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Emerging insights into iron-dependent form of regulated cell death ferroptosis

in cancer have opened a perspective for its use in cancer therapy. Of interest, a

systematic profiling of ferroptosis gene signatures as prognostic factors has

gained special attention in several cancers. Herein, we sought to investigate the

presence of repetitive genomes in the vicinity of ferroptosis genes that may

influence their expression and to establish a prognostic gene signature

associated with multiple myeloma (MM). Our analysis showed that genes

associated with ferroptosis were enriched with the repetitive genome in their

vicinity, with a strong predominance of the SINE family, followed by LINE, of

which the most significant discriminant values were SINE/Alu and LINE/L1,

respectively. In addition, we examined in detail the performance of these genes

as a cancer risk prediction model and specified fourteen ferroptosis-related

gene signatures, which identified MM high-risk patients with lower immune/

stromal scores with higher tumor purity in their immune microenvironment. Of

interest, we also found that lncRNA CRNDE correlated with a risk score and was

highly associated with the majority of genes comprising the signature. Taken

together, we propose to investigate the molecular impact of the repetitive

genome we have highlighted on the local transcriptome of ferroptosis genes in
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cancer. Furthermore, we revealed a genomic signature/biomarker related to

ferroptosis that can be used to predict the risk of survival in MM patients.
KEYWORDS

ferroptosis, lncRNA – long noncoding RNA, repetitive genome, multiple myeloma,
gene signature, prognosis
Highlights
• Ferroptosis-related genes showed enrichment with the

repetitive genome in their vicinity, with strong

predominance of the SINE family.

• We generated ferroptosis-related prognostic gene

signature that can identify high-risk multiple myeloma

patients.

• LncRNA CRNDE showed strong association with the

majority of genes forming the prognostic signature.
Introduction

Cell death is an essential feature of physiological/pathological

processes, and ferroptosis which differs considerably from other cell

death types, such as apoptosis, necrosis, and autophagy has recently

gainedattention.Accumulative studieshave shown thatdysregulated

ferroptosis participates in several cancers, including renal cell

carcinoma (1), colorectal carcinoma (2), gastric cancer (3), and

multiple myeloma (4, 5). Overall, targeting potential regulatory

factors in the ferroptosis pathway is thought to promote or inhibit

disease progression in several malignancies.

Over the years, ferroptosis-related genes have been used to

generate a prognostic signature in lung adenocarcinoma (6),

low-grade glioma (7)., acute myeloid leukemia (8), gastric cancer

(9), renal cell carcinoma (10), osteosarcoma (11), skin

melanoma (12), and breast cancer (13). However, most of

studies focused on the gene expression patterns and

correlation with the clinical outcomes, mainly survival rate.

None of the above-mentioned studies addressed the impact of

genome organization in proximity to these genes, which is

known to play a pivotal role in human diseases (14). On this

note, the prevalence of repetitive sequences, especially LINEs

(Long Interspersed Nuclear Elements), SINEs (Short

Interspersed Nuclear Elements), Alu family in the functional

parts of genomes and their association with cancers remains

undisputed (15–17). Aoki et al. evaluated global methylation

levels of four repetitive elements (LINE-1, Alu Ya5, Alu Yb8 and

Satel l i te-a) in MM samples and found the global
02
hypomethylation of LINE-1 being associated with progression

and worse prognosis of multiple myeloma (MM) (18). Using

bisulfite treatment followed by sequencing, Bollati et al.

investigated the methylation status of repetitive DNA elements

to verify a possible correlation with the different molecular

subtypes of MM, and found a progressive and significant

decrease of methylation in Alu, LINE-1 and SAT-a sequences

(19). In a comprehensive study, Lee et al. discussed about various

somatic insertions of LINE-1, Alu and ERV in different types of

cancer, including colorectal, glioblastoma, ovarian, prostate and

multiple myeloma (20). It is also noteworthy to mention that

some noncoding RNAs (ncRNAs), particularly long noncoding

RNAs, have been found to be involved in biological processes of

ferroptosis, thus influencing cancer growth (21, 22). Although

the exact regulatory mechanism behind this remains unclear,

their potential use as ncRNAs-based ferroptosis targeting has

been hypothesized (23) An interesting study examined some

lncRNAs closely related to ferroptosis and identified PELATON

as a novel ferroptosis suppressor that may also serves as a

prognostic signature in glioblastoma patients (24).

Considering this, herein, we investigate the presence of

repetitive genomes in the vicinity of ferroptosis genes that may

influence their expression. In our comprehensive approach, we

considered the analysis of various repeat configurations, e.g.,

LINEs (L1 and L2), SINEs (Alu and MIR), low complexity (AT

and GC) and interspersed elements, across the upstream

promoter region of these particular genes, as we reported

previously (25). In addition, we used ferroptosis genes to

create the first prognostic gene signature (based on risk groups

and immune microenvironment) linked to multiple myeloma.

