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Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional

RNA-binding proteins primarily involved in the regulation of mRNA translation and

stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA

homing and is involved in awide range of physiological and pathological processes

by regulating almost every aspect of RNA metabolism. Alterations in its expression

and function disrupt intra-tissue homeostasis and contribute to the development

of various tumors. There is increasing evidence that PABPC1 is aberrantly

expressed in a variety of tumor tissues and cancers such as lung, gastric, breast,

liver, and esophageal cancers, and PABPC1might be used as a potential biomarker

for tumor diagnosis, treatment, and clinical application in the future. In this paper,

we review the abnormal expression, functional role, and molecular mechanism of

PABPC1 in tumorigenesis and provide directions for further understanding the

regulatory role of PABPC1 in tumor cells.

KEYWORDS

cytoplasmic poly-A binding protein (PABPC1), cancer development, tumor
progression, mRNA translation, mRNA stability, oncogene
Background

There are about 1914 human RNA binding proteins (RBPs) identified in studies to

date, accounting for 7.5% of protein-coding genes (1). RBPs are highly species conserved

and play a key role in maintaining homeostasis of gene expression (2). RBPs play a key

role in regulating various RNA processes through both temporal and spatial regulation of

expression in membranes or phase-separated subcellular compartments of dynamic

shuttling, interactions with specific protein partners and RNA targets, and control of all

metabolic processes of RNA. This includes splicing, cleavage and polyadenylation as well

as translocation, translation and degradation of coding RNAs, non-coding RNAs and

microRNAs (3–7). Recent studies have shown that RBPs not only play important roles in

normal cells, but also become major players in cancer development and proliferation (8,

9). (Figure 1) RBPs were initially classified according to their RNA-binding structural
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domains that bind various types of RNAs, while they were

purified and classified according to the RNA sequences they

interact with, with one class of factors including proteins that

recognize polyadenylate tails added to the 3’ ends of most

mRNAs (10). Poly(A)-binding proteins (PABPs) represent one

of the major classes of regulatory proteins and are found only in

eukaryotes (11). PABP1 (also called PABPC1), the prototypical

PABP, is highly conserved RNA-binding protein in eukaryotes,

and although yeast has only one PABPC (Pab1p), most animals

contain multiple paralogs with spatially and temporally distinct

expression patterns. Vertebrates express PABPC1, PABPC3,

PABPC4, PABPC4L, the X chromosome-encoded protein

PABPC5 and PABPC1-like (PABPC1L, also known as

embryonic PABP (ePAB) in the cytosol and PABPN1 and

PABPN1-like (PABPN1L, also known as embryonic PABP2

(ePABP2) in the nucleus. (Table 1) PABPC1 and PABPC4 are

nucleocytoplasmic shuttling proteins, and RNA is the main

factor determining their nucleoplasmic localization. In

contrast, nuclear PABPs are structurally and functionally

distinct from cytoplasmic PABPs, which are involved in

stimulating mRNA maturation and export (10, 12–14).
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Protein-coding genes are transcribed by RNA polymerase II

production co-transcriptionally mature mRNA precursors. Co-

transcriptional maturation of precursor mRNAs is achieved by

recruitment of protein complexes through the carboxy-terminal

structural domain (CTD) of RNA polymerase II, including the

addition of a 5’ cap to the nascent transcript, removal of introns by

the spliceosome, and addition of a 3 ‘ poly(A)tail (15). The post-

transcriptional addition of 3’ poly(A)tails to eukaryotic mRNAs is

important in order to their nuclear export, translation and

stability. Poly(A)-binding proteins (PABPs) have the ability to

bind poly(A) tails, interact with specific sequences in mRNAs, and

have general and specific roles for different mRNA metabolism.

PABPs are involved in mRNA in almost all metabolic pathways:

polyadenylation/deadenylation, mRNA export, mRNA

surveillance, translation, mRNA degradation, microRNA-related

regulation and expression regulation during development,

especially controlling mRNA-specific translation and stability,

accompanying mRNA from initial intranuclear production to

final destruction (13, 16). The translation mechanism of most

eukaryotic mRNAs is cap-dependent translation, i.e. translation

control is dependent on post-transcriptional modifications.
FIGURE 1

PABPs proteins act as RNA binding proteins involved in post-transcriptional regulation of gene expression in tumors: bind the poly(A) tail of
mRNA, including those of their own transcripts, and regulate processes of mRNA metabolism such as pre-mRNA splicing, alternative
polyadenylation and mRNA stability; participate in microRNA-induced target gene inactivation and nonsense-mediated mRNA decay; regulate
translation initiation and involved in translationally coupled mRNA turnover.
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Cap-dependent translation initiation involves the binding of the

