells were implanted into the subcutaneous

epicranial space above the posterior parietal bone and the sub-

occipital musculature thereafter. Although not on each PDX

model, bony invasion was observed in each generation, which

partially restored the clinical features of patients compared with

the primary tumor. Salle et al. (39) developed an orthotopic

primary PDX model with tumors implanted in the lumbosacral

area. Compared with the clivus, the lumbosacral area was

preferred in order to allow tumor growth and avoid animal

suffering and mortality related to the growth of the tumor. The

success rate of tumor engraftment was significantly increased

using this orthotopic technique, from about 30%–40% to

60%–80%.

Compared with the xenograft model, the tumorigenic

model was more suitable for the investigation and

understanding of tumor development and progression. In the

new century, zebrafish has emerged as a powerful genetic

model of human cancer with the advantages of high genetic

conservation, operable genetic manipulations, and feasibility

for observation (40). Burger et al. reported the first zebrafish

model for chordoma research (41). They built a notochord-

specific expression of HRASV12 in the Gal4/upstream

activating sequence (UAS) system, which was one of the first
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inducible transgenic methods providing a unique opportunity

to induce oncogene expression in a tissue-specific manner in

zebrafish. Although no evidence of HRAS mutations has been

reported in human chordomas, their model firstly observed a

chordoma-like tissue malformation of the notochord with

positive expressions of Brachyury and cytokeratin. A primary

distinction observed between the examined zebrafish

notochord tumors and the human chordoma is the rapid

phenotype onset in the fish model compared with the slow

growth of human cancer. These features facilitated an

application in high-throughput drug screening. With this in

vivo platform, the authors further investigated other potential

drivers of chordoma initiation (42). Notably, their data imply

that Brachyury per se might be insufficient to initiate chordoma

and that the active receptor tyrosine kinase may potently

induce a chordoma phenotype.

Several other genes were examined for their ability to induce

tumor initiation in zebrafish models. The upregulation of the

metastasis-associated gene PRL-3 and the downregulation of the

transforming growth factor-b family member TGFB3 have been

proven to be correlated with chordoma formation (43).

Although there was no direct evidence of the contribution of

FAS/FASL dysregulation to chordoma formation, the

knockdown of this pair of genes in zebrafish strikingly

impaired notochord formation in the zebrafish model,

suggesting their possible involvement in chordoma occurrence

(44). In addition to these genetic manipulated models, an

interesting finding should be noted. Cooper et al. (45)

reported a series of 24 cases of spontaneous primary intestinal

chordomas in zebrafish and nine cases of spontaneous vertebral

chordoma. The former represents a novel tumor type that had

not been previously described in any species.

At present, most chordoma cell lines and several serial

passable PDX models are well documented by the Chordoma

Foundation (https://www.chordomafoundation.org/research/

disease-models/) and are available to researchers. With the

help of these valuable research models, chordoma research has

made great strides and accelerated the development of

comprehensive therapeutic drug discovery.
Leap to the next generation:
Advances in genetic research

The identification of driver mutations and downstream

regulatory abnormalities in malignancies is beneficial to

revealing the intrinsic mechanisms of tumor initiation,

progression, and recurrence and has dramatically changed the

treatment landscape for many tumors. Multiple techniques for

genetic analysis have been applied to karyotype analysis,

comparative genetic hybridization (CGH), high-throughput

microarray, and the NGS of chordoma. Some recent studies
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have applied modern sequencing techniques to chordoma