Besides, we demonstrated the putative association of the

oncogenic lncRNA CRNDE with the obtained MM-specific

ferroptosis gene signature.
Materials and methods

Ferroptosis-related genes and repetitive
genome analysis

We manually collected 387 genes classified as ferroptosis

driver genes, suppressor genes, and markers using available
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https://doi.org/10.3389/fonc.2022.1026153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2022.1026153
database (http://www.zhounan.org/ferrdb). Upon removal of

duplicates, we retained 269 genes that were used for further

analysis like repetitive genomic analysis and determination of

the prognostic signature.

To identify repetitive genomic sequence in the proximity of

these genes, we retrieved repeats and genomic annotations from

the T2T genome assembly (CHM13v2.0) available in the NCBI

FTP (ftp://ncbi.nlm.nih.gov). Genomics coordinates were used

to identify repeats in the 2kb promoter region of genes, as well as

the classification of the repeats, their length, and their order

relative to the transcription start site. We then calculated the

repeat content for each gene using the n-gram probabilistic

model (26) in which each repeat was defined as a unigram with a

normalized weight (frequency and length were properties

associated with the model). It was calculated as RC(r) =

Log (Nr * Lr/Le) , where the repeat content (RC) for the repeat

(r) is defined by the absolute frequency (Nr) and repeat length

(Lr) under a region of exploration with a specific length (Le),

here 2kb promoter. A weighted matrix was created with the

genes as the index and the repeat content values as the score for

each repeat type. To identify discriminative repeats, two

clustering methods were applied under the matrix:

Hierarchical clustering with a complete linkage method,

Manhattan distance metric for the whole data, and k-mean

clustering as an unsupervised algorithm for the pair of repeat

types with a significant discriminative score defined by

hierarchical clustering, mainly implemented by using custom

Python algorithms. Finally, gene clusters with associated repeats

in k-means clustering were described by functional enrichment

analysis in the String database (https://string-db.org), which

includes Geneontology, KEGG, and Wikipathways datasets,

together with the Enrich Tool and Allen Brain Atlas

datasets (27).
Gene expression data and construction/
validation of a prognostic signature

Multiple myeloma was selected to establish the prognostic

signature based on ferroptosis-related genes. MM gene

expression study MMRF-COMMPASS was obtained from the

XENA database maintained by UCSC (https://xenabrowser.net/

datapages/) and GSE24080 was obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). We used the MICE

package to supplement missing values such as ethnicity, race,

age, and International Staging System (ISS) stage from the

MMRF-COMMPASS study and B2M, CRP, and creatinine

from the GSE24080 cohort. We strictly followed the previously

described procedure for data processing, and the paired-samples

t-test was used to check for the consistency of the distribution

between two cohorts. Subsequently, 844 patients from the
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MMRF-COMMPASS study were used as the training cohort,

while the 556 patients from the GSE24080 dataset served as the

validation cohort. Next, Kaplan-Meier and univariate Cox

analyses were performed in the training cohort to investigate

the prognostic relationship between gene expression and overall

survival (OS). A list of prognostic genes with risk correlation

coefficients was generated using the Cox regression model

LASSO (Least Absolute Shrinkage and Selection Operator)

based on the OS in the training cohort with the optimal

parameter lambda. Risk score was calculated using following

equation, where n, bi and Coefi represented the number of hub

genes, regression coefficient values and gene expression levels,

respectively. Risk Score =on
i=1Coefi * bi. On the basis of median

risk scores, patients were divided into either high or low risk

score groups and Kaplan-Meier analysis were used to determine

the survival differences between them. In this study, ROC

analyses were performed to further evaluate the prognostic

power of the ferroptosis-related gene signature. A similar

procedure was used for the validation cohort. To mention, the

training cohort had only OS status with five years follow-up,

while validation cohort contained both OS status and event-free

survival (EFS) status with seven years follow-up. We extend our

analysis by generating and validating the nomogram-based

analysis for predicting the survival probability in our cohorts.

The nomogram was validated with the R package “rms”

(calibrated for 3 and 5 years) and the C-index was measured

to determine the predictive power.
Gene set enrichment analysis and
immune infiltration status estimation

The relative cell component of tumor microenvironment in

the MMRF-COMMPASS study was calculated using the

CIBERSORT algorithm (28, 29). Furthermore, gene set

enrichment analysis (GSEA) were used to investigate the

pathophysiological mechanisms associated with the

ferroptosis-related genes. Based on the median cutoff value,

samples were divided into low and high expression groups.