eIF4F complex, consisting of the cap-binding protein eIF4E, the

scaffolding protein eIF4G and the the RNA helicases enzyme

eIF4A, to the 7-methylguanosine cap located at the 5’ end of the

mRNA. MRNA translation also regulates gene expression, which

explains the difference between protein abundance and its

corresponding mRNA (17–22). In fact, in tumors, changes in

the translation of existing mRNAs are more extensive than those

occurring in transcription downstream of aberrant signaling

pathways (15).

Cytoplasmic poly A binding protein (PABPC1) is significantly

highly expressed in a variety of tumors, especially in ovarian,

breast, gastric and hepatocellular carcinomas (23–29). PABPC1

regulates the proliferation and transformation of gastric cancer

cells in vitro and in vivo (25), and is also directly involved in breast

carcinogenesis by affecting chemoresistance (24). PABPC1, an

oncogene in hepatocellular carcinoma, induces cell proliferation

by promoting tumor cells into S phase and enhancing anchorage-

independent growth (28). LncRNA SNHG14 upregulates

PABPC1 through H3K27 acetylation and regulates PTEN

signaling in hepatocarcinogenesis to promote tumor cell

proliferation and angiogenesis (29). PABPC1 is involved in a

variety of signaling pathways involved in tumorigenesis and

progression, including Nfr2 signaling, Hippo signaling and

PTEN signaling (24, 29, 30), and PABPC1 may be a potential

target for tumor therapy.
Cloning, characterization, and tissue
distribution of PABPC1

Although there are numerous PABPs in mammals, almost all

studies have focused on the prototype PABPC1. The PABPC1

gene, originally isolated and cloned in human melanoma cells by

Grange et al. in 1978, is conserved throughout eukaryotes and is
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located on human chromosome 8 (31, 32). PABPC1 consists of

four RNA binding domains (RRM1-4), a linker region and a C-

terminal MLLE domain. RRM1-2 binds poly(A) with high

specificity, RRM3-4 binds poly(A) with slightly lower affinity

and can bind adenine/uridine rich RNA (33, 34). In addition to

RNA, its C-terminal MLLE domain can mediate binding to the

peptide motif PAM2, which allows PABPC1 to bind to more

proteins such as PAIP1, PAIP2, GW182 and MKRN1 (35–39).

Most of these PAM2 motif-containing proteins are involved in

mRNA translation and processing, including eukaryotic release

factor 3 (eRF3), the deadenylase complex PAN2/PAN3 and

TOB1/2 proteins regulating the CCR4-NOT deadenylase

complex, and the GW182 protein family. Moreover, the E3

ubiquitin ligase EDD is the only protein other than PABPC1

that contains this MLLE structural domain, suggesting that both

appear to have a deeper role in proteostasis (38, 40, 41). Protein

expression in different tissues in the Human Protein Atlas dataset

(https://www.proteinatlas.org/) showed that PABPC1 was mainly

expressed in respiratory system, proximal digestive tract,

gastrointestinal tract. Among them, the expression of

nasopharynx, esophagus, stomach, urinary bladder, testis,tonsil,

bone marrow is the highest, with low tissue specificity. The

subcellular localization and expression of PABPC1 were mainly

concentrated in the cytoplasm, suggesting that PABPC1 is

involved in mRNA stability and translation regulation. PABPC1

can shuttle between the nucleus and cytoplasm (42), while at

steady state, it is mainly diffusely distributed in the cytoplasm (13,

42). In addition to localization in the cytoplasm and nucleus,

PABPC1 is also present at local translational sites such as neuronal

dendrites and is enriched at the leading edge of migrating

fibroblasts (43). In contrast, mRNA-bound PABPC1 cannot

enter the nucleus because its RRM cannot interact with

importinb (44). PABPC1 is not always uniformly distributed in

the cytoplasm but assembles into dynamic non-membrane foci

that are incorporated into stress granules during cellular stress
TABLE 1 The expression and known function of PABPs.

