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Purpose: We aimed to develop a combined predicting model for benign

esophageal stenosis (BES) after simultaneous integrated boost (SIB) with

concurrent chemotherapy in patients with esophageal squamous cell

carcinoma (ESCC).

Methods: This study included 65 patients with EC who underwent SIB with

chemotherapy. Esophageal stenosis was evaluated using esophagograms and

the severity of eating disorders. Risk factors were investigated using univariate

and multivariate analyses. Radiomics features were extracted based on

contrast-enhanced CT (CE-CT) before treatment. The least absolute

shrinkage and selection operator (LASSO) regression analysis was used for

feature selection and radiomics signature construction. The model’s

performance was evaluated using Harrell’s concordance index and receiver

operating characteristic curves.

Results: The patients were stratified into low- and high-risk groups according

to BES after SIB. The area under the curves of the clinical model, Rad-score,

and the combined model were 0.751, 0.820 and 0.864, respectively. In the

validation cohort, the AUCs of these threemodels were 0.854, 0.883 and 0.917,

respectively. The Hosmer-Lemeshow test showed that there was no deviation

from model fitting for the training cohort (p=0.451) and validation cohort

(p=0.481). The C-indexes of the nomogram were 0.864 and 0.958 for the

training and validation cohort, respectively. The model combined with Rad-

score and clinical factors achieved favorable prediction ability.
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Conclusion: Definitive chemoradiotherapy could alleviate tumor-inducing

esophageal stenosis but result in benign stenosis. We constructed and tested

a combined predicting model for benign esophageal stenosis after SIB. The

nomogram incorporating both radiomics signature and clinical prognostic

factors showed favorable predictive accuracy for BES in ESCC patients who

received SIB with chemotherapy.

Trial registration number and date of registration: Registered in www.

Clinicaltrial.gov, ID: NCT01670409, August 12, 2012
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Introduction

Esophageal cancer (EC) is a common gastrointestinal

malignancy, with squamous cell carcinoma (ESCC) being the

predominant type. It has a high incidence in Eastern and Central

Asia (1, 2). Patients with locally advanced disease, particularly

those with unresectable tumors have an unsatisfactory

prognosis, on account of a less than 30% 5-year survival rate

(3). For locally advanced EC patients who reject or cannot

tolerate surgery, concurrent chemoradiotherapy has been a

standard recommendation due to higher long-term survival

rates and insignificant differences in late toxicity compared to

single radiotherapy (4).

Recently, a clinical approach known as simultaneous

integrated boost (SIB) that delivers a higher dose fractionation

to the gross tumor volume while delivering a lower dose

fractionation to the clinical target volume has been approved

as feasible with acceptable toxicities (5–7). We also explored this

therapeutic mode for esophageal squamous cell carcinoma

(ESCC) in a phase II clinical trial. Preliminary results

demonstrated that tumor control and overall survival

improved when compared with historical data (8). The long-

term outcome has been reported in European Society for

Therapeutic Radiology and Oncology (ESTRO), and the phase

III clinical trial was currently being conducted. Although the

tolerability of such treatment regimens was acceptable in these

studies, their treatment-related late toxicities were not well

established, particularly in the case of benign esophageal

stenosis (BES). BES arises from various etiologies including

peptic, radiation, and caustic injury. It differs from malignant

esophageal stenosis due to tumor mass and can impair the

patient’s quality of life and lead to serious complications like

weight loss, malnutrition, and aspiration (9). The late toxicities

of esophageal radiotherapy were predominantly manifested as

benign stenosis and esophageal dysmotility (10, 11). Previous

studies have shown that esophageal stenosis after conventional
02
fractional radiotherapy of EC was correlated with the extent of

the circumference involved (ECI), T stage, the longitudinal

length of the tumor (LLT), and the wall thickness of the

affected esophagus (12–14). Whether these factors continue to

be related to BES after SIB has not been verified.

Radiomics, which extracted high-dimensional quantitative

features from radiographic images to provides additional

information on the heterogeneity and phenotype of tumor

aggressiveness (15–17). It can be used for disease detection,

cancer diagnosis, and treatment outcome prediction (18–23).

Previous radiomics studies on EC have mainly focused on

predicting tumor differentiation, staging, lymph node

metastasis, and survival outcomes (24–27). To our knowledge,

there has been no radiomics-based studies on toxicity prediction

for high-dose radiotherapy in patients with ESCC.