KEGG enrichment terms with an adjusted P value<0.05 and

false discovery rate (q value)<0.05 were considered statistically

significant and ranked accordingly. ESTIMATE algorithm was

used to calculate the immune score, stromal score, and tumor

purity of each sample. We also quantified the relative infiltration

of 28 immune cell types that mark the infiltrating immune cells

of MM by single-sample GSEA analysis (ssGSEA) followed

previous published methods (30). Each immune cell type of

feature gene panels was obtained from a recent article (31). An

enrichment score in ssGSEA analysis represented the relative

abundance of each immune cell type via “GSVA” package

(version 1.39.1).
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Expression profile of ferroptosis-related
signatures in pan-cancer

To explore the expression of obtained signatures in pan-

cancer, we downloaded the gene expression data of FPKM from

TCGA for 33 cancers, FPKM (Fragments Per Kilobase per

Million) i.e. fragments per kilobase of transcription per million

mapped reads. We then calculated the average expression levels

of these selective genes in all samples and in each cancer type

separately to plot heat maps for visualization.
Prediction of ferroptosis and lncRNA
interactions

LncRNAs gene expression in myeloma were obtained from

MMRF-COMMPASS dataset in XENA database maintained by

UCSC (https://xenabrowser.net/datapages/) and GSE24080

dataset in GEO database (https://www.ncbi.nlm.nih.gov/geo/).

The correlation of risk score (based on our signature) and

lncRNAs were investigated. Statistical significance was

determined using Spearman correlation coefficient |R| > 0.3

and p value< 0.05. The prediction of physical and functional

interaction between selected lncRNA (CRNDE) and the proteins

of our signature genes were performed in RNA-Protein

Interaction Prediction (RPISeq, http://pridb.gdcb.iastate.edu/

RPISeq/) using the protein sequence of signature genes and

RNA sequence of the lncRNAs. The output, i.e., prediction

probability of possible interactions was obtained in terms of

RF and SVM classifiers. The interaction probabilities ranging

from 0 to 1 were considered, being higher probabilities were

better. In general, prediction probabilities with score more than

0.5 was considered “positive,” i.e., expressing the likelihood of

interaction between given lncRNA and proteins. Next, the

interaction of CRNDE (lncRNA) and mRNA of signature

genes were explored. The prediction of physical and functional

interaction between five lincRNAs and the mRNA of RGS20 was

done using LncRRIsearch web server (http://rtools.cbrc.jp/

LncRRIsearch/).
Statistical analysis

Statistical analyses were performed using R Studio (version

2021.09.1; https://rstudio.com/). Kaplan-Meier analysis was

performed using the R packages “survival” and “survminer”.

Student’s t-test was used to compare differences between

subgroups where the data were normally distributed, otherwise

the Wilcox. Test was applied. Univariate and multivariate Cox

proportional hazard regression analyses were performed with

the R package “survival”, and LASSO analysis was performed
Frontiers in Oncology 04
with the R package “glmnet.” All statistical tests were two-sided

and P<0.05 was considered statistically significant.
Results

Repetitive genome predominantly
distributed in the proximity of ferroptosis
genes

We first investigated the occurrence of repetitive genomic

elements in the vicinity of ferroptosis genes (Supplementary

Figure 1). For this purpose, we first determined the repetitive

genome configuration in the promoter regions of these genes

(~2KB). We found that Alu, MIR, L1 and L2 were the frequent

repeats around 148 ferroptosis genes (Supplementary

Figure 1A). Further clustering of these genes revealed high

prevalence of LINE/L1, SINE/MIR, and SINE/Alu and low

prevalence when these genes were combined or when LINE/L2

or others were included. In addition, the hierarchical distribution of

repeats shows SINE/Alu and LINE/L1 as the divergent elements or

with a significant discriminative score for gene clustering. To

provide evidence for a possible functional relationship between

gene clusters and repeats, we applied k-means clustering and

functional enrichment analysis (Supplementary Figure 1B). Using

this approach, we identified four significant gene clusters: L1-related

(16 genes), Alu-related (59 genes), Alu/L1-related (17 genes), and

unrelated genes (56 genes). In terms of their functional analysis, this

discriminative analysis revealed the weight of each repeat type in the

promoter region of gene sets that could define regulatory directions

in the cellular and molecular context. We also checked the abilities

of these clusters in other available datasets, such as the Allen Brain

Atlas datasets, and found that each cluster represented a set of genes

for some brain segments, e.g., “anterior cingulate area” for L1 and

“paraventricular hypo-thalamic nucleus” for Alu-related repeats.

