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Pancreatic cancer is a digestive system malignancy and poses a high mortality

worldwide. Traditionally, neutrophils have been thought to play a role in acute

inflammation. In contrast, their importance during tumor diseases has been

less well studied. Generally, neutrophils are recruited into the tumor

microenvironment and exert inflammation and tumor-promoting effects. As

an essential part of the tumor microenvironment, neutrophils play diverse roles

in pancreatic cancer, such as angiogenesis, progression, metastasis and

immunosuppression. Additionally, neutrophils can be a new potential

therapeutic target in cancer. Inhibitors of cytokines, chemokines and

neutrophil extracellular traps can exert antitumor effects. In this review, we

describe the role of neutrophils in the development and progression of

pancreatic cancer, discuss their potential as therapeutic targets, and aim to

provide ideas for improving the prognosis of patients with this malignant

tumor disease.

KEYWORDS
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Introduction

The tumor microenvironment (TME) is a vital part of tumor formation, and TME

homeostasis is regulated by signal transduction pathways and metabolism among tumor

cells, endothelial cells, stromal cells and immune cells (1). Tumor growth can be

modulated by the secretion of signaling molecules by immune cells, so in some cases

tumor growth, invasion and metastasis can be regulated by the interactions between

cancer cells and immune cells in the TME (2). Therefore, it is important to understand

the relationships between cancer cells and the TME for the development of effective

therapies. Traditionally, neutrophils have been thought to play a role in acute

inflammation. Increased numbers of neutrophils enter tissues and kill microorganisms
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by phagocytosis or the release of active substances from granules.

Moreover, these cells can also cause severe damage to normal

tissues (Figure 1). With increased knowledge of neutrophils, it

has been found that neutrophils also participate in chronic

inflammation, adaptive immune responses and tumor diseases

(3, 4). Tumor-associated macrophages and fibroblast cells are

involved in inflammation, which can support cancer progression

(5). However, some evidence also suggests that neutrophils can

be a new example of cancer-related inflammation and immunity

(6, 7).

Pancreatic cancer is a malignancy and poses a serious

medical trouble. In 2017, the number of pancreatic cancer

cases worldwide was more than twice as high as in 1990.

There was a 2.3-fold increase in the number of deaths from

196,000 in 1990 to 441,000 in 2017 (8). Despite progress in the

available treatment methods and efficacy, pancreatic cancer

patients have poor prognosis. Studies on the carcinogenic

mechanism and the search for immune targets based on the

TME have become directions in pancreatic cancer research, and

tumor-associated neutrophils (TANs) provide new ideas.

In this review, we summarize the functions of neutrophils in

pancreatic cancer development processes, such as angiogenesis,

progression, metastasis, and immunosuppression. Next, we

discuss the potential of neutrophils as anticancer therapeutic

targets. We also propose future directions and how neutrophils

may affect the therapeutic outcomes of pancreatic cancer

patients, which may contribute to a new generation of

anticancer therapies for pancreatic cancer patients.
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Neutrophil life activity

Production, differentiation and death

Neutrophils account for 50-70% of circulating leukocytes in

the human body (9). More than 1011 neutrophils may be

produced each day (3). Human neutrophils have a half-life of

approximately 8 hours in the circulation and are generally

considered short-lived cells, but some studies have shown that

the average circulating life of human neutrophils is 5.4 days (3,

10, 11). As hematopoietic stem cells differentiate in bone

marrow, they first give rise to common myeloid progenitors,

followed by granulocytes and monocytes. Granulocyte-colony

stimulating factor (G-CSF), produced by bone marrow stromal

cells, is a key cytokine that stimulates the production and

mobilization of neutrophils in bone marrow (12). G-CSF

regulates the differentiation of granulocyte-monocyte

progenitor cells into neutrophils and the formation of

myeloblasts. The subsequent stages of differentiation are

promyelocytic, myelocyte, metamyelocyte, band cell and

polymorphonuclear granulocyte (3). Mature neutrophils are

released into the bloodstream and play roles in inflammation,

infection, and chronic diseases in the body.

There are protective mechanisms to balance the number of

neutrophils so that these cells do not become overactive in blood

vessels and cause severe damage to normal tissues. The bone

marrow is also a site at which circulating neutrophils are

recycled. Neutrophil release is negatively regulated by CXC-
FIGURE 1

Killing mechanisms of neutrophils. The killing mechanisms of neutrophils include both intracellular and extracellular mechanisms. Neutrophils
can encase pathogens in the phagocytic body through phagocytosis and can also release particles into the extracellular environment that act on
external pathogens. Meanwhile, normal tissues in the body can be attacked by neutrophils.
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chemokine receptor 4 (CXCR4) signaling in a cellular

autonomous manner (13). In the bone marrow, senescent

neutrophils are removed via a CXCR4-dependent process.

Neutrophils are reassigned from the bone marrow to the blood

when CXCR4 signaling is lost (14). In addition, liver Kupffer

phagocytosis functions and regulation of the microbiome also

limit over the numbers of neutrophils (15, 16). Neutrophils are

often activated by a two-step process of priming followed by

activation, which avoids non-specific triggering of their

cytotoxic mechanisms, and undergo rapid apoptosis which

blocks their ability to respond to extracellular ligands (17, 18).