investigation, including single-cell RNA sequencing (scRNA-

seq), whole-genome bisulfite sequencing (WGBS), transposable

accessible chromatin by high-throughput sequencing (ATAC-

seq), and Hi-C.
Early exploration of cytogenetic changes
in chordoma

Due to restrictions in the investigation techniques, only

limited studies with 18 chordoma cases focusing on

cytogenetic changes were reported before 2000 (46). Few

specific or characteristic chromosomal anomalies have been

determined, except in one study by Butler et al., which

reported the results of cytogenetic analysis of five chordomas

(46). Only random abnormalities in one tumor cell out of 100

cells from Patient No. 5 were identified. However, their study

identified elongation, but not reduction as in other tumors, of

telomere length and an increase of telomerase activity. In the

new century, several studies have demonstrated loss of

heterozygosity for different loci in chordoma. In Klingler’s

cohort of 12 patients with chordoma, microsatellite instability

(MIN) was demonstrated in six patients and loss of

heterozygosity (LOH) for at least one locus in two patients

(47). Several other LOH and comparative genomic hybridization

(CGH) studies demonstrated more chromosome abnormalities

that showed a feature of more loss than gain, including loss of

1p36, 7q33, and 9p21 as an important mechanism for tumor

development (48–50). Furthermore, candidate genes mainly

located in the locus of interest were mapped and identified

using PCR, gene chips, and immunohistochemistry (IHC). At

the same time, researchers firstly attempted to use imatinib

mesylate, a selective tyrosine kinase inhibitor (TKI) of c-KIT and

platelet-derived growth factor receptors, for patients with

chordoma as it was shown to be highly effective in

gastrointestinal stromal tumors (GIST) (51). Although some

benefits in tumor control have been demonstrated in clinical

practice, most of the samples were negative with activating

mutations but overexpression of the receptor tyrosine kinase

(RTK) genes, which can be identified with RT-PCR or IHC (52–

54). Since then, many studies concerning the expression and

functional analyses of RTK and other candidate genes have been

performed with tissue microarray, with the results indicating a

promising pattern for corresponding inhibitors in the treatment

of chordoma (55–59).

High-throughput microarray has further promoted our

understanding of such a rare tumor. The first array-based

study characterizing DNA copy number changes in chordoma

identified copy number alterations in all samples (50). Deletions

were more common than gains, and no high-level amplification

was found. Henderson et al. firstly drew a molecular map of

mesenchymal tumors and identified a gene expression signature
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of chordoma through gene expression microarray (GEM) in a

machine learning model (60). Among which, the T-box

transcription factor (TBXT) Brachyury was first identified,

which was mainly expressed in the developing notochord and

strongly linked the embryonic structure with chordoma. Pillay

et al. identified TBXT amplification in both familial and sporadic

chordomas, finding that it was the rs2305089 polymorphism

that altered the binding ability of TBXT, which is known to be

closely correlated with tumor initiation in individuals of

European ancestry (61). Further mutation studies also

identified other common variants of TBXT with risk of

chordomas, such as rs3816300 in sporadic chordomas and

rs1056048 in familial cases (62). Since then, large numbers of

studies have verified the important roles of Brachyury in the

initiation, progression, and prognosis of chordoma. As the

results have been well collective and compared in several other

reviews (63–65), we will not discuss them herein. However, a

recent randomized, double-blind, placebo-controlled phase II

trial failed to observe advantages of the yeast–Brachyury vaccine

combined with standard-of-care radiotherapy in locally

advanced unresectable chordoma (66). Although the results of

the yeast–Brachyury vaccine are not consistent, the idea of

targeting Brachyury with other immune or targeted methods

for chordoma therapy is still worth further exploration.

Since only a few driver mutations but dramatic functional

gene expression signatures were identified in chordomas,

exploration of the epigenetic changes was conducted (67, 68).

Rinner et al. (69) reviewed 10 chordoma samples and found that

the PI3K pathway played a potential important role in the

development of chordoma. They first provided evidence of the

DNA methylation of tumor suppressor genes in chordoma,

suggesting that they could serve as markers for its early

detection. Another study (70) identified a subset of probes that

were differentially methylated between recurrent and non-

recurrent chordomas. Identification of the DNA methylation

features of chordoma has provided a wealth of information in

establishing useful biomarkers for diagnosis, prognosis

prediction, and disease monitoring, and these biomarkers

could also be potential therapeutic targets for this rare tumor.
NGS techniques provide a deeper
understanding of chordoma

Due to the urgent need to gain more thorough insights into

the molecular biology and genetics of chordoma, ultra-deep

NGS analysis was performed (as listed in Table 1). Fischer et al.