Hence, this study sought to identify both clinical and

radiomics features correlated with BES after SIB in patients

with ESCC and develop a nomogram for prediction.
Methods and materials

Patients

From August 2012 to January 2018, we investigated 107

patients with ESCC who received SIB with concurrent

chemotherapy from a single-arm, prospective phase II clinical

trial called “simultaneous modulated accelerated radiotherapy

combined with chemotherapy for esophageal cancer” (clinical

trial: NCT01670409) at the Cancer Hospital of Shantou

University Medical College. The trial protocol has previously

been published (8). A prospective phase III clinical trial called

“simultaneous modulated accelerated radiotherapy combined

with chemotherapy vs concurrent chemoradiotherapy for

esophageal cancer” is currently enrolling patients. Inclusion

criteria: (a)Measurable lesions on imaging; (b)No obvious
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esophageal mass or lymph node enlargement compressing the

esophagus on CT imaging after treatment; (c)No recurrence in

the tumor area during follow-up ≥ 6 months. Exclusion criteria:

(a)Control failure of the tumor area during or after treatment;

(b)Failure to complete radiotherapy; (c)Surgery after complete

radiotherapy. As shown in Figure 1, the final study enrolled 65

patients. These patients were divided into a training group (n=

43) and a validation group (n= 22) in a ratio of 2:1.
Pre-treatment evaluation

The extent of the disease was evaluated by imaging,

serological examination, and endoscopic biopsy. The clinical

stage was defined according to the American Joint Cancer

Committee (AJCC) staging system 6th (28). LLT and ECI were

evaluated by barium esophagography, endoscopy and CE-CT

images (CT scanner: 16-row Spiral CT of Bright Speed Series of

GE Medical Systems, USA). CT scanning parameters were

setting as follows: Tube voltage,120KpV; Rotation time, 0.75

seconds; Pitch, 1.375; Matrix, 512×512; Field of visual, 360

mm×360 mm. The wall thickness was defined by measuring

the thickest portion of the tumor. The extent of circumference

involvement was demarcated as follows: (a)Level 1, ≤1/2 of

circumference involvement; (b)Level 2, ≥1/2 of circumference
Frontiers in Oncology 03
involvement but less than whole circumference involvement; (c)

Level 3, whole circumference involvement. Target area

delineation and radiotherapy plans were determined by CT

images analyzed in the Eclipse planning system.
Treatment

All patients were treated with SIB in conjunction with

chemotherapy. A higher-than-standard dose of 66 Gy/30 F

was delivered to the gross tumor volume, and a lower dose of

54 Gy/30 F was delivered to the sub-clinical tumor volume.

Chemotherapy was based on cisplatin and 5-fluorouracil

(5-FU) for four cycles: two cycles of concurrent chemotherapy,

and two cyc l e s o f ad juvant chemotherapy , a f t e r

completing radiotherapy.
Follow up

For the first 2 years after treatment, patients were assessed

every 3 months and then twice a year. An evaluation of patients’

history, physical examination, serological test, chest X-ray with

barium esophagography or CE-CT scan, and abdominal

ultrasound were performed.
FIGURE 1

The workflow of Inclusion and Exclusion.
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Outcome indicators

Esophagograms, which were performed prior to, during,

after, and during follow-up examination, were used to measure

the degree of esophageal stenosis. By using a barium

esophagogram, we measured the widest part (a in Figure 2A)

of the oral side lumen diameter and the narrowest part (b in

Figure 2A) of the primary site. The stenotic ratio (c; expressed as

a percentage) was then determined as c = (a-b)/a×100% (12–14).

The maximum value of the stenotic ratios in follow-up review at

all points in time was defined as the degree of post-

treatment BES.

In the follow up review, the severity of eating disorders was

recorded and categorized according to the Radiation Therapy

Oncology Group (RTOG) late radiation injury score: (a)Grade 0,

none; (b)Grade 1, slightly difficulty in swallowing solids; (c)

Grade 2, inability to swallow solid food normally, swallowing

semi-solid food; (d)Grade3, ability to swallow only liquids; (e)

Grade 4, necrosis or perforation fistula (29).