Thus, these mechanisms by which both the number and

activation of neutrophils are tightly controlled in the

circulation ensures that the human body is protected against

microbial pathogens and reduces damage to its own tissues.
Neutrophil recruitment

Neutrophil recruitment begins with changes in endothelial

cells and processing including tethering, rolling, adhesion,

crawling and, finally, transmigration (4). After neutrophils

reach the vascular edge, their rolling process is dependent on

selectin, and the adhesion process is dependent on integrin,

which results in the tight adherence of neutrophils to endothelial

cells (19, 20). Platelet endothelial cell adhesion molecule is

located on the neutrophil surface and endothelial cell surface,

promoting neutrophil migration out of the vascular endothelium

by mediating the binding of these two cells (21). Then

neutrophils secrete molecules such as collagenase to degrade

the vascular basement membrane but preferentially they move

through membrane regions with low expression of extracellular

matrix components, and then enter the surrounding tissues (4).

Then, neutrophils migrate between pericytes, crawl along the

cells through intercellular signals and search for gaps through

which they can finally leave the vasculature. After extravasation,

neutrophils make directional movements along the chemical

concentration gradient and accumulate in inflammatory sites.

Chemokines, such as CXCR1, CXCR2 and CXCR4, are

critical in neutrophil recruitment (4, 22, 23). In addition,

cytokines such as interleukins (ILs) and tumor necrosis factors

(TNFs), and intracellular proteins such as poly ADP-ribose

polymerase 1, cathepsin C and S100 calcium-binding protein

A9 can also increase neutrophil activation and recruitment (24–

27). Prolongation of the neutrophil lifespan can further enhance

their functional roles. Although the normal lifespan of

neutrophils is short, certain cytokines and bacterial products

can prolong neutrophil survival by interfering with apoptosis.

For instance, G-CSF can delay neutrophil apoptosis by

inhibiting the activation of calpain, a calcium-dependent

cysteine protease that is upstream of caspase-3, resulting in a

delay in apoptosis of approximately 12 hours (28, 29).
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Neutrophils and cancer

Circulating neutrophils

Serological indicators are widely used to predict the overall

survival (OS, a term that denotes the time of staying alive for

individuals that suffer from a specific disease) of tumor diseases

due to their advantages of simplicity, economy and

noninvasiveness (30). As a marker of systemic inflammation,

the neutrophil/lymphocyte ratio (NLR) is currently an attractive

biomarker for risk stratification and guiding treatment decisions

in cancer patients (31).

Especially in early-stage pancreatic ductal adenocarcinoma

(PDAC), finding biomarkers to predict recurrence can lead to a

better prognosis. The NLR is associated with the tumor stage,

and patients with PDAC whose tumor stages were less than IIA

had longer OS and recurrence-free survival (RFS, time from

surgery to the date of first recurrence) when the NLR > 2.2

(hazard ratio =3.310, 95% confidence interval: 1.259-8.745).

However, the NLR was not associated with OS or RFS in

patients with tumor stage greater than IIB (32). Since only a

few pancreatic cancer patients have surgical indications at the

time of diagnosis, it is important to construct accurate

prognostic models in patients with unresectable pancreatic

cancer. The NLR is better than other serological indicators

(such as the platelet/lymphocyte ratio and prognostic

nutritional index) among prognostic factors in nonsurgically

resectable pancreatic cancer patients after 6 months of follow-up.

Multivariate analysis showed that a high NLR (HR=2.430, 95%

CI: 1.484 to 3.977) is an independent predictor of OS (33).

The NLR can also predict how pancreatic cancer will respond

to drug treatment. In retrospective studies of pancreatic cancer

patients treated with FOLFIRINOX (oxaliplatin, irinotecan,

leucovorin, 5-fluorouracil) and immune checkpoint inhibitors, a

high NLR was associated with poor prognosis (34, 35).
Neutrophil extracellular traps (NETs)

NETs are formed by the release of cellular contents by

activated neutrophils into surrounding tissues or circulation

(36). Neutrophils can be stimulated to produce NETs by a

variety of substances, including bacteria, viruses and some

chemical or biological factors (37). Chemokines in the TME,

such as IL-8, can promote the formation of NETs and help

recruit more neutrophils (38). Conversely, NETs can also

promote tumor growth and have a positive effect on the TME,

including enhancing mitochondrial function in tumor cells,

blocking the function of immune cells and exhibiting

angiogenic activity by increasing capillary length, loop

number, and tubule area (39, 40). Thus, NETs can accelerate

tumor growth and cause tumor immune escape.
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Based on the putative role of NETs in the TME, NETs may

have potential as a biomarker for prognosis of some cancer

patients. For example, the level of NETs is increased in cancer

patients and is significantly higher in patients with advanced

stage disease than in patients with early disease (41). In patients

with pancreatic cancer, NET was an independent prognostic

factor for OS (HR=2.366, 95% CI: 1.408–3.978) and RFS

(HR=3.037, 95% CI: 1.809–5.098) and could predict the

survival of patients who received gemcitabine-based

chemotherapy (42). At present, NETs were confirmed to be

involved in the biological process of pancreatic cancer in some

preclinical studies. NETs-mediated metastasis and drug

resistance of cancer cells will provide new insights into

anticancer therapies.
TANs and cancer diseases

TAN can be involved in the progression of tumor disease. A

meta-analysis showed that the level of intratumoral neutrophils

was independently associated with OS and RFS in cancer

patients (43). In the TME, TANs can take an antitumorigenic

and pro-tumorigenic phenotype (44). Cytokines in the TME

impacts on the balance of these two subpopulations. For

instance, TAN can become the “promoting the tumor” type in

response to transforming growth factor-b (TGF-b) (45).