Gene
name

Expression Known functions

PABPC1 Ubiquitous mRNA Translation, mRNA Decay, miRNA-mediated Repression, NMD, L1 Retrotransposition,
mRNA Localization, Local Translation

PABPC3 Testis specific Spermatid mRNA Translation

PABPC4 T Cells & Other Tissues Erythroid Differentiation, Upregulated upon T Cell Activation, PABPC1 Compensation

PABPC5 Fetal Brain & Other Adult Tissues PABPC1 Compensation

PABPC1L
(ePAB)

Ovaries, Testes & Other Adult Tissues Oocyte mRNA Translation

PABPC4L Brain PABPC1 Compensation

PABPN1 Ubiquitous Post-Transcriptional Processing of RNA, Polyadenylation, Poly (A) Tail Length,Poly(A) RNA
Export

PABPN1L
(ePAB2)

oocytes, early development, and in adult ovarian
tissues & Other Tissues

oocyte and preimplantation embryo mRNA degradation and Translation
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conditions such as osmotic shock (45), and these stress granules

are sites of mRNA storage and remodeling by stalled translation

initiation complexes composed of mRNA, small ribosomal

subunits, specific initiation factors, and many mRNA-

binding proteins.
The interactome of PABPC1

All aspects of life require tight regulation of gene expression,

which is regulated through a complex interconnected network

that includes multiple levels of transcription, mRNA processing,

mRNA stability, and mRNA translation. Post-transcriptional

control mechanisms are complex and important. The regulation

of post-transcriptional gene expression is regulated by both

mRNA cis-elements (e.g. 5’- and 3’-untranslated regions) and

trans-acting factors (e.g. RBPs) (7). They form RNA-protein

complexes through specific interactions to regulate mRNA

metabolism and protein translation.
PABPC1 and mRNA translation

Most eukaryotic mRNAs are recruited to the ribosome by

recognition of a 5’m7GpppN cap. One model assumes that

mRNAs form a closed loop structure that involves 5’-3’ end

proximity induced by four specific interactions, namely cap-

eIF4E- eIF4G-PABPC1-poly(A). The 5’ cap interaction factor

and the 3 ‘poly(A) binding protein plays an important role in

bringing the 5’-3’ ends of mRNAs in close proximity to each

other and promoting translation and stability of mRNAs (46–

48). This mode of translation is treated as a general model of

eukaryotic translation in today’s biology textbooks. However,

despite the direct observation of loop assembly in some cells and

in vitro reconstruction systems, several findings have questioned

the generality of the model across different mRNA and biological

systems (49–52).

Translation of most mRNAs is regulated at the time of

initiation. At translation initiation, eIF4E binds to the 5’ cap

while PABPC1 binds to the poly(a) tail, and eIF4G binds the two

together to form a complex. Then eIF3 and the 43s ribosomal

subunit bound to met-tRNA bind to the complex, initiating

translation initiation. eIF3 is an initiation factor that functions

by facilitating the linkage of the 48s initiation complex to the 60s

subunit. Transmission electron microscopy that several PABPC1

molecules in the PABPC1- poly(a) complex were linearly

arranged to form a worm-like structure. Further enhancement

of translation was reported with the increasing length of poly(a),

which seems to be associated with an increase in the number of

PABPC1 molecules in the polyplex bound to poly(a) (53). The

tethered structural domain of PABPC1 stimulates translation

initiation, suggesting that the poly(a) length dependence of

translation is due to the increased availability of PABPC1
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bound at the 3’ end of the mRNA. The long poly(a) tails on

most vertebrate mRNAs function as enhancers of translation

initiation by recruiting multiple PABPC1 to the 3’ ends of

mRNAs (54). Borman et al. extracted mammalian cytoplasm

and partially depleted ribosomes and associated initiation factors

by ultracentrifugation. Replication of the cap-poly(A) synergistic

system in vitro demonstrated that PABPC1 enhances translation

on poly(a) of mRNA in a cap-dependent manner, in addition to

finding that binding of PABPC1 to poly(A) increased the affinity

of PABPC1 for eIF4G and eIF4E for cap, which in turn increased

translation initiation. Consistent with this, mutations that

eliminate or alter PABPC1-eIF4G interactions result in

reduced translation levels (55, 56). Unfertilized eggs and early

embryos of animals lack the ability to produce or destroy

mRNA, so for the regulation of protein production, they

cannot adjust the number of mRNA molecules used for

translation, but rather by changing the length of the poly(A)

tail at the end of each mRNA molecule. In animal oocytes and

early embryos, the poly(A) length of mRNAs strongly affects

translation efficiency, with mRNAs with longer poly(A) tails

being more efficiently translated than shorter ones, but this

linkage gradually disappears later in development. Artificially

giving higher levels of PABPC in frog eggs improves translation

of the short tails and even achieves the same translation

efficiency as long-tailed mRNAs, suggesting that there is

competition for PABPC between the two (53).