We integrated the severity of eating disorders Grade 0–1 into

the normal diet group and Grade≥2 into the non-normal diet

group, then combined the stenotic ratio with the diet grouping to

plot the ROC curve. The AUC was calculated to quantify the

accuracy of the stenotic ratio in assessing the degree of

esophageal stenosis. The optimal cut-off value of the stenotic

ratio was determined according to the Youden index. For

univariate analysis, a chi-square test, t-test, and rank sum test

were performed to explore the correlation between stenotic ratio
Frontiers in Oncology 04
and clinical factors. For multivariate analysis, binary logistic

regression analysis and a linear regression model were used.
CE-CT image acquisition and
radiomics extraction

All patients underwent pre-treatment CE-CT scans (Philips

Brilliance CT Big Bore Oncology Configuration, Cleveland, OH,

USA). The CT voxel size was 1.0 × 1.0 × 3.0 mm3. The CT

images were transmitted to the radiation therapy planning

system (Eclipse Planning System version 10.0) via the DICOM

3.0 port. All gross tumor volumes (GTVs) were delineated on the

planning CT scans by experienced radiation oncologists. The

radiomics features were extracted from every GTV using

MATLAB R2016a (Mathworks, Natick, USA) and its toolbox

(https://cn.mathworks.com/). These features included four

groups: the intensity features, the geometric features and the

texture features. According to the first-order statistics, the

intensity features were calculated from the histogram of voxel

intensity values in the volume of interest (VOI). The geometric

features describe the shape of the VOI (30). The texture features

calculated in all three-dimensional directions within the VOI,

which can quantify intra-tumor heterogeneity differences,

consist of gray level co-occurrence matrix (GLCM),

neighborhood grey-tone difference matrix (NGTDM), gray

level size zone matrix (GLSZM) and gray level run length

matrix (GLRLM) (31–34). Overall, 96 radiomic features were
FIGURE 2

(A) Barium esophagography image. The widest part (line a in panel A) of the oral side and the narrowest part (line b in panel A) of the primary
site were clearly demonstrated. (B) ROC curve for stenotic ratio and the diet group. ROC, Receiver operating Characteristic; AUC, Area under
the curve.
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extracted from every GTV. The specific types and algorithms for

radiomic feature extraction have been discussed in previous

studies (35, 36).
Radiomics features selection and
model development

Univariate analysis was used to evaluate radiomics factors

for BES. Radiomics variables with a p-value >0.250 were

excluded from further analysis. Pearson correlation analysis

was used to reduce the correlations between radiomics

features. For example, for a pair of features with high

correlation (i.e., the absolute value of correlation coefficient ≥

0.8), the one with a lower p-value in the univariate analysis

remained. The least absolute shrinkage and selection operator

(LASSO) was chosen for the logistic regression model to select

the most useful predictive features and create a radiomics

signature model (defined as the Rad-score).
Clinical features selection and
model development

Before starting treatment, clinical data including gender, age,

tumor location and the TNM stage was gathered. LLT, ECI and

number of CT layers in which the wall thickness of affected

esophagus (NEWT) >1cm were collected from barium

esophagography, endoscopy and CE-CT images. Univariate

and multivariate analysis were used to identify the clinical

factors correlating with BES after SIB. The potential clinical

risk factors constituted the clinical model.
Combined model development

The individualized predictionmodel included potential clinical

risk factors and the Rad-score usingmultivariate logistic regression

analysis. To visualize the patient-level probability estimate of BES,

a nomogram was developed based on multivariate logistic

regression analysis and tested in the validation cohort.
Assessment of the Rad-score
and nomogram

Because the clinical factors (such as ECI, LLT and

NEWT>1cm) were measured on the CE-CT imaging, the VIF

analysis was also used to assess the collinearity information

among the clinical factors and final radiomics features. Variance

inflation factor (VIF) was used to evaluate the collinearity

among the final radiomics features that constituted the Rad-

score. The performance of each model was evaluated using the
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area under the receiver operating characteristic curves (AUCs),

accuracy, sensitivity and specificity.

The predictive power of the nomogram was quantified using

Harrell’s concordance index (C-index) and assessed using the

calibration curve. The Hosmer-Lemeshow test was used to assess

the goodness-of-fit of the nomogram (37). Decision curve

analysis (DCA) was used to quantify the net benefit at

different threshold probabilities and determine the clinical

usefulness of the nomogram.
Statistical analysis

For univariate analysis, a chi-square test, t-test, and rank

sum test were performed to explore the correlation between

stenotic ratio and clinical factors. For multivariate analysis,

binary logistic regression analysis and a linear regression

model were used.