Neutrophil with this phenotype can produce pro-tumor factors

(6). By contrast, low doses of interferon -b induced neutrophil to

polarized to the “antitumor” phenotype in C57BL/6 and BALB/

C mice, and similar changes were also observed in melanoma

patients treated with type I interferon (46). “Antitumor”

phenotype TANs produce chemokines, such as CCL3, CXCL9,

CXCL10, to recruit CD8+ T cells to the TME (47). There is also

evidence that they can increased cytotoxicity and reduced

immunosuppression by the production of TNF-a, ROS and

CD95, thus providing anticancer effect (48, 49).

The diversity of neutrophils leads to their dual potential in

the TME. As a part of tumor-associated inflammation, TANs are

involved in tumor growth and metastasis. Additionally,

neutrophils can interact with other immune cells and stromal

cells, resulting in extracellular matrix accumulation and immune

function changes (50). In mouse models, TANs mediate the

infiltration of regulatory T (Treg) cells and macrophages in the

TME by secreting the chemokines CCL2 and CCL17, leading to

the growth of hepatocellular carcinoma cells and increasing the

resistance of hepatocellular carcinoma patients to sorafenib (51).

In colorectal cancer, tumor growth is related to the gut

microbiome because these tumor cells produce IL-17 and

mediate the inflammatory response (e.g., driving B-cell

infi l trat ion). Neutrophils can limit the number of

microorganisms and the expression of IL-17 to reduce

inflammation related to tumor progression (52). Conversely,

neutrophils can also mediate antitumor responses (50). IL-1 and
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IL-1b signaling in neutrophils enhances the antimicrobial

activities in colorectal cancer, which inhibits bacterial-driven

inflammation and alleviated tumorigenesis (53). Hepatocyte

growth factor (HGF) acts on the HGF receptor expressed on

neutrophils and promotes the production of inducible nitric

oxide synthase (iNOS); iNOS releases nitric oxide and promotes

apoptosis of tumor cells (54).
Carcinogenic mechanisms of
neutrophils in pancreatic cancer

As we mentioned earlier, TANs participate in various

cancer-related processes in the TME and are associated with

poor prognosis for most cancers. In this section, we will

introduce how TANs promote the progression of pancreatic

cancer, such as through angiogenesis, pancreatic cancer cell

metastasis and immune suppression. A deep understanding of

these mechanisms will not only enable us to understand the

promoting effect of the TME on pancreatic cancer, but also

provide us with new therapeutic targets.
TANs and angiogenesis

Angiogenesis is a critical link in tumor growth and

metastasis, and is jointly regulated by tumor cells, stromal cells

and their bioactive products, such as various growth factors and

extracellular matrix (55). Activated neutrophils release multiple

angiogenic factors, including vascular endothelial growth factors

(VEGFs), CXCLs and matrix metalloproteinases (MMPs), and

form NETs (56).

Histones, which are major components of NETs,

significantly increased vascular endothelial tubule formation in

a dose-dependent manner (57). After treatment with 100 IU/mL

heparin and 62.5 mg/mL polysialic acid for 1 hour, the histone-

induced production of tubules in vascular endothelial cells was

inhibited. This effect occurred because heparin and polysialic

acid are anionic substances that bind to positively charged

histones and neutralize their activity (57).

MMP plays an important role in angiogenesis, and MMP-9

promotes the release of VEGF from the extracellular matrix and

participates in the interaction between VEGF and VEGF

receptors (58). Neutrophils can be a source of MMP-9 in

tumor angiogenesis (59). The addition of neutrophils to

pancreatic cancer cells can increase the budding rate by more

than 2.5 times because MMP-9 may promote endothelial cell

migration. After 14 days of treatment with bevacizumab (a

VEGF inhibitor) and doxycycline (a drug which could inhibit

angiogenesis as effectively as MMP-9 inhibitors), the tumor

volume in pancreatic cancer mice was significantly reduced.

Furthermore, the average vascular density of pancreatic cancer

mice was also significantly reduced (60). Therefore, MMP-9
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produced by neutrophils may be a therapeutic target in

pancreatic cancer treatment and provide a feasible alternative

treatment for pancreatic cancer patients.

Neutrophil gelatinase-associated lipocalin (NGAL) is

secreted by neutrophils and is upregulated in a variety of

tumor diseases (61). NGAL can potential ly inhibit

angiogenesis by reducing VEGF production in pancreatic

cancer cells. Compared with that in the control groups, adding

NGAL reduced the tube formation of human umbilical vein

endothelial cells (HUVECs) in MIA PaCa-2 (RRID:

CVCL_0428) and PANC-1 (RRID: CVCL_0480) (two

pancreatic cancer cell lines) cells by 69.5% ± 5% and 68% ±

7.5%, respectively (62). Moreover, CXCL5 mediates pancreatic

cancer angiogenesis in mouse model by activating multiple

signaling pathways, including signal transducer and activator

of transcription pathways and extracellular signal–regulated

kinase pathways in human endothelial cells (63). Due to the

important role of neutrophils in tumor angiogenesis, neutrophil

suppression may be an effective anticancer strategy.
Progression and metastasis

TANs are involved in tumor progression and migration. As

early as 1989, neutrophils were shown to promote lung

metastasis of breast cancer (64). TNF, leukotriene B4 and IL in

the TME play roles in tumor progression and metastasis

influenced by neutrophils (6).