(71) performed the first panel-based NGS study in nine patients

with chordoma for the mutations of 48 cancer genes, but failed

to identify somatic mutations in “hotspots” of genes known to be

involved in cancer development; very low mutation rates of

KDR, KIT, and TP53 were determined. Another panel-based

study of 341 key cancer-associated genes was performed in 23
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chordoma samples (72). The results revealed non-random copy

number losses across the genome and a very low mutation rate,

with an average of 0.5 mutation per sample. However, about 40%

of the mutation events were grouped as chromatin regulatory

genes, including SETD2, PBRM1, ARID1B, and SMARCB1, and

the co-occurrence of alterations in CDKN2A/CDKN2B was fairly

common. These findings hinted that chordoma might belong to

the C class tumors in terms of copy number changes whose

oncogenic signature was a non-random multiple copy number

loss across the genome, and these genomic aberrations

frequently alter chromatin regulatory genes.

Restricted by the limited number of genes investigated in

panel-based studies, a number of studies used whole-exome and

whole-genome sequencing (WES and WGS, respectively), as these

techniques can shed further light into the pathogenesis of and

potential treatment options for chordoma. Jason et al. (74)

combined WES and whole-transcriptome sequencing on 10

clivus chordomas and identified a novel gene fusion of SMAD5–

SASH1 for the first time in the skull base, which can be employed

as a therapeutic and prognostic marker (74). Tarpey et al. (76)

constructed a driver landscape of 104 cases of sporadic chordoma

with 11 WGS, 26 WES, and 67 panel-based sequencing. WGS/

WES studies were used as the discovery cohort and the remaining

studies used as the validation cohort. This study identified somatic

duplications of TBXT, recurrentmutations of PI3K signaling genes,

and driver events in chromatin modeling genes, consistent with the

results of the aforementioned studies. In addition, they also

identified non-random enrichment of truncating mutations in

the lysosomal trafficking regulator (LYST) protein for the first

time and found that the expression of LYST was correlated with

the function of lysosomes, a histological hallmark of

physaliphorous vacuole-packed cells that characterize chordoma.

LYST may work as a cancer gene in chordoma and prove to be an

adjunct diagnostic marker.

The genomic features differed between ethnicities, tumor

locations, and pathological subtypes. As aforementioned, the

rs2305089 polymorphism in TBXT was associated with a sixfold

increase in the risk of developing chordoma in a European

population, but it was not found to be correlated with an

increased risk in East Asians (81). On the other hand, somatic

duplications of TBXT and mutations in PI3K signaling genes are

rare in skull base chordomas, which was different from that

observed in sacral chordoma. In a Chinese patient-based study

of sacral chordomas, Xu et al. (79) identified a new CLDN9 T120A

substitution as a potential oncogene in indicated populations,

which had not been previously reported. Previous analyses have

identified pathological changes in chordomas (12). Compared with

benign notochordal cell tumors, the conventional and

dedifferentiated chordoma subtypes showed an increased

genomic instability (78). In dedifferentiated chordomas,

Brachyury was expressed in the conventional/chondroid

components, but was completely lost in the dedifferentiated

component. Poorly differentiated chordomas are characterized by
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the loss of INI1/SMARCB1 and may also represent a discrete entity

with a more aggressive phenotype, which is more similar to

rhabdoid tumors. However, driver gene alterations are critical in

tumor initiation and progression, but may not be involved in

tumor dedifferentiation and high-grade transformation (82).

WES/WGS in chordoma tissues demonstrate a low-frequency

mutation rate compared with that in other cancer tissues. Apart

from genetic alterations, epigenetic regulators and chromatin

spatial organization are also crucial for gene regulation by

regulating the accessibility of DNA to sequence-specific binding

proteins and bringing distant promoters, enhancers, and other cis-

regulatory regions together (85, 86). Meng et al. (87) performed a

multi-omics analysis with RNA-seq, ATAC-seq, and Hi-C and

found that the bone microenvironment played an important role

in chordoma tumorigenesis. In addition, they identified carbonic

anhydrase II (CA2) as a novel therapeutic target in chordoma.

ScRNA-seq could elucidate the mechanisms underlying

carcinogenesis and the molecular features of cancers. Duan et al.

(84) first delineated the transcriptomic landscape of chordoma

using scRNA-seq. Their results identified six subclusters of

chordoma cells, which exhibited properties of an epithelial-like

extracellular matrix, and stem cells with immunosuppression.

They also identified a strong immunosuppressive effect exerted

by regulatory T cells (Tregs) and M2 macrophages and an

enhanced TGF-b signaling pathway in tumor progression.