The role of PABPC1 in stimulating translation initiation was

demonstrated (57, 58); however, the role of PABPC1 in

translation is not limited to regulating initiation. Using a

reconstructed mammalian in vitro translation system, Ivanov

et al. found that PABPC1 directly stimulates translation

termination (59, 60). PABPC1 stimulates translation

termination through the interaction of its C-terminal structural

domain with eukaryotic peptide release factor 3 (eRF3).

Eukaryotic translation termination requires two release factors:

eukaryotic polypeptide release factor (eRF1)1 and eRF3 (61).

ERF3 is a GTPase with an intrinsic PAM2 motif that binds to

PABPC1, and a protein core (eRF3c) that interacts with eRF1 to

ensure that the latter is loaded on the ribosome and induces its

conformational rearrangement. The binding action of PABPC1 to

eRF3 enhances the loading of the release factor on the ribosome,

thereby preventing the interaction of the eRF1-eRF3 complex with

the nonsense-mediated decay mechanism and inhibiting the

reading of the termination codon. The C-terminal structural

domain of PABPC1 interacts with the N-terminal structural

domain of eRF3a to enhance the binding of the eRF1-eRF3

complex to the ribosome, while eRF3a itself plays an active role

in translation termination (62–67).

In addition, PABP-interacting proteins 1 and 2 (PAIP1 and

PAIP2), bind the same structural domains of PABPC1 and

regulate its translational activity (68). The results of Ivanov

et al. showed that both PAIP1 and PAIP2 prevent translation

termination due to premature stop codons by controlling
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PABPC1 activity (59).PAIP1 contains PAM1 and PAM2 motifs,

and a structural domain homologous to the mediate eIF4G

structural domain (meIF4G) (69), whereas PAIP2 contains

only the PAM1 and PAM2 motifs. PAIP1 binds the RRM1-

RRM2motif of PABPC1 with high affinity, whereas PAIP2 binds

the CTC structural domain with low affinity. PAIP1 is able to

induce translational activity by binding to eIF3, eIF4A and

PABPC1 simultaneously. In contrast, PAIP2 binds PABPC1

competitively with PAIP1 or eIF4G, reducing the binding

affinity of PABPC1 to the poly(A) tail, and therefore, PAIP2

inhibits translation in vivo or in vitro (70, 71). Although PAIP2a

has two PABPC1 interaction motifs, PAM1 and PAM2, at its N-

terminal and C-terminal ends, respectively, PAM1 binds mainly

to RRM2-RRM3 with hundreds of times the binding affinity of

PAM2 and plays a major role mainly in PAIP2a-mediated

dissociation of PABPC1 from poly(A). Recent studies have

shown that PAIP2a competitively inhibits the binding of RRM

to poly(A), first by binding to RRM2 to form a transient ternary

complex and then by replacing poly(A) by RRM3.

Notably, Bartel et al. suggested that while PABPC1 plays a

critical role in protecting mRNA from premature decay, its

contribution to translation in postembryonic mammalian cell

lines is minimal (53). Previous studies have identified a role for

PABPC1 in promoting translation, either in frog oocytes or early

embryos, in vitro, or in cell extracts, while in rabbit reticulocyte

lysates, PABPC1 had the least effect on translation (13, 57, 72–

74). So further experiments are needed to determine whether

this difference is due to cell type or to differences between cell

cytoplasm and ex vivo extracts. It is also necessary to distinguish

whether it is due to PABPC1 promoting translation activation or

mRNA stability.
PABPC1 and mRNA stability

The mRNAs of different genes are degraded at significantly

different rates, as short as a few minutes or as long as several days

(75). Different conditions or developmental environments also

alter the rate of degradation, affecting the dynamic accumulation

of mRNA and ultimately the steady-state abundance of mRNA

(75, 76). Termini often determine the fate of the RNA molecules,

and 3’ tailing(non-templated nucleotide addition at the 3’ end of

RNA) is one of the most common types of RNA modifications,

with tailing catalyzed by a set of non-templated terminal

nucleotidyltransferases (TENTs) (77, 78). In addition to the

attachment of poly(A) polymerase-catalyzed poly(A) tails to

mRNA in the form of transcriptional coupling (79), post-

transcriptional modifications such as guanylation and

uridylation are included to control RNA stability and activity

(80, 81). Several cis-acting elements present in the 3’ untranslated

region of target mRNAs have been shown to be involved in

regulating polyadenylation/de-enylation of specific mRNAs (39).