All statistical tests were conducted using R software version

4.0.5 and SPSS (version 23.0; IBM Corp., Armonk, NY, USA). The

“glmnet” package was used to analyze the LASSO logistic model.

The “pROC” and “car” were used to calculate the ROC curves and

VIF. The C-index was calculated using the Kaplan–Meier

“survival” package. The nomogram and calibration curve were

built by using “rms” package. The Hosmer-Lemeshow test was

calculated using the “generalhoslem” package in the R

environment. Differences were considered statistically significant

at p < 0.05.
Result

Patients’ characteristics

The patient characteristics for the two cohorts are shown in

Table 1. The average age of 65 patients was 61.16 ± 5.77. There

were no differences in patient characteristics between the

training group and validation group.
Benign esophageal stenosis
after treatment

The last date of follow-up was December 22, 2019, and the

median follow-up period was 62 months (17-82 months) for all

patients. The change in the mean esophageal stenotic ratio of 65

patients before treatment to 1 year after treatment is shown in

Table S1 and Figure S1. The change in the mean esophageal

stenotic ratio of 48 patients (17 eliminated, 1 for recurrence, 2

for death, and 14 for missing follow-up) from 3 to 18 months

after treatment are shown in Table S2 and Figure S2. It tended to

decrease with time and reached a plateau in the ninth months

after treatment.
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The peak stenotic ratio for 24 (36.9%), 20 (30.8%), 11

(16.9%), 6 (9.2%), 2 (3.1%), 1 (1.5%), and 1 (1.5%) patient(s)

occurred in the third, sixth, ninth, twelfth, fifteenth, eighteenth,

and twenty-first months after treatment, respectively. Thirty-five

patients (53.8%) had a normal diet when they had a peak
Frontiers in Oncology 06
stenotic ratio, 26 (40%) had a semi-solid diet, and 4 (6.2%)

had a liquid diet. We divided these patients into a normal diet

group (35 patients, 53.8%) and a non-normal diet group (30

patients, 46.2%) according to the RTOG late radiation injury

score. The ROC curve was plotted by considering the stenotic
TABLE 1 Clinical characteristics of 65 patients with ESCC after definitive CCRT.

Factors Training cohort n (%) Validation cohort n (%) p-value

Age, years 0.624b

Average ± SD 61.16 ± 5.77 61.95 ± 6.78

BMI, Kg/m2 0.330b

Average ± SD 21.52 ± 3.31 20.70 ± 2.87

Gender 0.906c

Male
Female

28 (65.1%)
15 (34.9%)

14 (63.6%)
8 (36.4%)

Tumour location 0.671c

Cervical
Upper
Middle

3 (7.0%)
18 (41.9%)
22 (51.2%)

3 (13.6%)
9 (40.9%)
10 (45.5%)

T stagea 0.966c

T2
T3
T4

9 (20.9%)
21 (48.8%)
13 (30.2%)

5 (22.7%)
11 (50.0%)
6 (27.3%)

N stagea 0.335c

N0
N1

19 (44.2%)
24 (55.8%)

7 (40.0%)
15 (68.2%)

M stagea 0.572c

M0
M1

37 (86.0%)
6 (14.0%)

20 (90.9%)
2 (9.1%)

Clinical stagea 0.776c

II stage
III stage
IV stage

17 (39.5%)
20 (46.5%)
6 (14.0%)

8 (36.4%)
12 (54.5%)
2 (9.1%)

ECI 0.778

Level 1 2 2

Level 2 27 13

Level 3 14 17

LLT 0.430

Average ± SD 5.01 ± 1.78 5.06 ± 1.51

NEWT>1cm 0.911

Average± SD 9.65 ± 7.34 11.14 ± 6.72

ESCC, esophageal squamous cell carcinoma; CCRT, concurrent chemoradiotherapy; AJCC, American Joint Committee on Cancer staging system (version 6.0th); RT, radiotherapy; PF,
cisplatin and 5-fluorouracil.
aAmerican Joint Committee on Cancer (AJCC) staging system (version 6.0th)
bp-value was analysed using the independent samples t-test
cp-value was analysed using the chi-squared test.
IBM, imaging biomarker; CI, confidence interval; HR, hazard ratio.
fron
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ratio as the test variable and the diet group as the status variable,

which resulted in AUC=0.811 (95% CI: 0.705-0.917, p<0.001)

(Figure 2B). The optimal cut-off value for stenotic ratio was

determined to be 58.2% according to the Youden index, and 31

cases (47.7%) with a stenotic ratio >58.2% were defined as the

benign stenotic group (high risk group). The rest of patients

were defined as the low risk group.
Radiomics selection and
Rad-score constructing

Ninety-six radiomics features were reduced to 30 potential

factors, which had a p-value ≤ 0.25. Nineteen features were

excluded after comparing the inter-variable Pearson correlation

analysis. The remained 11 features were performed with non-

zero coefficients in the LASSO logistic regression model.