For instance, the gene GABARAPL2 (highly associated to SINE/

Alu) and the gene PARK7 (highly associated to LINE/L1)

highlighted in our analysis, are known to be expressed highly in

brain. In addition, these clusters were analyzed according to key

cellular and molecular processes, e.g., the gene cluster more

associated with LINE/L1 shows cellular responses to external

stimuli (cytokine production, nongenomic effect of vitamin D,

metabolic-related processes). Also, the gene cluster more

associated with SINE/Alu shows standard metabolic processes

and cellular adaptations to endogenous factors (response to

starvation, autophagy, ferroptosis, fatty acid metabolism). Of

interest, the cluster with Alu/L1-related genes reveals chromatin

pathways mainly associated with the sirtulin 1 (SIRT1) and histone

lysine methyltransferase (SUV39H1) genes, which could define

specific configurations of these repeats for important

regulatory processes.
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Ferroptosis-related gene signature
predicts the survival in multiple myeloma

We described our strategy in a flowchart (Supplementary

Figure 2). Using the stringent strategy, the clinical characteristics

of the patients involved in the study were outlined (Supplementary

Table 1). We primarily used information from 844 patients (in the

training cohort) and obtained 1669 survival-related genes

(Supplementary Table 2). Thereafter, we intersected these

survival-related genes with ferroptosis-related genes (n=269) and

generated a list of 17 ferroptosis-related prognostic genes

(Supplementary Figure 3A, Supplementary Table 3), which were

further narrowed down based on risk coefficient scores (n=14)

(Supplementary Figures 3B, C, Supplementary Table 4). Based on

their mean risk score derived from the signature of 14 genes, the

patients were classified into high-risk and low-risk groups. Notably,

twelve signature genes (SLC38A1, CDKN2A, MIOX, AGPS,

HELLS, FH, DAZAP1, SLC16A1, SUV39H1, DDIT4, TRIB3,

ALOX12B) were found to be upregulated (Supplementary

Figures 4A–L), while two (PIK3CA, ISCU) were downregulated
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in the high-risk group, based on the training cohort (Supplementary

Figures 4M, N). It is important to mention that compared to the

low-risk group, the high-risk group showed a worse outcome in the

training cohort OS (P< 0.0001, Figure 1A), both in the validation

cohort OS (P = 0.0014, Figure 1B), and in the validation cohort EFS

(P = 0.00016, Figure 1C). To confirm the prognostic power and

independence of the ferroptosis-related gene signature from other

clinical characteristics (age, albumin, Β2M, creatine, CRP,

hemoglobin, isotype, ISS stage, LDH, race, sex, risk), univariate

and multivariate Cox analyses were also performed. Our analysis

confirmed the robustness of the signature in the OS of the training

cohort (univariate, HR = 1.1, 95% = 1.06-1.15, P<0.001;

multivariate, HR = 1.06, 95%=1.02-1.1, P=0.005), OS of the

validation cohort (univariate, HR = 1. 18, 95%=1.15-1.21,

P<0.001; multivariate, HR=1.17, 95%=1.13-1.20, P<0.001) and

EFS of the validation cohort (univariate, HR=1.08, 95%=1.05-

1.12, P<0.001; multivariate, HR=1.05, 95%=1.02-1.09, P=0.004)

(Supplementary Table 5). Thus, the gene signature associated

with ferroptosis appears to be a reliable prognostic indicator for

MM patients.
B C

D E F

G H

A

FIGURE 1

Clinical application of 14-gene signature in MMRF-COMMPASS and GSE24080 cohorts. Kaplan-Meier curves of the 14-gene signature risk score in
the training cohort (A) and validation cohort (B, C). ROC curves of the 14-gene signature risk score in the training (D) and validation (E, F) cohorts.
Comparison of the C-indexes between the ferroptosis-related fourteen-gene signature and other existing biomarkers in multiple myeloma (G). The
risk coefficient between 14 genes and 33 types of cancer (H). Red star represented our ferroptosis-related fourteen-gene signature.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1026153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2022.1026153
Prognostic performance and clinical
application of ferroptosis-related gene
signature

Next, to assess the prognostic performance of the signature, we

performed time-dependent (one-year, three-year, and five-year)