These cis-acting sequences are recognized by microRNAs, AU-
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RNA-binding factors that greatly influence mRNA fate and

ultimately gene expression (38, 82, 83).

Bartel et al. showed that almost all endogenous mRNAs are

degraded primarily by a mechanism of deadenylation linkage,

implying that the rate of deadenylation of each mRNA largely

determines its half-life, while other contributions such as

endonucleolytic cleavage and deadenylation-independent

decapping are unexpectedly little (84). Further use of

mathematical models to extend the range of known

deadenylation rate constants from 60-fold to 1000-fold

emphasizes that mRNAs with faster deadenylation rate

constants can reach the short tail length associated with mRNA

destruction more quickly, while mRNAs with the same 20-nt tail

but from different genes can also have widely different decay rate

constants. The tails become so short that they cannot

synergistically bind PABPC1 and homeostasis is out of balance.

Recent studies have revealed the presence of noncanonical

other forms of mRNA tailing, such as U tails and mixed tails

(85). Initially uridylation of mRNA was found at the 3’ end of

miRNA-mediated cleavage products (86), and U tails have also

been detected on human replication-dependent histone mRNAs,

which are uridylated and degraded at the end of the S period or

after inhibition of DNA replication (87). Lim et al. developed a

method called TAIL-seq for deep sequencing of a large portion

of the 3’ end sequences of the transcriptome and found that the

vast majority of mammalian mRNAs are subject to uridylation

(88). Upon deadenylation, mRNAs (with A-tails shorter than

∼25 nt) lose PABPC1 and instead gain a U-tail by the redundant

action of TUT4 and TUT7, which triggers decay by serving as a

mark that is recognized by downstream decay factors (89).

PABPC1 preferentially protects the long poly(A) tail from

uridylation, and this specific inhibition may result from

length-dependent binding of PABPC1 (90, 91).

The family of La-related proteins (LARPs) is characterized

by sharing a ‘La-module’ (92): it contains a La motif (LaM)

followed by an RNA recognition motif (RRM), and some LARPs

have unique activities in specific aspects of RNA metabolic

processes. Among them, LARP3 and LARP7 is nuclear and

protects a subset of RNAs with 3′ oligo(U) (93–95) while LARP
1, 4 and 6 are highly divergent and reside in the cytoplasm (96).

LARP1 and LARP4 were recently found to contain a PAM2

motif that binds directly to poly(A) and PABPC1 with variable

affinity for the MLLE structural domain of PABPC1. LARP4 is

an mRNA poly(A) stabilizer that promotes mRNA translation

and inhibits deadenylation. LARP1 is a translation blocker that

inhibits translation of mRNAs containing 5 ‘TOP (terminal

oligopyrimidine) motifs in mRNA translation and exhibits

similar poly(A) length and mRNA stability protection to

LARP4 (97, 98). Mattijssen et al. confirmed the interaction of

LARP1 with PABPC1 independent of RNA by endogenous pull-

down in the presence of RNAase I and further verified the

binding to PABPC1 in bacterially expressed LARP1. With the
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addition of Dey680-labeled A20 RNA, the amount of PABPC1

coprecipitated in the His-LARP1 pull-down increased,

indicating that the LARP1 interaction between PABPC1 may

be enhanced by binding to RNA (99).

It is now generally accepted that RNA-binding proteins

negatively regulate gene expression by accelerating the

deadenylation of target mRNAs. The most widely studied

example is the RNA-binding protein TTP, which binds directly

to AREs and recruits CCR4-NOT complexes to accelerate the

deadenylation and decay of target mRNAs (100, 101). In marked

contrast, positive regulation through polyadenylation has been

most extensively studied in the context of early development

(102).Spinocerebellar ataxia type 2 (SCA2) gene product, Ataxin-

2, a member of the RNA-binding protein Like-Sm (LSm) family, is

a cytoplasmic protein that binds and stabilizes many mRNA

sequences, which is involved in many aspects of RNA

metabolism (103), and it harbors an LSm domain and LSm-

associated domain (LSmAD) within the N-terminal half. Yokoshi

successfully identified Ataxin-2 as a member of the group of RBPs

that target AREs and related elements within the 3′ UTRs of

mRNAs to control RNA stability and protein expression (104).