Ultimately 7 of them were chosen to construct the Rad-score.

As shown in Figure 3, with the optimal tuning parameter l value

of 0.036 and log (l) = -3.322, the Rad-score calculation formula

was constructed using the LASSO logistic regression model

(Formula 1):

Rad-score = −0.0037 × Max + 4.7716 × Spherical

Disproportion − 1.4654 × Idistcent−2.9222 × Informaiton

Measure of Correlation2_GLCM+ 0.1131 × Run_Percentage _

GLRLM−0.9177 × Texture_Strength_NGTDM−1.7964 ×

Small_Zone_Emphasis_GLSZM + 5

A constant value 5 was used to obtain a Rad-score >0 from

the calculation formula. The VIFs of the seven radiomics

features were tolerable, ranging from 1.336-2.341 (Table S3).
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Development of individualized
prediction model

Clinical factors were analyzed using univariate and

multivariate Logistic regression, as shown in Table 2. In the

training cohort, factors showing a significant correlation with

BES after treatment were ECI (p=0.027), LLT (p=0.097), and the

number of CT layers in which the wall thickness of affected

esophagus>1cm (NEWT>1cm) (p=0.028) in the univariate

analysis. VIFs of the seven radiomics features and the three

clinical factors were tolerable (VIF<10), ranging from 1.593-

8.640 (Table S3). We combined the clinical characteristics and

the Rad-score into a multivariate logistic regression model.
Performance of the model
and nomogram

The combine model performed the best among three

models. Figures 4A, B deplicted the AUCs of different models.

For BES, the Rad-score model was superior to the clinical model.

The combine model outperformed the Rad-score or the clinical

model in the training cohort, and the results were replicated in

the validation cohort. The box plot method was used to compare

low-risk and high-risk patients in the BES as shown in

Figures 4C, D. And the results revealed significant differences

(p<0.05, wilcoxon test) between two subgroups of BES in two

cohorts. We also constructed a nomogram to visualize the

logistic regression model of BES (Figures 5A). As shown in

Figure 5B, C, the calibration curve of the nomogram for the
A B

FIGURE 3

Radiomics selection using LASSO logistic regression model (A). The tuning parameter l selection of LASSO model with 10-fold cross-validation
was performed to select radiomic features. At the optimal tuning parameter l value of 0.036 and log (l) = -3.322, the left dotted vertical line
was set with the minimum criteria where 7 radiomic features were selected. (B). LASSO coefficient profile of 11 Radiomic features. A coefficient
profile plot was generated against the log (l) sequence. The dotted vertical lines were drawn at the 6 non-zero coefficients, with the optimal
value of l. LASSO, least absolute shrinkage and selection operator.
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probability prediction of BES had good prognostic performance.

The DCA showed the nomogram had clinical utility in

predicting the power of risk of BES within a wide range of

reasonable threshold probability (Figure 6). The Hosmer-

Lemeshow test revealed no deviation from model fitting for

the training cohort (p=0.451) and validation cohort (p=0.481).

The C-indices of the nomogram were 0.864 and 0.958 for the

training and validation cohorts, respectively.

Discussion

For patients with locally advanced EC, approximately half

had local recurrence and poor overall survival (38, 39). Some

researchers have applied SIB to the therapy of EC to improve

local control (8). Nonetheless, information on late toxicity of

SIB, which contributes to the comprehensive evaluation of this

therapeutic mode, is limited. Benign esophageal stenosis is one

of the most common late toxicities that leads to significant

deterioration in quality of life despite tumor regression. The

benefits must be balanced against the risk of toxicities. Thus,

developing an individual predictive model is critical for clinical

decision making.

