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Aparotidneoplasm is anuncommoncondition thatonly accounts for less than3%

of all head and neck cancers, and they make up less than 0.3% of all new cancers

diagnosedannually.Due to their nonspecific imaging featuresandheterogeneous

nature, accurate preoperative diagnosis remains a challenge. Automatic parotid

tumor segmentation may help physicians evaluate these tumors. Two hundred

eighty-five patients diagnosed with benign or malignant parotid tumors were

enrolled in this study. Parotid and tumor tissueswere segmented by 3 radiologists

on T1-weighted (T1w), T2-weighted (T2w) and T1-weighted contrast-enhanced

(T1wC) MR images. These images were randomly divided into two datasets,

including a training dataset (90%) and an validation dataset (10%). A 10-fold

cross-validation was performed to assess the performance. An attention base

U-net for parotid tumor autosegmentation was created on the MRI T1w, T2 and

T1wC images. The resultswereevaluated in a separate dataset, and themeanDice

similarity coefficient (DICE) for bothparotidswas0.88. ThemeanDICE for left and

right tumors was 0.85 and 0.86, respectively. These results indicate that the

performance of this model corresponds with the radiologist’s manual

segmentation. In conclusion, an attention base U-net for parotid tumor

autosegmentation may assist physicians to evaluate parotid gland tumors.

KEYWORDS
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Introduction

Parotid tumors are uncommon neoplasms, accounting for less than 3% of all head and

neck cancers (1). Unfortunately, a lack of early detectionmay lead to tumor progression, and

nearly 20% of untreated polymorphic adenomas will become malignant tumors (2). In

addition, 80% of salivary gland tumors occur in the parotid gland, of which 21% to 64% are
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malignant (3). Due to the absence of specific imaging findings

(parotid tumormayhavedifferent appearance inMR images), their

heterogeneous clinical nature, accurate diagnosis before surgery

remains a challenge (4).

Similar to lung nodule detection, automatic parotid tumor

segmentation may facilitate physicians evaluating these parotid

tumors. It can be used to inspect the MRI image and highlight

the tumor region. At the same time, with the progress of

quantitative image analysis technology, we can construct a

quantitative imaging model of parotid gland tumors through

accurate and consistent automatic segmentation of tumors,

which can be used to predict the pathological type and

prognosis of the patients (5).

In this study, we developed and assessed an autosegmentation

model for parotid tumors that can be used to improve the imaging

evaluation of these conditions. This proposed model was also

compared to other model architectures. Since we combined three

MRI sequences, the value of each MRI sequence was investigated.

Methods

The study workflow is presented in Figure 1. Patient parotid

MR images were exported from PACS. Parotid and tumor tissues

were segmented by 3 radiologists based onT1-weighted (T1w), T2-

weighted (T2w) and T1-weighted contrast-enhanced (T1wC) MR

images. A 10-fold cross-validation was performed to assess the

segmentation performance. These images were randomly divided

into two datasets, including a training dataset (90%) and an

validation dataset (10%). The autosegmentation model was

trained on the training dataset, and its performance was then

tested on the validation dataset. This retrospective study was

approved by the Institutional Review Board of Fudan University

Shanghai Cancer Center and Taizhou Municipal Hospital, and all

methods were performed in accordance with the guidelines and

regulations of this ethics board. The Hospital Ethics Committee

agreed to the informed consent waiver.