dynamic AUC comparisons in the OS training cohort and obtain

AUC values of 0.67, 0.72, and 0.92, respectively (Figure 1D). Of

interest, theAUCvalueof themultigene risk scorecomparedwith ISS

stage and sex fared better compared to the independent variables in

the training cohort across each time point within 5 years

(Supplementary Figure 5A). Likewise, in the GSE24080 training

cohort, the AUC value of the multigene risk score was 0.63, 0.6, and

0.65 at 3, 5, and 7 years, respectively (Figure 1E), and each event

within 7 years was found to be greater compared to the defined

clinical variables (SupplementaryFigures 5B–D). Similar resultswere

obtainedwhen theEFS of the validation cohortwas used to assess the

predictive power of thismultigene risk score (AUC: 0.61, 0.61, 0.68 at

3, 5, and7years, respectively) (Figure 1F, SupplementaryFigures 5E–

G). To translate our obtained ferroptosis-related gene signature into

clinical application, we integrated the training factors (patient age,

sex, ISSstage, andmultigene signature) intomultivariateCoxanalysis

and constructed a nomogram to predict the survival probability of

patients with MM (Supplementary Figure 6A). Analysis of the

calibration curve, which included the nomogram after 3 and 5

years, showed a close resemblance to the diagonal curve at the

same defined intervals (Supplementary Figures 6B, C). In addition,

theC-indexof the training cohort for overall survivalwas found tobe

0.764 (95CI = 0.747-0.781), whereas the C-index of the validation

cohort was estimated as 0.703 (95CI = 0.682-0.724), suggesting

reliability of the nomogram. Of interest, we found superior

performance and better prognostic ability of the obtained

ferroptosis-related signature when compared with 10 already

known biomarkers (32–41) (Figure 1G). This was also evident in

the decision curve analysis (DCA) of the nomogram, where the

threshold probability ranged from14% to 95%and the probability of

maximum net benefit exceeded 0.2 (Supplementary Figure 7).

Besides, we investigated the reliability of the obtained signature in a

panel of 29 cancers and found that these genes are relatively highly

expressed in most cancers, especially in HNSC (squamous cell

carcinoma of the head and neck), CESC (squamous cell carcinoma

of the cervix and endocervical adenocarcinoma), and COAD

(adenocarcinoma of the colon) (Figure 1H).
Gene enrichment and immunofiltration
analysis confirmed the relevance of the
signature in high-risk MM patients

The result of CIBERSORT indicated that the plasma cells

accounted for more than 85% (Supplementary Figure 8A), which

was consistent with the experimental protocol of the GSE24080
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or MMRF-COMMPASS study. To our surprise, non-plasma

cells together, including memory B cells, CD4+ T cells, and

activated NK cells (Supplementary Figure 8B), could account for

more than 10% of the tumor microenvironment. These immune

cells should not be ignored despite low absolute content (42).

Considering the negative correlation between the risk score of

ferroptosis-related gene signature and the clinical outcome of

MM, KEGG enrichment analysis was performed between the

high-risk and low-risk groups. We found that 22 KEGG terms

were significantly enriched in the high-risk group (Figure 2A),

with DNA replication being the highly enriched (Enrichment

score = 0.8046), while the mRNA surveillance pathway had the

lowest enrichment (Enrichment score = 0.5593) (Figure 2B).

Notably, four ferroptosis-related pathways, including

proteasome (NES = 1.6748, adjusted p-value = 0.0263, 5q-

value = 0.0181), cysteine and methionine metabolism (NES =

1.7277, adjusted p-value = 0.0195, q-value = 0.0134), p53

signaling pathway (NES = 1.5643, adjusted p-value = 0.0263,

q-value = 0.0181) and DNA replication (NES = 1.9783, adjusted

p-value = 0.0195, q-value = 0.0134), were found to be

s i gn ifican t l y enr i ched in h igh- r i sk MM pat i en t s

(Supplementary Figure 9).

Since immune cell infiltration may have a differential impact

on high and low-score patients, we next assessed the degree of

immune infiltration using the ESTIMATE algorithm. The

analysis showed that the high-risk MM in the training cohort

had lower immune and stromal score but high tumor purity

(Supplementary Figures 10A–C), which was also confirmed in

the validation cohort (Supplementary Figures 9D–F). Of

interest, we found that immune and stromal score were

negatively correlated with risk score, whereas tumor purity

was positively correlated with risk score in the training cohort

(Supplementary Figures 10G–I). To further investigate the

influence of immune cell population alternation, we built cox

proportional hazards regression models based on the

enrichment level of 28 immune infiltration-related gene sets

via ssGSEA analyses, and focused on whether the alternation of

these gene sets was related with poor outcome. In the training

cohort, activated CD4+T cells, regulatory T cells, and type 1 T

helper cells were significantly negatively associated with OS

(P<0.05) (Supplementary Figure 11A), whereas follicular T

helper cells and immature B cells were significantly positively

associated with OS (P<0.05). Meanwhile, in the validation

cohort (Supplementary Figure 11B), activated CD4+T cells

and type 2 T helper cells were significantly negatively

associated with OS (P<0.05), whereas type 17 T helper cells

were significantly positively associated with OS (P<0.05). Thus,

we noticed that activated CD4+T cells was significantly

negatively associated with OS in both cohorts (Figure 2C).