In normal pancreas tissue, obesity promotes the

inflammatory response and fibrosis; in pancreatic cancer,

cytokines produced by dysfunctional fat cells, such as IL-1b,
increase pancreatic stellate cells (PSC) activation and recruit

TANs (65). PSCs are the main cell type in the pancreatic cancer

stroma, and their large presence suggests that they may

contribute to the metabolism of cancer cells (66). TANs

also secrete IL-1b, which is involved in PSC activation,

immunosuppression and PDAC progression. Moreover,

adjuvant chemotherapy showed no significant survival

advantage in overweight and obese patients with PDAC; Thus,

the cross interaction between adipocytes, TANs and PSCs

promotes the progression of PDAC, with IL-1b playing a

major role in this process (65).

The purinergic receptor P2RX1, an ATP-gated ion channel, is

associated with the inflammatory activation of immune cells (67).

A large number of P2RX1-deleted neutrophils were found in the

hepatic metastasis model of PDAC. The immune response of

P2RX1 negative neutrophils in the PDAC TME is characterized

by elevated MMP-9. The metabolic characteristics were a

significant increase in the oxygen consumption rate and a

nonsignificant increase in the extracellular acid rate (decreased

glycolysis in neutrophils and enhanced oxidative phosphorylation

in mitochondria). This effect occurs because the deletion of P2RX1

can increase the activity of the neutrophil transcription factor
Frontiers in Oncology 05
NF-E2 p45-related factor 2 (NRF2) (68). NRF2 is critical in

regulating redox, metabolic, protein homeostasis, and

inflammation (69). Increased NRF2 activity contributes to the

metabolic reprogramming of neutrophils during polarization.

Second, NRF2 directly regulates PD-L1 transcription and has a

direct impact on CD8+ T-cell failure (68). Because Nrf2 is critical

for immunosuppressive microenvironment formation in

pancreatic cancer liver metastases via shaping the

immunosuppressive phenotypes of P2RX1-negative neutrophil,

future therapy, such as inhibiting the specific gene to reduce the

particular phenotype of neutrophil subpopulation, may help treat

pancreatic cancer.

NET formation is dependent on receptor for advanced

glycation end products (RAGE) and autophagy pathways and

is mediated by citrullination of histones to allow DNA expulsion

from cells. Inhibition of autophagy by chloroquine or ablation of

RAGE resulted in decreased NET formation (70). NETs can

enhance tumor migration and invasion by inducing epithelial

cells to transform into mesenchymal cells. Moreover,

neutrophils can degrade E-cadherin on pancreatic cancer cells

by secreting elastase, leading to increased tumor cell migration

and invasion, and resulting in PDAC progression and metastasis

(71). The effects of neutrophils on the progression and

metastasis of pancreatic cancer are summarized in Figure 2.
TANs and immunosuppression

The TME has the ability to regulate immunosuppression, and

understanding the mechanisms by which pancreatic cancer cells

evade tumor immunity is crucial for developing more effective

therapies. NETs can promote tumor growth and metastasis

through a variety of mechanisms: trapping circulating tumor

cells and protecting them, thereby preventing T cell and natural

killer cell-mediated cytotoxicity (56).

CXCL5, a CXCR2 ligand, are significantly elevated in pancreatic

cancer and can recruit TANs. This process is regulated by the

activity of the NF-kB signaling pathway in mouse models,

suggesting that neutrophils are involved in pancreatic cancer

inflammation. Reducing CXCR2 significantly inhibited the

number of TANs in pancreatic cancer, leading to spontaneous, T-

cell-dependent tumor growth inhibition (72). Because the CXCR2

ligand axis is involved in the recruitment of TANs and the

regulation of T-cell immunity in pancreatic cancer, it is expected

to be a potential therapeutic target for pancreatic cancer.

Programmed cell death protein 1 (PD-1) and cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) are both signaling

molecules commonly seen on activated T cells, and have been

found to be effective immunotherapeutic targets in cancer (73).

IL-17 is highly expressed in tumor tissues. After treatment with

IL-17, several chemokines capable of recruiting neutrophils were

significantly induced. Researchers found that IL-17 signaling

favors CD8+ T-cell inactivation and significantly affects immune
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checkpoint blockade (PD-1, CTLA-4) sensitivity. However,

inhibition of neutrophils neutralizes IL-17. Thus, IL-17

promotes immunosuppression and resistance to immune

checkpoint blockade by inducing neutrophil infiltration in

pancreatic cancer (74).

Heterogeneous myeloid-derived suppressor cells (MDSCs)

are suppressors of antitumor immunity, making tumor

immunotherapy difficult. MDSC can inhibit T cell and NK cell

proliferation and promote the function of Treg cells by secreting

TGF-b and IL-10; moreover, MDSC can release reactive oxygen

species and cause damage to the infiltrating lymphocytes in the

TME (75). Neutrophil-like MDSCs (nMDSCs) are significantly

increased in PDAC. The expression of high levels of CD13 on

nMDSCs more effectively suppresses antitumor immunity

through an arginase-1-related mechanism and PDAC patients

with higher CD13 expression have a shorter OS (76).