We expected that characteristics other than clinical factors,

such as texture and distribution on CT imaging, might

contribute to the severity of benign esophageal stenosis. As a

result, our study yields promising results. We found that the

Rad-score, which consisted of seven radiomics features, was

discovered to be an independent risk factor for BES after SIB. In

terms of clinical factors, CEI, LLT and NEWT>1cm were

identified as potential factors for BES in univariate analysis,

however these clinical factors were only weakly correlated with

BES in multivariate analysis.
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Although several studies have identified risk factors for

esophageal stenosis, clinicians are unable to identify specific

patients who may develop BES after radiotherapy (12–14). It is

necessary to identify patients who have a high risk of BES after SIB

before treatment, as these patientsmight bemore suitable for surgery

or immunotherapy. And the radiation dose should be further

explored in such patients. Hence, a prediction model based on

radiomics and clinical factors that discriminated severe BES after

SIB with high diagnostic performance was developed in this study.

The radiomics signature model incorporates some

individual radiomics features as predictors to probe the clinical

utility of features that have been explored and investigated in

many studies (40, 41). Max was extracted from the intensity

features. It measures the maximum value of the gray level

intensity. According to our findings, a smaller Max value may

be related to a poor BES result. SphericalDisproportion refers to

the ratio of the tumor region’s perimeter to the perimeter of a

sphere with the same surface area as the tumor region. Idistcent

describes the maximum distance between the vertices of the

tumor surface grid in the axial plane. Tumors with a larger

SphericalDisproportion or a smaller Idistcent had more irregular

shape, which was associated with poorer treatment response (15,

42, 43). In terms of texture feature, the Information Measure of

Correlation2_GLCM refers to the consistency of the gray level of

image texture in the row or column directions. It is high when

gray levels are equally distributed along the row or column

direction in contoured structures. A smaller Information

Measure of Correlation2_GLCM, indicating the ROI

heterogeneity (44). Run_Percentage_GLRLM measures the

texture roughness by dividing run length by voxels in ROI.

Texture_Strength_NGTDM represents the significance and

uniqueness of voxels on a three-dimensional level .
TABLE 2 Univariate and multivariate association of Rad-score and clinical characteristic Logistic regression analysis of BES (likelihood Ratio:
Backward stepwise).

Variables

Training cohort Validation cohort

Univariate Multivriate Univariate Multivriate

OR p OR(95%CI) p OR p OR(95%CI) p

Age 1.010 0.848

Gender 1.319 0.666

Tumour location 1.524 0.401

Clinical stage 0.722 0.470

BMI 1.035 0.712

LLT 1.365 0.097 1.008 (0.571-1.780) 0.977 1.614 0.148 0.566(0.165-1.945) 0.367

ECI 4.314 0.027 3.112(0.777-12.469) 0.109 5.210 0.069 6.080(0.735-50.303) 0.094

NEWT>1cm 1.116 0.028 1.087 (0.981-1.206) 0.112 1.249 0.027 1.384(1.008-1.901) 0.044

OR, odds ratio; CI, confidence interval; BMI, Body Mass Index; LLT, longitudinal length of tumor; ECI, the extent of circumference involvement; NEWT>1cm, the number of CT layers
in which the wall thickness of affected esophagus>1cm.
The bold values refers to the clinical factors which were included in the clinical models.
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Small_Zone_Emphasis_GLSZM describes of the distribution of

small areas. The finer the contoured structures are, the larger the

value, the smaller the zone. The previous studies observed that

Informat ion Measure of Corre la t ion2_GLCM, the

Run_Percentage_GLRLM, Texture_Strength_NGTDM and

Small_Zone_Emphasis_GLSZM are highly relevant to the

heterogeneity and prognosis of Specific types of tumor (15, 44,

45). These results demonstrate the possibility of using radiomics

multivariate analysis and the high OR of the radiomics signature

model might able to predict BES in patients with ESCC.

However, these seven radiomic features did not achieve the

significant statistical value due to insufficient number of patients.