Interestingly, the enrichment degree of high-risk group was

significantly higher than that of low-risk group in both cohorts

(Figures 2D, E). Of significance, only activated CD4+T cells were
frontiersin.org

https://doi.org/10.3389/fonc.2022.1026153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2022.1026153
relevant to survival in both the training cohort (p<0.001) and the

validation cohort (p=0.035) (Figures 2F, G).
Oncogenic lncRNA CRNDE and signature
genes display strong correlation

Since an increasing number of studies have indicated that

non-coding RNAs may modulate the process of ferroptotic cell

death (43–45). Herein, we also assessed the potential correlation
Frontiers in Oncology 07
of obtained ferroptosis gene signature with the lncRNAs. Of

interest, while we found only a few lncRNAs in the training

cohort (KIFC1, DSCR4) and in the validation cohort (SLC44A4,

PSMB1, LINC01398, LINC01213, LINC00851), while the

oncogenic lncRNA CRNDE was significantly correlated in

both cohorts (Figure 3A). We also observed that the risk score

increased significantly with increasing expression of CRNDE in

both cohorts, MMRF-COMMPASS cohort (left) and GEO

cohort (right). (Figure 3B). Further analysis revealed that the

lncRNA CRNDE and signature genes interact with each other at
B

C D E

F G

A

FIGURE 2

Gene enrichment and immunofiltration analysis confirmed the relevance of the signature in high-risk MM patients. (A) Bubble diagram shows
gene counts and gene ratio of the significantly enriched KEGG pathway terms. (B) Ridgeline plot shows enrichment score of the significantly
enriched KEGG pathway terms. (C) Immune cell population alternation associated with OS with statistically significant difference in both cohorts.
(D, E) the enrichment degree of high-risk group was significantly higher than that of low-risk group in both cohorts by ssGSEA analyses ***
indicates P-value < 0.001. (F, G) Activated CD4+T cells were relevant to survival in both the training cohorts. KEGG, kyoto encyclopedia of
genes and genomes; GSEA, gene set enrichment analysis; ES, enrichment score.
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both the mRNA level and the protein level (Figures 3C, D). Our

analysis showed that all tested proteins were reasonably good

interaction partners of the lncRNA CRNDE. However, a selected

few proteins such as HELLS, SLC16A1, and CDKN2A were

predicted to be the major interacting partners of the lncRNA

CRNDE. With one exception (DDIT4), all other ferroptosis

associated genes in the obtained signature were enriched in

repetitive genomes, especially with Alu-related repeats (MIOX,

HELLS, DAZAP1, TRIB3, PIK3CA, SUV39H1).
Discussion

Emerging evidence suggests that ferroptosis may be the

target of innovative antitumor therapies (46, 47). Given this,

there have been a multitude of studies that have defined several

aspects of genes and mechanisms related to ferroptosis in

cancers (48–50). However, the effects of genome organization

(repetitive genome) in the proximity of these genes have not

been investigated. In addition, only a few studies have

investigated the aspect of ferroptosis in multiple myeloma

(MM), a form of cancer characterized by excessive

proliferation and dysfunction of certain plasma cells in the

bone marrow (5). MM being a hematological malignancy
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harbors biological complexity due to several disrupted cancer

pathways resulting from multiple genetic abnormalities and

epigenetic aberrations (4, 51, 52). A recent study showed that

induction of Ferroptosis in MM cells triggers DNA methylation

and histone modification changes associated with cellular

senescence (4). Similarly, a study compared the kinomic

activity profile of the natural anticancer agent withaferin A

with apoptotic and ferroptotic signatures to predict the mode

of cell death in MM cells (53). Considering this, herein, we

investigated the genomic architecture of ferroptosis-related

genes and independently constructed a prognostic signature

for patient stratification in MM.

To this end, we first defined the ferroptosis-related genes and

assessed the presence of the repetitive genome in their promoter

region and specified the gene clusters with L1, Alu, and L1/Alu

repeats. To mention, such repeats have been described by their

regulatory role in gene expression (54)., however, the

significance of their distribution or configuration remains

unclear. Moreover, further clustering of these genes revealed

high prevalence of LINE/L1, SINE/MIR, and SINE/Alu and low

prevalence when these genes were combined or when LINE/L2

or others were included. The functional analysis revealed that

the obtained clusters are involved in key cellular and molecular

processes. For instance, the gene cluster associated with LINE/L1
B

C
D

A

FIGURE 3

Oncogenic lncRNA CRNDE and signature genes display strong correlation. (A) The potential significant correlation of obtained ferroptosis gene
signature with the lncRNAs. (B) lncRNA CRNDE was significantly correlated in both cohorts, MMRF-COMMPASS cohort (left) and GEO cohort
(right). (C) The interaction between the transcript of lncRNA CRNDE and signature genes related mRNA. (D) The interaction between lncRNA
CRNDE and signature genes related proteins.
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showed involvement in cellular responses to external stimuli

(cytokine production, nongenomic effect of vitamin D,

metabolic-related processes). While, the gene clusters more

associated with SINE/Alu showed standard metabolic

processes and cellular adaptations to endogenous factors

(response to starvation, autophagy, ferroptosis, fatty acid

metabolism). Of interest, the clusters with Alu/L1-related

genes show chromatin pathways primarily linked sirtulin 1

(SIRT1) and histone lysine methyltransferase (SUV39H1) genes.