Patients and MRI image acquisition

Two hundred eighty-five patients diagnosed with benign or

malignant parotid tumors from two institutions were enrolled in

this study. Among these patients, 185 were male and 100 were

female; the mean age of the patients was 52.4 years (range, 21–93

years). These patients were treated from 2014 to 2018. All

patients received surgical resection and had a pathology

report. The patient characteristics are shown in Table 1. All

patients received a parotid site MRI scan before treatment. Three

MR scanners were used to acquire these images, and details of

the image parameters are shown in Table 2. The scan parameters

were based on our parotid image protocol and were adjusted

during scanning based on image quality by the MRI operator.
Abbreviations: DICE, Dice similarity coefficient.
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Tumor and parotid manual delineation

Parotid tumors were distinguished on axial thin-Section

T1w, T2w and T1wC MR images and segmented by three

experienced radiologists (>5 years of experience) in MIM

(version 6.8.10, Cleveland, US). These three series were

registered and fused before segmentation. The radiologists

were required to distinguish the pathology type of the parotid

tumor before delineation. Each radiologist segmented

approximately 90 patients. To make the delineation between

different radiologists consistent, all delineations were reviewed

by one senior radiologist (more than 10 years’ experience). To

improve the performance of the tumor delineation, the parotids

were also segmented.

The attention U-net

A 2D U-Net with an attention module was used in this task.

This network was inspired by the application of an attention

mechanism to medical image deep learning-based segmentation

(6–8). The basic structure of the model is shown in Figure 2. The

input (512 x 512 x 3) was obtained from MR images. The

channels were combined from the T1w, T2w and T1wC

sequences. The output (512 x 512 x 4) contained 4 channels

for 4 ROIs, including the left parotid, right parotid, left tumor

and right tumor. The U-net was constituted by encoder and

decoder parts. The encoder part was constituted by 12 convolution

blocks and 4max pooling blocks. The convolution block had a 3x3

convolution layer, batch normalization layer and rectified linear

unit (ReLU) layer. The maximum pooling layer was used to

downsample the features. Similarly, the decoder part was

constituted by many convolution blocks and upsampling blocks.

The convolutionblockwas the sameas the encoderpart, usinga3x3

convolution layer, batch normalization layer and rectified linear

unit (ReLU) layer. The skip connection was used to connect the

encoder and decoder parts with the same feature map size. An

attention gate was placed in these skip connections to improve the

segmentation results. Because the slices thickness (4~7.2 mm) was

larger than the pixel size (0.4~1mm), MR images were not be

resampled to isotropy resolution. And

The tumor and parotid tissues were relatively small compared

to the entire image size. The attention mechanism was used to

create amodel focusedon local regions that extractedmore relevant

features from the featuremaps. Amaskwith pixel values between 0

and 1 was generated by a sigmoid activation function. By

multiplying the mask by feature maps, the region of interest

remainedunchanged, and the restof the featuremapwas set tozero.

Model training

Before input into the model, the gray value of the MR images

was centralized to0.5 and scaled to [0, 1].No spatial resamplingwas

performed in the preprocessing stage. We used the original pixels,
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which means that different patients may have different pixel

spacings. The loss used in this phase was 1- DICE index. The

wholemodelwas trained for 200epochswitha learning rateof 1e-4,

and the optimizer was RMSprop. The training procedure took

approximately 20 h to complete on one 2080 ti GPU (Nvidia, Santa

Clara, CA). The Python deep learning library pytoch (version 1.5)

was applied to establish this autosegmentation system.
Next, a data augmentation method was performed. Two

argumentation processes were implemented: gray level

disturbance and shape disturbance. For gray disturbance, the

gray value of the MR image was multiplied by a random number

[0.9~1.1], and a random number [-0.1~0.1] was added. This

random number was added to the normalized image. For shape

disturbance, MR images and binary contour images were

deformed using affine transformation. The augmentation

method was the same as that in our previous study (9).
FIGURE 1

The whole study workflow. The parotid MR images were randomly divided into two datasets, including training and evaluation. Then, the
performance was assessed on the validation dataset. Tenfold cross-validation was used to obtain a reliable result.
TABLE 1 Patient characteristics.