Immune therapy is considered as a promising strategy for

tumor control, and several clinical cases have been reported to

respond to immune ICIs. The study of Duan et al. partially

explained the rationale for immune therapy in patients with

chordoma, although in-depth research is still required.

With the development of NGS techniques, the design of

individualized therapy using comprehensive genomic analysis has

been attempted and clinically practiced. Screening for hotspot

mutations in cancer-associated genes prior to a personalized

treatment approach in patients with limited therapeutic options

can provide a rationale for genomics-guided therapy. Liang et al. (88)

reported their experience on the combined use of WES and RNA-

seq in four patients with chordoma and found that the incorporation

of different sequencing techniques could help further clarify which

DNA alterations are expressed or could be used as therapeutic

targets. Another more detailed analysis of WES/WGS-guided

therapy was reported by Stefan et al. (77). The authors observed

that advanced chordomas were characterized with frequently

impaired DNA repair via homologous recombination (HR) and

with mutations of HR-related genes, including BRCA2, NBN, and

CHEK2. Treatment with the poly(ADP-ribose) polymerase (PARP)

inhibitor showed promising clinical prospects for such patients.

However, one case gained olaparib resistance after a 10-month

treatment, when tumor reprogression occurred due to a second

mutation of the p.T910A allele and restored the activity of PARP.

Gene expression-based estimates of immune cell abundance have

the potential to identify patients that may respond to ICI treatment

(89–91). Growing evidence has also shown responses to ICIs in
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tumors deficient in SWI/SNF chromatin remodeling genes (92, 93).

Therefore, poorly differentiated chordoma with a characteristic

SMARCB1 deficit is a potential candidate for ICI treatment.

Williamson et al. (94) performed multi-omics sequencing

including WGS, RNA-seq, and WGBS and successfully identified

a recurrent pediatric poorly differentiated chordoma with features of

single copy losses affecting SMARCB1, hypomethylation of the

TBXT promoter, overexpression of the Brachyury tumor antigen

and CD274 (PD-L1), and CD8+ T-cell, CD79a+ B-cell, and plasma

cell infiltration. All these features hinted of a potential effect of ICIs,

which have been used in clinical practice and with proven

satisfactory outcomes.

Collectively, genetic research on chordoma using multiple

techniques revealed a relatively quiet cancer genome driven by a

limited repertoire of cancer genes, and epigenetic regulations
Frontiers in Oncology 07
may play an important role in tumor initiation and progression.

The combination of multi-omics analyses helps in the

comprehensive understanding of the tumor landscape and

facilitates the design of individualized treatment strategies.
New era: Modern personalized
precision drug treatment

At present, surgery remains the mainstay of treatment for

chordoma. However, complete tumor resection is not always

available; therefore, there is an urgent need to develop new

therapeutic options for this tumor (1, 8, 9). Conventionally,

chordoma is considered resistant to chemotherapy, and only

anecdotal cases have provided limited evidence for the clinical
TABLE 1 Next-generation sequencing (NGS) studies on chordoma.

Reference No. of
patients

Sequencing technique Tumor sites Primary/
recurrent

Subtypes

Pillary et al.
(59)

20
(European
ancestry)

WES NA NA NA

Fischer et al.
(71)

9
(Caucasians)

NGS (the TruSeq Amplicon Cancer Panel) 3 skull base, 4 spine, and 2
sacrum/coccyx

Primary Conventional (7 classic and 2
chondroid)

Wang et al.
(72)

24 NGS (MSK-IMPACT) 3 spine, 18 sacrum, and 3 pelvic 21 primary and 3
recurrent

Conventional

Bell et al.
(73)

14 RNA-seq analysis Skull base NA 13 conventional (including 3
chondroid) and 1 dedifferentiated

Sa et al. (74) 10 WES in 8 patients and RNA-seq analysis
in 5 patients

Skull base 6 primary and 4
recurrent

Conventional (5 classic and 5
chondroid)

Bell et al.
(75)

12 RNA-seq analysis in 12 patients Spine Primary Conventional

Tarpey et al.
(76)

104 WGS in 11 patients, WES in 26 patients,
and NGS (targeted sequencing) in 67
patients

19 skull base, 25 spine, 50 sacrum/
coccyx, 3 extra axial, and 7
unknown

NA 89 conventional, 5 dedifferentiated, 4
poorly differentiated, and 6
unknowns

Gröschel
et al. (77)