It needs to be further confirmed in the validation cohort and
Frontiers in Oncology 09
larger prospective cohorts. Several previous studies have

reported that combining radiomic signatures (or features) and

clinical risk factors improved the predictive accuracy of these

models (26, 35, 46, 47). Thus, we developed a nomogram that

incorporates the Rad-score as well as these clinical factors. These

clinical factors are generally available during treatment, and the

collection of information does not require additional

examinations or place an additional economic burden on

patients. Despite the fact that these clinical factors were

insignificantly different in multivariate analysis, incorporating

them into the radiomics signature model, which comprised the

combined model, improved the AUC in predicting BES and

achieved excellent discrimination in this cohort.
A B

C D

FIGURE 4

ROC curves for assessing the different performance of three models in training cohort (A) and validation cohort (B). The box plots of combine
model for low-risk and high-risk groups for training cohort (C) and validation cohort (D). ROC, receive operation characteristic; AUC, area under
the curve; CI, confidence interval; Rad-score, radiomic score.
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This study demonstrated that the esophageal stenotic ratio

tended to decrease during and after treatment, with the mean

stenotic ratio dropping from 72.0% before treatment to 46.5% 1

year after treatment, reflecting a distinct remission of stenosis

caused by tumor mass. Re-stenosis was considered because the

maximum stenotic ratio during follow-up was greater than that

at the completion of treatment. Two other studies (12, 14)

reported that the peak stenotic ratio occurred–5-8 and 6-8
Frontiers in Oncology 10
months after treatment, but specific numbers and proportions

of cases at each point in time were not displayed. In previous

studies (12–14), the evaluation of stenosis has basically referred

to the barium esophagogram as follows: Grade 1 (<25%), Grade

2 (25~50%), Grade 3 (50~75%), and Grade 4 (75~100%); grade

≥3 is defined as stenosis, or referred to the RTOG late radiation

injury score, which was classified based on the patients’

subjective experience of eating disorders. Atsumi K et al.,
A

B C

FIGURE 5

(A). The nomogram for the prediction of BES. The constructed nomograms were used to estimate the risk of BES for individual ESCC patients.
Calibration curves of the combined nomogram in the training cohort (B) and validation cohort (C). The calibration curves describe the
calibration of the combine nomogram in terms of the conformity between the predicted risk of BES and observed BES outcomes. The 45°
dotted line represents a perfect prediction, the solid lines represent the bias-corrected performance of the combine nomogram. BES, benign
esophageal stenosis; ESCC, esophageal squamous cell carcinoma; ECI: the extent of circumference involvement; LLT: longitudinal length of
tumor; NEWT>1cm: number of CT layers with esophageal wall thickness >1 cm.
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Wang et al., and Luo et al. all used stenotic ratio to assess the

degree of BES after high dose radiotherapy (ranging 54-71.4Gy,

56-66Gy, 56-70Gy, respectively), and 23%, 43.5% and 33.8% of

patients had a stenotic ratio >50% respectively in their researches

(12–14). All the above studies found BES was not correlated with

RT dose. In this study, we combined the RTOG late radiation

injury score and stenotic ratio to create an ROC curve, and the

result showed AUC=0.811, indicating that the stenotic ratio was

considered capable of objectively evaluating the extent of

esophageal stenosis. According to the optimal cut-off value,

stenotic ratio>58.2% was defined as benign stenosis. The rate

of BES after 66 Gy radiotherapy was 47.7%. The evaluation of

stenosis could be more accurate and convincing by the

integration of the two above.

Previous studies have explored the risk factors for

esophageal stenosis after conventional fractional radiotherapy.

The extent of circumference involvement, T stage, tumor length,

and the wall thickness of the affected esophagus has been

confirmed by Atsumi et al. in a 109 EC patient study, Wang

et al. in a 61-patient study, Luo et al. in a 71-patient study, and

Kim et al. in a 62-patient study (12–14, 48). The extent of

circumference involvement was a risk factor for stenosis after

endoscopic mucosal resection of early EC (49).

Dysphagia is the most common symptom in advanced

patients and has a significant impact on quality of life. The

mechanism of BES after chemoradiotherapy has not been

determined due to limited pathological data. It is commonly

assumed that post-radiotherapy esophageal stenosis is caused by
Frontiers in Oncology 11
radiation-induced fibrosis (RIF). Because of fibrosis and

inflammation of the submucosa and muscular layers, the

esophagus loses its elasticity, resulting in post-radiotherapy

esophageal stenosis 4-12 months after therapy and developing

in a few years (50). However, the stenotic ratio of patients in our

study tended to reach a plateau after 9 months. This may be

because long-term esophageal peristalsis controlled by

autonomic nerves, even without food intake, may decrease the

damage of fibrosis. For BES, balloon dilatation, stent

implantation, bypass operation, and drug infusion are the

most commonly used palliative treatments (51), but they had

unsatisfactory outcomes for high re-stenosis rate and

complications, like perforation and hemorrhage (52–54).