Characteristics

Age 52.4 (21~93) years

Sex Male 185 (65%)

Female 100 (35%)

Pathology Type Warthin tumor 62 (21.5%)

Pleomorphic adenoma 90 (31.4%)

Adenocarcinoma 80 (28.0%)

Basal cell adenoma 6 (2.0%)

Lymphoma 30 (10.1%)

Others 20 (7.0%)

Site Left 127 (44.6%)

Right 140 (49.1%)

Both 18 (6.3%)
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Meanwhile, to increase the training samples, we mirrored images

(and adjusted for the corresponding left and right labels) with a

probability of 0.5.

To investigate the impact of eachMRI sequence, 6models with

different image sequence combinationswere trained and evaluated,

includingT1wonly, T2wonly, T1wConly, T1w+T2w,T1w+T1wC

and T2w+T1wC.

Comparison to other models

Three other models, including DeepLab Version 3 (10),

attention U-Net (11) and PSPNet (12), were trained on the same

dataset. Somemodifications were performed, such as changing the

output channels and changing the softmax function to a sigmoid
Frontiers in Oncology 04
function. The same training hyperparameters were used, and all

models converged after 200 epoch iterations.

Performance evaluation

Four indices were calculated for performance evaluation,

including the Dice similarity coefficient (DICE), the Jaccard

similarity coefficient (JACCARD), the 95% percentile of

Hausdorff distance (HD95) and the average Hausdorff distance

(AHD). The DICE and JACCARD are computed by the following:

DICE  =  2 A ∩ Bj j= Aj j + Bj jð Þ (1)

JACCARD  =   A ∩ Bj jð Þ=( A ∪ Bj j) (2)
TABLE 2 MR scan parameters.

Signa HDxt (GE) Verio (SIEMENS) Skyra (SIEMENS)

Patients 218 (76.5%) 34 (11.9%) 33 (11.6%)

T1-weighted TR (Repetition Time) 280~540 ms 450~620 ms 250~1560 ms

TE (Echo Time) 8.5~10.4 ms 12~16 ms 2.5~12 ms

T2-weighted TR (Repetition Time) 2740~3600 ms 2500~5240 ms 2500~5790 ms

TE (Echo Time) 84~88 ms 78~91 ms 78~83 ms

T1-weighted contrast enhanced TR (Repetition Time) 175~280 ms 4.1~6.0 ms 3.7~6.0 ms

TE (Echo Time) 1.8~3.4 ms 1.5~2.5 ms 1.4~2.4 ms

Contrast Agent Gadopentetic acid Gadopentetic acid Gadopentetic acid

Slice Thickness 5~7 mm 4.5~7.2 mm 4.0~6.0 mm

Pixel size 0.4~0.6 mm 0.65~0.97 mm 0.4~0.85 mm
FIGURE 2

The structure of the attention-based U-Net. The input of the network is three MR images, and the output of the network is the four segmentations.
The attention gate structure is shown in the left corner.
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where A represents the volume of the manual segmentation, B

represents the volume of the autosegmentation, | · | denotes the

volume of truth or predicted ROIs, |A∩B| indicates the volume

sharedbyAandBand |A∪B| represents the total volumeofAandB.

Larger DICE and JACCARD values indicate more accurate results.

Results

Segmentation results

A 10-fold cross-validation was used in this study. A total of

256 (90%) patients were used for model training, and 29 (10%)

patients were used for model evaluation and performance

assessment. Training was converged after 200 epoch iterations.

The results of the validation dataset are shown in Figure 3. It can

be observed that the performance of the validation dataset has a

relatively large variation.