11 WES in 9 patients and WGS in 2 patients 3 skull base, 5 spine, and 3 sacurm NA NA

Hung et al.
(12)

4 WES in 4 patients NA 4 primary and 1
Paired metastatic

Dedifferentiated

Zhu et al.
(78)

11 NGS (MSK-IMPACT) NA NA NA

Bai et al.
(79)

80 (Chinese
patients)

WGS Skull base 80 primary and
11 paired
recurrences

78 conventional (including 14
chondroid) and 2 dedifferentiated

Mattox et al.
(80)

32 WES 14 spine, 15 sacrum, 2 pelvic, and
1 chest

31 primary and 1
metastatic

NA

Yepes et al.
(81)

138
(European
ancestry)

WES 55.7% skull base, 23% spinal, and
20.3% sacral

NA NA

Wen et al.
(82)

3 NGS (MSK-IMPACT) Extra-axial Primary 1 conventional and 2 poorly
differentiated

Xu et al.
(83)

8 (Chinese
patients)

WES Sacrum 4 primary and 4
recurrent

NA

Duan et al.
(84)

6 (Chinese
patients)

scRNA-seq 3 spine, 1 sacrum, and 2 skull base NA NA
WES, whole-exome sequencing; NGS, next-generation sequencing; RNA-seq, RNA sequencing; WGS, whole-genome sequencing; scRNA-seq, single-cell RNA sequencing; NA, not available.
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employment of cytotoxic agents (6, 95). Recent studies have

reported responses to agents such as anthracyclines, alkylating

agents, cisplatin, and etoposide in the ultra-rare subtype of

dedifferentiated chordoma (96–98). The combined use of

cytotoxic drugs as sensitizers for radiotherapy or targeted

therapy has also garnered attention (99, 100). Through

sequencing efforts in chordoma, targeted therapies have shown

promising prospects in tumor management. Nevertheless,

unclear indications for individualized application of the

limited available drugs have hindered comprehensive

treatment of patients with chordoma. Drug discovery for this

rare tumor has attracted significant interest from investigators

with approaches such as drug repositioning, computational-

assisted high-throughput drug screening, and PDO-based

drug screening.
Multidimensional drug discovery
strategies for chordoma

Chordoma is a type of tumor with a low-frequency mutation

rate, and the number of suitable medications identified by

sequencing is limited. Preclinical studies have identified several

targeted medications for the systemic management of

chordoma, and indicated clinical trials have provided the

efficacy and safety data (101). However, no medications have

been approved so far as first-line treatments for chordoma. The

main obstacles for the identification of novel therapeutic avenues

include the extremely low incidence of morbidity and the lack of

appropriate models for preclinical research. Conventional drug

discovery pipeline is long-lasting and is not cost-effective for rare

diseases such as chordoma, for which new strategies are

required (102).

Given the fact that chordoma has not been sufficiently

covered by target-based approaches and that it is difficult for

single-agent therapies to provide lasting effects, the combined

use of phenotypic screening drugs may help in the development

of novel therapeutic strategies. Anderson et al. examined the

combination of synergistic drugs in chordoma with a machine

learning method and demonstrated a synergistic effect of

palbociclib and AZD2014 with afatinib for chordoma cells in

vitro (103). Scheipl et al. (104) performed drug screening of 133

clinically approved anticancer drugs as single agents and in

combination with EGFR inhibitors (EGFRis; e.g., afatinib and

erlotinib) (100) and demonstrated that the combination of

crizotinib, panobinostat, and doxorubicin with EGFRis showed

a promising prospect of application. The histone deacetylase

(HDAC) inhibitor panobinostat exerted a moderate synergistic

effect when used in combination with afatinib. Although the

study has not shown groundbreaking success of these treatments

as monotherapeutics in solid tumors, including chordoma (104),

there appears to be a role for this class in combination therapy

and multi-target inhibition (104, 105).
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The combined administration of different drugs has shown

advantages of prolonged efficacy, avoidance or delayed

occurrence of drug resistance, and synergistic effects with

increased clinical outcomes. Combination screening as a

translational approach will pave the way for improved

personalized drug therapies for orphan diseases like chordoma.