This study was conducted prospectively to indentify the

risk factors associated with BES by combining objective

evaluation using esophagography with subjective evaluation of

the severity of eating disorders in patients, and build an

individual predictive model incorporating radiomics features

and clinical factors. It could be a useful guide when choosing a

treatment option for patients with EC as well as an important

piece of information when acquiring a patient’s informed

consent before radiotherapy.

The innovation of this study is that this study was a

prospective study for BES after SIB for ESCC. Since the

difficulty of long time follow up, there is scarce data for BES

after high dose radiotherapy for esophageal cancer. The

application of radiomics in CE-CT imaging has been focused

on specific topics, such as survival outcomes and diagnosis (55).
A B

FIGURE 6

The DCA for the combine nomogram in the training cohort (A) and validation cohort (B). The y-axis represents the net benefit. The x-axis
represents the threshold probability. The red line represents the radiomics nomogram. The grey line represents the hypothesis that all patients
had BES. The black line represents the hypothesis that no patients had BES. The DCA in two cohorts showed the nomogram had clinical benefit.
DCA, Decision curve analysis; BES, benign esophageal stenosis.
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To the best of our knowledge, this is the first predict model that

applied radiomics to assess BES after SIB.

The limitations of this study include the lack of comparison

with patients receiving standard-dose radiotherapy because all

the patients in these prospective studies received SIB. The

NCCN Guidelines state that a standard dose of definitive

radiation for esophageal cancer is 50–50,4 Gy (1.8–2.0 Gy/day)

(total 25–28 fractions). However, more than 50% of patients who

had standard-dose CRT subsequently experienced recurrence or

distant metastases and passed away from this illness (56). A dose

of 60.0 Gy or more has become a more common dose of CCRT

in Asian nations where ESCC is the predominate histological

type since studies have shown that a greater dose than 50.4 Gy of

CCRT could be safely administered without significant adverse

effects and yield a high probability of local control (8, 57, 58).

Since high dose radiotherapy of 60 Gy or more with 2 Gy per

fraction, is frequently used in China to treat esophageal cancer, it

can be challenging to collect clinical information concerning

standard dose of radiotherapy, particularly for a prospective

study. Our hospital is currently conducting a phase III trial, and

we will eventually include a standard dose of radiotherapy in our

prediction model. There were no T1 patients in our study;

therefore, the impact of T stage on esophageal stenosis after

SIB needs further verification. Another limitation of our study is

the small sample size and the lack of external validation of the

model. Clinical data for BES was difficult to acquire due to long

time follow up. Wang et al. analyzed BES after radiotherapy

ranging 56-66Gy and included 62 patients from 2005 to 2008

(12). Luo et al. analyzed BES after radiotherapy ranging 56-70Gy

and included 71 patients from 2010 to 2013 (14). Jun W. Kim

et al. analyzed BES after radiotherapy ranging 45-90Gy and

included 62 patients from 2001 to 2015 (48). These were all

retrospective studies with a wider range of radiotherapy dose.

The challenge of gathering information of BES is a pervasive

problem in this research field. That is why the sample size in this

study is small and it is indeed a weakness. To overcome the

shortcoming of limited sample size we did use the 10-fold cross

validation method in this study. K-fold cross validation was

reported to reduce the uncertainty of input dataset partition in

previous study (59, 60). Multicenter validation with a larger

sample size is required for clinical applications.
Conclusion

In conclusion, BES due to tumor mass could achieve varying

degrees of remission after simultaneous modulated accelerated

radiotherapy, but BES occurs after radiotherapy at the same

time. BES after SIB was potential associated with the Rad-score,

CEI, LLT and NEWT>1cm. We developed a nomogram that

incorporates both the Rad-score and clinical prognostic factors

to predict the risk of BES in patients with ESCC who received

definitive CCRT.
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SUPPLEMENTARY FIGURE 1

The change in the mean esophageal stenotic ratio of 65 patients before
treatment to 1 year after treatment. Seven points in x axis represent before

treatment, twentieth fraction, complete treatment, 3, 6, 9, and 12 months
after completing treatment.

SUPPLEMENTARY FIGURE 2

The change in themean esophageal stenotic ratio of 48 patients from 3 to

18 months after treatment. Six points in x axis represent 3, 6, 9, 12, 15, and
18 months after completing treatment.
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