For the results of the cross-validation, the mean DICE for

both parotids was 0.88, and the mean DICE for left and right

tumors was 0.85 and 0.86, respectively. The mean JACCARD for

left and right parotids was 0.79. The mean JACCARD for left
Frontiers in Oncology 05
and right tumors was 0.78 and 0.80, respectively. The 95% ranges

for left and right parotid DICE were 0.77-0.94 and 0.75-0.95,

respectively. The 95% ranges for left and right tumor DICE were

0.37-1.00 and 0.30-1.00, respectively. Detailed values of these

results are provided in Supplementary Table S1. Figure 4

demonstrates a result on a left parotid tumor patient.
Comparison to other models

The performance of three other models, including DeepLab

Version 3 (10), attention U-Net (11) and PSPNet (12), is

presented in Table 3. Since all of the models were trained on

the same training dataset, this comparison provides insight into

the performance of the proposed model.
The impact of MRI sequences

The performance of models with different MRI sequences is

presented in Table 4. For parotid gland segmentation, one MRI
A B

DC

FIGURE 3

Results of the validation dataset. The horizontal lines indicate themedian values. (A) The DICE value for the training and validation dataset. (B) JACCARD value
for the training and validation datasets. (C) The HD95 value for the training and validation datasets. (D) The AHD value for the training and validation datasets.
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sequence can achieve segmentation performance similar to that

of a combination of three MRI sequences. However, for tumor

segmentation, combining three image sequences can provide the

best performance. Among the three MRI sequences, T1w

performed better than the other two.
Discussion

In this study, we implemented an attention base U-net for

parotid tumor autosegmentation on MRI T1w, T2w and T1wC

images. For a rare tumor, the entire dataset was relatively large,

including 285 patients, and multiple MRI scanners were used for

image acquisition. All whole imageswere acquired over the course of

4 years with many adjustments to the scan parameters. We believe

these images are representativeofmostparotid tumorMRIscenarios.

An attention mechanism was applied to optimize the

extracted spatial information of the feature maps in our study

(13). Here, we used a mask with pixel values between 0 and 1

that was generated by transformation, and then feature maps

were multiplied by the mask. The region of interest remained
Frontiers in Oncology 06
unchanged, and the rest of the feature map was set to zero

because the regions of the parotid and tumor tissues were

relatively small compared to the other organs. This will

facilitate model training to focus on critical regions and

provide improved results. Compared to the original attention

U-Net, our proposed model extracts the gate feature from the

bottom of the network. This architecture may help the network

focus consistently on only a small region. For hyper-parameters

tuning, the major parameters were learning rate. We have use 3

different learn rate (1e-2, 1e-3 and 1e-4), the results showed that

1e-4 can provide the stable results (Figure S1).

There are some differences in the difficulty of organs and tumors

delineating.Organ delineation is a relatively simple task. Compare to

other’s study, our research on the performance of parotid gland

segmentation is similar (DICE = 0.88) (14, 15). Few studies have

reported using MR imaging for parotid gland autosegmentation.

Kieselmann et al. performed atlas-based autosegmentation for

parotids (14). The DICE values for Kieselmann’s study were 0.83

and 0.84 for the left and right parotid, respectively. Nuo et al. used

deep learning technology on a low-field MR segment of the parotid

gland and found that the best performance was 0.85 (15). Compared
FIGURE 4

An example of the results. a1, b1 and c1 represent one slice of the MR images; a2, b2 and c2 represent the results of autosegmentation; a3, b3
and c3 represent the results of manual segmentation; a4, b4 and c4 show the comparison of the tumor segmentation.
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TABLE 3 The comparison with other models.

Model Right parotid Left parotid Right tumor Left tumor

DICE 95% CI DICE 95% CI DICE 95% CI DICE 95% CI

DeepLab V3 0.87 [0.65-0.98] 0.85 [0.63-0.95] 0.77 [0.51-0.95] 0.83 [0.45-0.93]

Attention U-Net 0.88 [0.73-0.96] 0.86 [0.71-0.94] 0.84 [0.35-1.00] 0.81 [0.45-1.00]

PSPNet 0.87 [0.72-0.90] 0.85 [0.78-0.89] 0.78 [0.25-1.00] 0.85 [0.38-1.00]

Proposed Model 0.88 [0.75-0.95] 0.88 [0.77-0.94] 0.85 [0.30-1.00] 0.86 [0.37-1.00]
Frontiers in Oncology
 07
 fron
CI, confidence interval.
TABLE 4 The comparison between different MRI sequences.