Currently, there have been few studies on the specific mechanism

by which TAN indirectly promotes immunosuppression. TANs can

promote the recruitment of Tregs to the TME through the release of

the chemokine CCL17, leading to the formation of an

immunosuppressive microenvironment (77). A link between TANs

and other immunosuppressive cell types acting together to impair
Frontiers in Oncology 06
antitumor immunity in pancreatic cancer needs to be further studied

in the future. The interactions between neutrophils and other cells in

the pancreatic cancer TME are summarized in Table 1.
Neutrophils as therapeutic targets

Gemcitabine, which produces anticancer activity by

interfering with DNA synthesis in cancer cells, has been the

most important chemotherapy drug for patients with pancreatic

cancer in the past two decades (78). Due to the poor efficacy of

chemotherapeutic drugs in some patients, new clinical treatment

strategies are increasingly accepted in the treatment of pancreatic

cancer. At present, targeted therapy and immunotherapy is

representative of a new generation of cancer therapies, and is

also the focus of pancreatic cancer research (79). The exploration

of the biological function of immune cells in the tumor

microenvironment will lead to more effective therapies to

suppress the inflammatory response of the TME using cytokine

inhibitors, chemokine inhibitors and immune checkpoint

inhibitors to enhance anticancer immunity. TAN targeted

therapies have been validated in human cancers (80). The
FIGURE 2

Impact of neutrophils on the progression and metastasis of pancreatic cancer. Obesity-induced inflammation and TAN infiltration activate PSCs,
leading to connective tissue proliferation in the TME and promoting tumor growth. Conversely, PSCs can also recruit TANs. Neutrophils
produce HMGB1 in pancreatic cancer, which induces the epithelial-mesenchymal transformation of pancreatic cancer. Moreover, neutrophils
can also secrete elastase to degrade E-cadherin on pancreatic cancer cells, resulting in the enhanced migration and invasion of pancreatic
cancer cells. In a mouse metastatic tumor model, NRF2 activity in P2RX1 negative neutrophils is elevated, leading to metabolic reprogramming
during polarization. As a result, CD8+ T cells are inhibited, and tumor immune escape is mediated. NETs are upregulated in pancreatic cancer
through a RAGE dependent and autophagy mediated pathway. NETs enhance the migration of hepatic stellate cells, activate cancer-associated
fibroblasts, and promote hepatic metastasis of pancreatic cancer. Neutrophils are also involved in pancreatic cancer vascular endothelial cell
integrity damage and promote metastasis of pancreatic cancer cells. CAF, cancer-associated fibroblasts; EMT, epithelial-mesenchymal
transformation; PDAC, pancreatic ductal adenocarcinoma; PD-L1, programmed cell death-ligand 1; PSC, pancreatic stellate cell; IL, interleukin;
EC, endothelial cell; NET, neutrophil extracellular trap.
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importance of neutrophils in mediating the effects of cancer

therapies and the changes in neutrophils during these treatment

processes within the TME is an emerging area of research. Several

neutrophil-modulating therapies were originally developed for

other indications and have effects beyond neutrophils. The

current neutrophil modulatory effects of the treatments are

summarized in Figure 3.
Chemokine inhibitors

Chemokine systems have been widely considered as

potential new drug targets for cancer treatment due to their

biological roles in the TME (81). The recruitment and activation

of neutrophils is dependent on CXCR2, so CXCR2 is one of the

most studied sites of action for neutrophil-targeted therapy. The

ligands of CXCR2 mainly include CXCL1, CXCL2, CXCL3,

CXCL5, and CXCL8 (82). The receptor-ligand axis of these

chemokines can drive the mobilization and recruitment of

neutrophils. Therefore, targeting CXCR2 is beneficial for

reducing neutrophils in the TME. In vivo, blocking CXCR2

inhibits neutrophil mobilization, and the combination of CCR

inhibitors and CXCR2 inhibitors enhances the pancreatic cancer

response to FOLFIRINOX chemotherapy (83).

Currently, many CXCR4 or CXCR4 ligand inhibitors are in

clinical development. For example, the CXCR4 inhibitors

LY2510924 and AMD3100 have been evaluated for antitumor

activity in combination with other drugs in patients with

colorectal and pancreatic cancer (NCT02737072) (84, 85). In a

phase II A clinical trial (NCT02826486), investigators evaluated

the safety and efficacy of the CXCR4 antagonist BL-8040 in

combination with pembrolizumab in metastatic PDAC and

found that BL-8040 increased the tumor infiltration of CD8+ T

cells. When BL-8040 was combined with pembrolizumab in

chemotherapy-resistant patients, the media OS was 3.3 months

and the disease control rate was 34.5% in the evaluable population.

Additionally, objective response rate, disease control rate, and
Frontiers in Oncology 07
median response duration were 32%, 77%, and 7.8 months in the

cohort that 22 patients received BL-8040 and pembrolizumab

with chemotherapy, respectively. These results suggesting that

CXCR4 and PD-1 co-inhibition may amplify the benefits of

chemotherapy for patients with PDAC (86).