Next, using the stringent strategy, we established the

ferroptosis-related prognostic genes signature containing

fourteen genes (SLC38A1, CDKN2A, MIOX, AGPS, HELLS,

FH, DAZAP1, SLC16A1, SUV39H1, DDIT4, TRIB3, ALOX12B,

PIK3CA, ISCU). We further classified patients into high-risk

and low-risk groups based on the mean risk score according to

signature. We also confirmed the prognostic power and

independence of the obtained signature related to ferroptosis

with other clinical characteristics (age, albumin, Β2M,

creatinine, CRP, hemoglobin, isotype, ISS stage, LDH, race,

sex, risk) and found it to be a reliable indicator for patients

with MM. Besides, we investigated the reliability of the obtained

signature in a panel of 29 cancers and found that these genes are

relatively highly expressed in most cancers. Importantly, we

found superior performance and better prognostic ability of the

obtained ferroptosis-gene signature compared to 10 already

known biomarkers. The outcome of decision curve analysis

(DCA) of the nomogram affirmed the possible use of this

signature for clinical utility. As next, we utilized the

ferroptosis-related gene signature for GSEA analysis and found

that several KEGG terms significantly enriched in the high-risk

group. Among them, four ferroptosis-related pathways,

including proteasome, cysteine and methionine metabolism,

p53 signaling pathway and DNA replication, were found to be

significantly enriched in high-risk MM patients. In terms of

clinical application, myeloma patients receiving proteasome

inhibitor (ie, bortezomib) benefited in OS compared to those

who did not receive proteasome inhibitor (55)., and proteasome

inhibitor was commonly used to treat relapsed/refractory

myeloma, either as single agent or combined with other

therapies (56). Given that immune cell infiltration may have a

differential impact on high and low-score patients, we also

assessed the degree of immune infiltration and found that the

high-risk MM (in the training cohort) had lower immune and

stromal score but high tumor purity. Among several immune

cell populations, we found that activated CD4+ T cells and

activated CD8+ T cells were significantly upregulated in the

high-score group. Of significance, only activated CD4+ T cells

were relevant to survival in both the training cohort and the

validation cohort. Since MM is an immunoproliferative disease,

the increased frequency of Tregs and T cells possessing a

regulatory function have already been discussed MM patients

(57). An independent study also reported a higher proportion of

activated CD4+ Tregs in MM patients compared to healthy
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donors (58). The robust signature we used to establish the

relationship between activated CD4+ T cell subsets and patient

survival is concordant to these studies. However, the exact

mechanism by which immune cells, especially activated CD4+

T cell subsets, affect MM remains unclear. To mention, some of

the genes in our signature has already been implicated in MM,

for instance, ALOX12B variants has been proposed as a

biomarker for progression and resistance in MM (59).

CDKN2A has previously been found to be differentially

expressed in MM (60)., and its overexpression has been

correlated with poor OS in MM (61). SUV39H1 and the

contribution of other epigenetic modifiers has been implicated

in MM development and disease progression (62). To mention,

some studies have been conducted on prognostic gene signatures

related to cell death mechanisms such as ferroptosis (63, 64) and

autophagy (65, 66) seeking their potential role in cancer

treatment. Of importance, the ferroptosis-related gene

signature, we presented in the current study is the first for MM.

Next, we investigated whether the obtained signature shows

any potential correlation with the lncRNAs implicated in

cancers. Interestingly, we identified few lncRNAs (KIFC1,

DSCR4) in the training cohort and (SLC44A4, PSMB1,

LINC01398, LINC01213, LINC00851) in the validation cohort

appears to correlate with the signature. Most importantly, we

identified the oncogenic lncRNA CRNDE significantly

correlated in both training and validation cohorts. LncRNA

CRNDE has been found to be altered in several cancers,

including colorectal cancer, glioma, hepatocellular carcinoma,

lung cancer, breast cancer, gastric cancer, and renal cell

carcinoma (67, 68). Of interest, a recent study performed

CRISPR-mediated deletion of the lncRNA CRNDE and

showed decrease in IL6 signaling and proliferation responses

in multiple myeloma cells (69). Our analysis revealed that

lncRNA CRNDE and signature genes interact with each other

at both the mRNA level and the protein level. Hence, by using

multiple myeloma, we support the potential use of non-coding

genome based ferroptosis targeting, which has recently been

suggested (23).

It is also important to mention the limitations of this study,

such as: 1) we did not evaluate the impact of therapies (e.g.,

targeted therapy and/or chemotherapy, with or without steroids,

etc.) on the defined high/low risk groups of MM patients. 2)

Mutations in certain genes (including KRAS, NRAS, TP53,

FAM46C, DIS3 and BRAF) have a high recurrence rate in

MM, however, we did not calibrate our signature according to

the mutation spectrum of patients. 3) The experimental

validation of our signature is a requisite. 4) The current

methodologies for the enrichment of plasma cells specially by

using anti-CD138 immunomagnetic bead selection may lead to

some potential bias for assessing the immune microenvironment

components (e.g. memory B cells, CD4+ T cells, and activated

NK cells), the composition of non-plasma cells may

proportionally be lower/affected. Despite this, our study is the
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first to define the effects of the repetitive genome on the

proximity of ferroptosis related genes and their putative

association with the oncogenic lncRNA CRNDE.