MRI Sequences Right parotid Left parotid Right tumor Left tumor

DICE 95% CI DICE 95% CI DICE 95% CI DICE 95% CI

T1w 0.88 [0.74-0.95] 0.86 [0.74-0.92] 0.82 [0.30-1.00] 0.81 [0.37-1.00]

T1wC 0.84 [0.73-0.92] 0.82 [0.69-0.90] 0.71 [0.14-1.00] 0.73 [0.12-1.00]

T2w 0.88 [0.74-0.95] 0.88 [0.72-0.93] 0.81 [0.30-1.00] 0.79 [0.31-1.00]

T1w+T1wC 0.88 [0.75-0.94] 0.85 [0.75-0.92] 0.78 [0.30-1.00] 0.84 [0.53-1.00]

T1w+T2w 0.88 [0.74-0.95] 0.87 [0.75-0.93] 0.84 [0.30-1.00] 0.83 [0.43-0.94]

T1wC+T2w 0.88 [0.75-0.93] 0.85 [0.76-0.94] 0.75 [0.20-1.00] 0.78 [0.30-0.95]

T1w+T1wC+T2w
Proposed

0.88 [0.75-0.95] 0.88 [0.77-0.94] 0.85 [0.30-1.00] 0.86 [0.37-1.00]
CI, confidence interval.
FIGURE 5

An outlier example. The yellow and red lines represent the right and left parotid. The pink and cyan colored filling represents the right and left tumor.
a1, b1 and c1 represent one slice of MR images; a2, b2 and c2 represent original manual segmentation. The right tumor was not delineated correctly;
a3, b3 and c3 represent the results of autosegmentation; a4, b4 and c4 represent the corrected segmentation by manual delineation by physicians.
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with these studies, our data were delineated by radiologists with the

same protocol on both the training and validation data. The data

consistency was relatively good.

Parotid tumor delineation is a relatively difficult task. The

main problem is the lack of training samples and the lack of

consistent delineation standards (16). Parotid tumor delineation

is challenging in medical image segmentation due to the

infrequency of this disease, which physician may not have

enough experience to precisely delineate the tumor. Even after

carefully reviewed the manual segmentation, there still exist

some uncertainty in the manual delineation. Figure 5 shows a

patient with a DICE of 0.127 for a right tumor. After carefully

checking the data and reviewing this patient’s history, we found

that the delineation in training dataset only segmented part of

the tumor, while this patient exhibited a bilateral diffuse MALT

(mucosa-associated lymphoid tissue, mucosa-associated

lymphoid tissue) lesion. Given this, our model correctly

marked the entire tumor, and in this case, the tumor

comprised nearly the entire parotid.

There is an overfitting between training and validation. We

believe this degree of overfitting is acceptable. While the

deviation of performance between different patients still large.

For example, the 95% CI of DICE was [0.30-1.00] for of right

tumor. This phenomenon indicates that training sample may too

small to cover different types of parotid tumors. And the training

dataset also may have some uncertainty in delineation.

For the clinical application, because the parotid cancer is a

rare cancer, physicians may not have enough experience to

assess tumor-infiltrating area. Tumor autosegmentaion may

help physicians to do this. Further researches may require to

demonstrate the benefit of this model.

There are some limitations to this study. First, we did not

validate our model on an external dataset, which might be

valuable for providing reliability information. However,

because there were 3 MR scanners were used to acquire these

images, and the parameters of image protocol were changed

during 4 years, using cross validation can precisely estimate the

model performance. Second, we combined three images, T1w,

T2w and T1wC. For routine diagnostic purposes, some of these

images may not be acquired, and a model accounting for missing

data may need to be developed in the future.
Conclusion

An attention base U-net for parotid tumor autosegmentation

may assist physicians to evaluate parotid gland tumors.
Frontiers in Oncology 08
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