The loss or inhibition of CXCR2 enables the entry of T cells

into the pancreatic cancer TME and enhances the antitumor

immune function of the TME. In xenograft tumor models, the

combination of CXCR2 and PD-1 inhibitors significantly

prolonged the survival of mice (87). AZD5069 is a small

CXCR2 antagonist that attenuates TGF-b -mediated drug

resistance in cancer cells (88). AZD5069 is also evaluated in

phase I B and II clinical studies (NCT02583477) for safety and

antitumor activity in metastatic PDAC (89). CXCL5, a ligand of

CXCR2, induces angiogenesis in pancreatic cancer. Inhibition of

CXCL5 with small interfering RNA and neutralizing antibodies

reduced tumor growth in a mouse model of pancreatic cancer

(63). Although CXCL5 inhibitors have not yet been tested in

cancer patients, their blockade of neutrophil recruitment and

anti-angiogenesis actions provide a direction for the future

treatment of pancreatic cancer patients.
Cytokine inhibitors

Cytokines are key mediators of cell signaling in the TME

(90). Recently, cytokines and cytokine receptors have received

extensive attention as targeted therapies for cancer, mainly by

inhibiting pro-inflammatory cytokines and pro-tumor cytokines

(91). As mentioned above, cytokines in the TME can induce

neutrophil differentiation and prolong the lifespan of

neutrophils. Therefore, inhibition of these cytokines to prevent

neutrophils from differentiating into pro-tumor phenotypes is

also one of the current targeted therapies.

TGF-b promoted the differentiation of neutrophils into a

pro-tumor phenotype. TGF-b inhibitors mainly target the

serine/threonine kinase domain of TGF-b receptor 1; for
TABLE 1 Interaction of neutrophils with other cells in the pancreatic cancer TME.

Factors Source Responder Effects Ref.

MMP-9 Neutrophil EC Promoting EC migration (60)

NGAL Neutrophil EC Reducing VEGF secretion (62)

NRF2 Neutrophil CD8+ T cell Regulating immune checkpoint transcription (68)

CXCL5 Most cells EC Mediating angiogenesis in pancreatic cancer (63)

IL-17 CD4+ T cell • Neutrophil
• T cell

Suppression of antitumor immunity (74)

IL-1b • Neutrophil
• PSC

• PSC
• Neutrophil

Promoting inflammation in PDAC and enhancing chemotherapeutic resistance (65)

TGF-b Most cells Neutrophil Promoting neutrophils to become the “pro-tumor” phenotype (45)
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instance, galunisertib in vivo in combination with immune

checkpoint inhibitors can significantly inhibit the growth of

pancreatic cancer and enhance the antitumor M1 macrophage

infiltration in the TME (92, 93). In current phase I B and phase II

trials, galunisertib has also shown good tolerability, safety and

antitumor activity in unresectable pancreatic cancer

(NCT02734160) (94, 95). Selecting predictive biomarkers of

TGF-b inhibition in pancreatic cancer patients may be more

effective in predicting treatment effect and patient prognosis.

IL-17 can recruit neutrophils and form NETs that reduce

cytotoxic CD8+ T cells in the pancreatic cancer TME (74). In

mice with IL-17 overexpression, antibodies to IL-17 and IL-17

receptors reduce pancreatic intraepithelial neoplasia and

neutrophil infiltration, and antibodies to IL-17 and IL-17

receptors are currently in clinical trials (96, 97).

G-CSF plays an important role in the activation and

mobilization of neutrophils. Lorlatinib is a novel, oral tyrosine

kinase inhibitor with anticancer activity in ALK- or ROS1-

positive cancer patients (98). Lorlatinib prevents G-CSF and

GM-CSF from inducing neutrophil migration. In PDAC,

lorlatinib specifically targets neutrophils to inhibit cancer cells
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by regulating the development of neutrophils in bone marrow

cells, reducing the accumulation of neutrophils in the TME, and

inhibiting tumor tissue fibrosis. When lorlatinib is combined

with anti-PD-1, the number of CD8+ T cells increases and CD44

+, CD69+, CD8+ T cells are activated, suggesting that lorlatinib

improves the response of PDAC to immunotherapy (99).

Similarly, a combination of suppressing cytokines that

promote neutrophil recruitment and blocking immune

checkpoints has been demonstrated in several preclinical trials.

For instance, combination of anti-CSF1 receptor, anti-PD-1 and

gemcitabine decreased the infiltration of myeloid cells and

improved the antitumor effect (100). Some clinical trials that

evaluating the safety and activity of cytokine inhibitors

combined with immune checkpoint inhibitors are ongoing

(NCT02947165, NCT04581343, NCT02777710).
Inhibition of NETs

NETs are now considered a promising cancer treatment

target. Because NETs are involved in angiogenesis,
FIGURE 3

Potential neutrophil-directed therapeutic targets in pancreatic cancer. Inhibition of chemokines and cytokines prevents neutrophil activation
and recruitment, thereby reducing neutrophils in the TME. TGF-b inhibitors can reduce the tumor-promoting phenotype of neutrophils. In the
TME, targeting neutrophil combined with immune checkpoint blockade can enhance the antitumor function in pancreatic cancer. NET
inhibitors prevent cancer cell metastasis, circulating hypercoagulable states, and venous thrombosis formation. TME, tumor microenvironment;
CAF, cancer-associated fibroblasts; PD-L1, programmed cell death-ligand 1; PD-1, programmed cell death 1; PMN-MDSC, polymorphonuclear-
myeloid derived suppressor cell; NET, neutrophil extracellular trap.
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immunosuppression and metastasis of cancer, inhibiting their