Drug repositioning/repurposing has become an important

approach to identifying new uses for already-approved regimens

beyond original indications (106, 107). Previously, drug

repositioning/repurposing has often been initiated by serendipitous

observation of unexpected effects (108, 109). Now, however, it has

gradually shifted to a rational, computer-assisted method.

Computational techniques have facilitated the drug repositioning

process, which is considered time-saving and cost-effective. It offers

an opportunity for secondary analysis of vetted therapies with

optimized pharmacokinetics and acceptable toxicity profiles for

candidates with rare diseases in clinical trials (110). A deep

learning strategy featured with combination and comprehensive

analyses of gene expression features, signaling pathways, clinical

prognoses, and pharmacochemical characteristics has promoted the

implementation of precision medicine and our understanding and

management of rare diseases including chordoma (102). Integrative

mining approaches include ksRepo processing, Swanson’s ABC

approach, Chemotext, and ROBOKOP (Reasoning Over

Biomedical Objects linked Knowledge-Oriented Pathways) (111–

114). Traylor et al. (115) compared the differentially expressed genes

(DEGs) of chordoma tissue samples with pharmacogenomic

interactions in the Comparative Toxicogenomics Database using a

drug repositioning platform named ksRepo. Alves et al. (102)

reported a case of knowledge-based approach for drug

repurposing with chordoma by building a connection between

metformin and chordoma using the ROBOKOP platform. Their

results suggested a potential treatment value by targeting

osteoblast differentiation.
Personalized drug therapies
for chordoma

As a typically fatal and extremely rare disease with complex

molecular mechanisms, chordoma is suitable for personalized

drug therapies. Individualized identification and testing of

suitable agents can provide optimal application in indicated

patients. Sequencing-based computational-assisted identification

of molecular targeted therapies are generally accepted by patients

and clinicians (8). Medications such as TKIs, CDK4/6 inhibitors,

PARP inhibitors, and EZH2 inhibitors have been widely used for

patients with corresponding molecular characteristics (116).

However, the response of patients to medications as identified

by sequencing may not be as expected, and considering the

adverse effects of medications, personalized in vivo or in vitro

screening of the indicated drugs with PDC, PDX, or PDO models

is considered extremely valuable.
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There are several obstacles that may hinder the process of

personalized drug screening with PDC and PDX models. Firstly,

the establishment and the passages of PDC or PDX models

are time-consuming and have low success rates. Patients need to

wait for about 1–3 months after subjecting the tumor tissue

to drug screening, during which the disease may have already

progressed (32, 36). Secondly, PDCmodels are highly dependent

on sampling and often fail to recapitulate the heterogeneity of

the tumor microstructures and microenvironments, resulting in

changes to the drug response (117). The PDX model could

provide more simultaneous features as parental tumors, but is

more expensive and is not suitable for high-throughput

screening (37, 39).

As aforementioned, Shihabi et al. (32) reported their

experience in a proof-of-concept study of personalized drug

discovery with PDO models. They successfully established a

high-throughput drug screening platform of personalized

organoids with the following advantages compared with the

previous platforms: the PDOs could be established from biopsies

or tumor resections and restored most features of primary

tumors, which is superior to PDCs and similar to PDXs, but is

more cost-effective; moreover, it is more time-saving, as the

results can be available within a week from surgery (118, 119).

Based on such a high-throughput platform, the authors also

established a comprehensive analysis algorithm. A dot map was

then generated and subjected to clinical consideration based on

the combination analysis of BioAssay from the PubChem

database and the WikiPathways database.

Shihabi’s research is a typical example that illustrates the

considerable value of new techniques in facilitating our

understanding and management of chordoma. Successful

establishment of such a screening platform profited from the

advantages of the models, sequences, and bioinformatics analysis

techniques, finally promoting personalized precision clinical

management. Research tools and modern NGS techniques

served as the two “wheels” of the “chordoma motorbike.”

Comprehensive use of these two “wheels” will strikingly

accelerate our understanding and management of chordoma.

Efforts are still needed in the future to benefit chordoma patients

by building more precise disease models, determining the intrinsic
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mechanisms in tumor initiation and progression, and developing

optimal cutting-edge technologies for clinical application.
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