Conclusions

We showed that ferroptosis-related genes are enriched with

the repetitive genome in their proximity, with a strong

predominance of the SINE family, followed by LINE, of which

the most significant discriminant values were SINE/Alu and

LINE/L1, respectively. In addition, we developed an independent

predictive model/signature comprising fourteen ferroptosis-

related genes that can identify MM high-risk patients with

lower immune/stromal score and higher tumor purity in their

immune microenvironment.

Besides, we found that the oncogenic lncRNA CRNDE

correlated with the risk score and was highly associated with

most of the signature genes.
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SUPPLEMENTARY FIGURE 1

Association of repetitive genome content in the upstream promoter

region and their functional meaning for ferroptosis-related genes. (A)
Hierarchical clustering of genes based on the normalized score of repeat

quantity and length “Log (Repeat content)”. (B) On top: k-means
clustering of genes based on SINE/Alu and LINE/L1 (brain sections are

from Allen Brain Atlas up-expression enrichment) and bottom: functional

enrichment of each gene cluster.

SUPPLEMENTARY FIGURE 2

Flowchart of the study. LASSO, the least absolute shirankage and selection

operator Cox regression model; ROC, receiver operating characteristic;
MM, multiple myeloma.

SUPPLEMENTARY FIGURE 3

Construction of the prognotic gene signature using LASSO regression

analysis. (A) Venn Diagram represents 17 potential prognostic genes
composed from Intersecting 1669 univariate genes with 269 ferroptosis

genes. (B) LASSO coefficient profiles of 17 ferroptosis-related potential
prognostic genes. Each curve corresponds to a gene. (C) Selection of the

optimal parameter in LASSO regression with 10-fold cross validation.

LASSO, the least absolute shirankage and selection operator Cox
regression model.

SUPPLEMENTARY FIGURE 4

The distribution of fourteen signature genes based on their mean risk
score. (A–L) SLC38A1, CDKN2A, MIOX, AGPS, HELLS, FH, DAZAP1,

SLC16A1, SUV39H1, DDIT4, TRIB3, ALOX12B. (M-N) PIK3CA, ISCU.

SUPPLEMENTARY FIGURE 5

Time-dependent dynamic AUC curves of the 14-gene signature risk score
in the training (A) and validation (B–G) cohorts. The time-dependent

dynamic AUC curve shows a comparison between the risk score and
other independent factors. AUC, area under the ROC curve; ROC,

receiver operating characteristic.

SUPPLEMENTARY FIGURE 6

Nomogram and its associated calibration curve analysis. (A) Ferroptosis-
related fourteen-gene based nomogram predicting the 3- and 5-year

survival probability in patients with multiple myeloma. (B, C) Calibration
analysis of ferroptosis-related fourteen-gene containing nomogram at 3

years (B) and 5 years (C).

SUPPLEMENTARY FIGURE 7

Decision curve analysis of the clinical use of ISS stage and the ferroptosis-
related fourteen-gene based nomogram in multiple myeloma.
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SUPPLEMENTARY FIGURE 8

Cell composition of tumormicroenvironment investigated by CIBERSORT. (A)
Cell composition of Bonemarrow (B)Non-plasma cell composition.

SUPPLEMENTARY FIGURE 9

GSEA result of KEGG gene set based on the risk-score of each multiple

myeloma patients. (A) Proteasome (B) Cysteine and methionine
metabolism (C) p53 signaling pathway (D) DNA replication (E)
Homologous recombination (F) Base excision repair (G) Mismatch
repair (H) Fanconi anemia pathway (I) Spliceosome (J) Aminoacyl-tRNA

biosynthesis (K) Cell cycle (L) Nucleotide metabolism. KEGG, kyoto
encyclopedia of genes and genomes; GSEA, gene set enrichment

analysis; NES, normalizedN enrichment score; FDR, false discovery rate.
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SUPPLEMENTARY FIGURE 10

Relationship between immune infiltration level and ferroptosis-related
fourteen-gene risk score. The distribution of immune score, stromal score

and tumor purity upon different risk score in the training cohort (A–C) and
validationcohort (D–F). Thecorrelationbetween risk score and thedistribution

of immune score (G), stromal score (H) and tumor purity (I), respectively. *p<
0.05, **p< 0.01, ***p< 0.001.

SUPPLEMENTARY FIGURE 11

Cox proportional hazards regression models based on the enrichment
level of 28 immune infiltration-related gene sets via ssGSEA analyses in (A)
MMRF-COMMPASS study and (B) GSE24080. Red stars indicate P<0.05.
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