formation or promoting their elimination has been proposed as

a novel therapeutic strategy for cancer (46, 56). There are two

main methods to inhibit NET: inhibiting the formation of NET

and destroying the structure of NET. NET formation is

mediated by peptidyl arginine deiminase 4 (PADI4) and

elastase, in which PADI4 promotes the expulsion of

chromosomes via histone citrullination, but berberine can

inhibit PADI4 expression in vitro (101, 102). In PADI4-

deficient mice, pancreatic cancer growth was shown to be

restricted (103). Cancer cells can also release exosomes to

stimulate NET formation. Exosomes play a role in

intercellular communication by transferring intracellular

substances such as proteins, metabolites and nucleic acids to

recipient cells (104). Cancer-derived exosomes can transfer

factors related to cancer progression and promote

tumorigenesis by regulating proliferation, metastasis,

immune escape and increasing drug resistance processes

(105). Studies have shown that cancer-derived exosomes

transfer mutant KRAS to neutrophils, thereby promoting

NET formation by upregulating IL-8 (106). Therefore,

inhibition of exosome release in the TME is also a potential

antitumor strategy.

Suppressing the components of NETs is also one of the

strategies for targeting NETs. Serum DNA and citrullinated

histone H3 are markers of NET formation. DNase is

considered a promising cancer treatment for its ability to

degrade circulating free DNA, thereby destroying the structure

and function of NET (107). In a preclinical model of pancreatic

cancer, the use of DNase I significantly reduced the number of

fibroblasts accumulated in liver metastases, thereby attenuating

NET-induced cancer invasion and metastasis (108).

Thrombomodulin protein can degrade NET-derived high

mobility group box 1 through thrombin, thereby inhibiting

NET-induced epithelial-mesenchymal transformation and

preventing the invasion and metastasis of pancreatic cancer

cells (71).

Chloroquine is also a candidate to inhibit NETs.

Chloroquine destroys the structure of NETs by inhibiting

autophagy of glycosylated end-product receptors in pancreatic

cancer (70). A meta-analysis evaluating the clinical value of

using chloroquine as an autophagy inhibitor in the treatment of

cancers showed that autophagy inhibitor therapy significantly

improved the objective response rates, OS and progression-free

survival of cancer patients, suggesting that the role of

chloroquine in the treatment of pancreatic cancer should also

be explored (109).

Additionally, gentamicin inhibits NETs release from human

neutrophi ls and react ive oxygen species inhibi tor

(diphenyleneiodonium chloride) also reduces NET formation

in a concentration-dependent manner (110, 111). These drugs

are expected to be further validated the ability to inhibit NETs.
Frontiers in Oncology 09
Treatment of complications and
comorbidities for pancreatic cancer

Pancreatic cancer patients often have different diseases or

complications in which neutrophils play different roles.

Pancreatic cancer patients are in hypercoagulable state,

which is directly related to poor prognosis and venous

thrombosis (112–114). Citrullinated histone H3 is one of the

markers of NETs, and increased expression of citrullinated

histone H3 was observed in the thrombi of pancreatic cancer

mice. The thrombus weight decreased after using 1A8, an anti-

LY6G antibody, to deplete neutrophils and DNase I to deplete

NETs (115). Chloroquine inhibits NET formation and reverses

NET-mediated platelet activation and aggregation, as well as

tissue factor release. Researchers further found that the rate of

venous thromboembolism in patients treated with

hydroxychloroquine was 9.1%, while that in the control

group was 30% (70, 116).

Neutrophil infiltration was increased in pancreatic cancer

specimens from patients with type 2 diabetes mellitus (T2DM).

Patients with elevated neutrophils had reduced OS (HR=5.44,

95% CI 1.12 to 26.34) (117). Anorexia and muscle breakdown

induced by PDAC are also associated with inflammatory

stimulation of neutrophils mediated by the CCR2/CCL2 axis

(118). Inflammatory processes and immune system contribute to

the metabolic diseases (119, 120). Therefore, based on the role of

neutrophils in pancreatic cancer and metabolic disease, such as

T2DM, inhibition of neutrophils can simultaneously alleviate

the progression of both diseases. Combination therapeutic

strategy involving multiple immunomodulatory therapies may

prove to be more effective.
Other potential therapeutic targets

Tumor genotypes can affect the TME and play a key role in

treatment resistance. In gain-of-function Trp53 mutant mice,

intratumoral neutrophil infiltration increased and the numbers

of CD3+ T cells, CD4+ T cells and CD8+ T cells decreased.

After neutrophil removal, the sensitivity of CD40 agonists

combined with chemotherapy and immunotherapy was

enhanced (121).

Several bioinformatics analyses have shown a significant

correlation between oncogene expression and the infiltration

of various immune cells, including neutrophils, suggesting that

targeting these genes may also be a future therapy (122).

Chemotherapy induces the invasion of cytotoxic T cells into

the liver metastases of pancreatic cancer, but only briefly.

Neutrophils lead to tumor cell regeneration in metastases, and

reducing neutrophil infiltration or inhibiting the Gas6/AXL

signaling axis combined with chemotherapy can inhibit

metastatic growth (123).
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MDSCs are sensitive to TRAIL receptor 2 agonists. The

antitumor efficacy of DS-8273A (an anti- TRAILR2 antibody)

was evaluated in a phase I clinical trial (including one pancreatic

cancer patient). The results showed that DS-8273A eliminated

polymorphonuclear MDSCs (PMN-MDSCs, immature

neutrophils) and prolonged progression-free survival (124).

STAT3 is involved in the regulation of arginase 1 activity in

PMN-MDSCs, leading to immunosuppression in the TME.

Inhibition of STAT3 or using human recombinant arginase

1 (PEG5000) may be beneficial to ameliorate this

immunosuppressive microenvironment (125, 126).
Areas of future development

Finding novel therapies is currently a hot spot and future

research direction for cancer research. As an indispensable part

of tumor development, the TME has become a new therapeutic

target. Based on the important role of neutrophils in the TME of

pancreatic cancer, it is feasible to target neutrophils in the

treatment of pancreatic cancer.
Limitation

There are still some challenges in the treatment of pancreatic

cancer patients based on neutrophil related oncogenic

mechanisms. First, specific reductions of neutrophils in

peripheral blood and the TME can inhibit tumor growth and

metastasis but can expose patients to opportunistic infections.

Since cancer patients often suffer from malnutrition, cachexia,

and reduced resistance, such treatments are impractical. Next,

blocking chemokines and cytokines also affects the recruitment

and function of “antitumor phenotype” neutrophils and other

leukocytes, resulting in the limited specificity of currently

conducted approaches. Thus, only a few studies have focused

on the effects of drugs on specific TAN phenotypes. Moreover,

most of the drugs that regulate the TME and target TANs have

been studied in animal experiments, but clinical evidence in

solid tumor patients is insufficient. Although there have been

pilot studies showing a substantial anticancer effect of

neutrophil-targeting inhibitors, these need to be followed by

more clinical trials so that targeting neutrophil-associated sites

or specific phenotypes can be a new treatment for patients with

pancreatic cancer. There is also a need for studies that investigate

the adverse effects of targeting neutrophils in pancreatic cancer.
Improved future direction

The pancreatic cancer TME is a complex and dynamic

structure that directly affects the biological behavior of
Frontiers in Oncology 10
pancreatic cancer cells at the molecular and clinical levels.

Current work focuses on interactions among tumor cells,

neutrophils and inflammatory factors. We should study the

following aspects in the future.

First, extracellular vesicle-mediated signal transduction

between pancreatic cancer cells and immune cells should be

intensively studied. Extracellular vesicle can help facilitate an

exchange of information within various cells in the TME (127).

It has been found that extracellular vesicle-RNA and proteins are

involved in the metastasis and chemotherapeutic resistance of

pancreatic cancer (128). Inhibition of extracellular vesicle release

and uptake in the TME may be another therapeutic option.

Second, although immune checkpoint inhibitors have

made progress in cancer treatment during the past 10 years,

they are only effective in a subset of patients. Since neutrophils

can induce the TME to form an immunosuppressive

microenvironment, this may be one of the reasons for the

poor efficacy of immune checkpoint inhibitors in pancreatic

cancer. Therefore, the combination of neutrophil inhibitor

therapy and immune checkpoint inhibitor therapy also needs

more preclinical studies and clinical trials in the future.

Furthermore, cellular metabolism has also emerged as a

critical determinant of the function of immune cells in the

TME. The metabolism of substances in the TME is not only

the result of tumor development, but also the promoting

factor of tumor progression (129). A subpopulation of TANs

with high glycolytic activity has been found to enhance

immunosuppressive and tumor-promoting functions (130).

Understanding the metabolic requirements of neutrophils

in pancreatic cancer and their effect on the growth, metastasis

and immunosuppression of pancreatic cancer will also be a

novel research direction upon which to intervene for

enhanced immunotherapy.
Neutrophils in pancreatic inflammation
and fibrosis

Since pancreatic cancer are closely related to pancreatic

chronic inflammation and fibrosis, it is necessary to explore the

role of neutrophils in the process of chronic pancreatic fibrosis.

Immune cells, especially myeloid cells, play an important role

in the pathogenesis of pancreatitis. GM-CSF-mediated

increased neutrophil infiltration is the main reason that

STAT5 promotes pancreatic fibrosis and chronic pancreatitis

(131). However, CXCR2 inhibitors reversed pancreatic

inflammation in vivo models (132). It is also one of the

future directions to conduct joint research with related

chronic diseases in cancer mechanistic studies (89).

Therefore, it is important to combine pancreatic cancer and

chronic pancreatitis in animal models when doing preclinical

studies. Including patients with chronic pancreatitis as a
frontiersin.org

https://doi.org/10.3389/fonc.2022.1025805
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1025805
comparison group is also necessary when conducting

clinical trials.
Conclusion

Neutrophils play a role in angiogenesis, metastasis and

immunosuppression in pancreatic cancer through interactions

with other cells in the TME. Various neutrophil modulation

therapies are entering preclinical studies and clinical trials for

pancreatic cancer. Precision medicine aims to provide patients

with more effective personalized medical services (133). The

treatment mode of pancreatic cancer is gradually developing

toward targeted therapy and precision medicine. The research

and development of neutrophil-based therapeutics and targeting

neutrophils in combination with other therapies will benefit

more patients with pancreatic cancer. Specifically targeting

neutrophil-associated sites will be part of therapies for the next

generation of cancer patients.
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