Although interaction with PABPC1 might increase the efficiency

of Ataxin-2 binding to RNAs, it is dispensable for recognition of

the distinct elements by Ataxin-2. In accordance, they found that

Ataxin-2 binds preferentially to sites that are close to the

polyadenylation site. These results suggest that interaction with

PABPC1 stabilizes the binding of Ataxin-2 to RNAs, and more

importantly, PABPC1 probably targets A-rich elements within the

3′ UTR, including the polyadenylation signal, in addition to the

poly(A) tail. Inagaki et al. showed that Ataxin-2 indirectly

recognizes the poly(A) tail through PAM2-mediated contact

with PABPC1, which is assumed to increase the binding

specificity of Ataxin-2 to the cis-element close to the

polyadenylation site of the mRNA and enables the recruitment

of a noncanonical poly(A) polymerase (PAPD4) to the

polyadenylation site (39).
PABPC1 and nonsense-mediated decay
of PTC-containing mRNAs

The premature termination codon (PTC) is found in

approximately 30% of disease-associated mutations, and

because it promotes aberrant as well as premature translation

termination, mRNA surveillance mechanisms recognize,

respond to, and ultimately produce nonsense-mediated mRNA

decay (NMD). Nonsense-mediated mRNA decay detects and

eliminates erroneous mRNA transcripts with premature

termination codons, representing a translation-dependent

post-transcriptional mRNA quality control process that

prevents the synthesis of truncated, potentially harmful

proteins (105–109). Because one-third of all known disease-
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causing mutations are predicted to produce PTC, NMD is an

important regulator of human inherited disease phenotypes.

In mammalian cells PTCs are recognized and NMD is

activated if the PTC is located >50 nucleotides upstream of an

exon-junction complex (EJC) (110, 111), a protein complex

deposited on the mRNA during splicing (112). During splicing

in the nucleus, exon-exon junctions are labeled by EJC and these

complexes act as NMD activation signals during translation in

the cytoplasm. In addition to the EJC-dependent NMD

described above, another EJC-independent NMD pathway

targets mRNAs with long 3’UTRs (113–116). Three upshift

code proteins, UPF1, UPF2, and UPF3, are at the core of the

NMD pathway. UPF1 plays a key role in the initiation of NMD

and is an ATP-dependent RNA unwinding enzyme, and UPF1,

UPF2, and UPF3 interact so that these three proteins can be

separated as a complex. After recognition of PTC, a series of

events initiate mRNA degradation by recruiting heterodimers

SMG5/SMG7 and SMG6 (117, 118).

During eukaryotic translation termination, PABPC1

interacts with ribosome-bound eRF3a to stimulate polypeptide

release and subsequent ribosome recycling; however, when

PABPC1 interaction with eRF3a is reduced by an unusually

long 3’UTR, UPF1 binds to eRF3a and activates NMD. thus,

PABPC1 binding at the termination codon binding in the

vicinity can inhibit NMD by mimicking the presence of the

poly(A) tail (119). The physical distance between the premature

termination codon and PABPC1 is a key determinant of PTC

recognition, and by increasing the distance between poly(a)-

bound PABPC1 and PTC by lengthening the 3’UTR, the normal

termination codon can trigger nonsense-mediated mRNA decay

(114). Conversely, NMD can inhibit EJC-enhanced NMD by

folding the poly(a) tail near the PTC or tethering it to the PTC

(120, 121).

Two independent studies have shown that the C-terminal

structural domain of PABPC1, which mediates the interaction

with eRF3a, is nonessential for the inhibition of NMD-targeted

reporter molecules (120, 121). To elucidate which structural

domains and interaction regions of PABPC1 are responsible for

the NMD repressive effect, Fatscher et al. designed and generated

six mutants, including an RRM-containing mutant lacking the

C-terminal MLLE structural domain and an MLLE structural

domain mutant, and ligated the mutants to the TPI-4MS2-

SMG5 reporter gene construct to increase the mRNA

abundance of the reporter gene increased to the same extent

as that of PABPC1. The results indicate that the MLLE motif of

PABPC1 interacting with eRF3a, as well as other interactions

involving the MLLE motif of PABPC1, are not strictly necessary

for pegging PABPC1 to suppress NMD. In contrast, the

introduction of two point mutations into RRM2 of PABPC1

that eliminate binding to eIF4G (PABPC1M161A/D165K) no

longer inhibits NMD, and it is the binding of eIF4G but not

eRF3a that contributes to NMD inhibition by pegged PABPC1,
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suggesting the eIF4G-mediated mRNA recycling and ribosome

recycling as NMD regulators importance (119)
Involved in miRNA-induced target gene
inactivation

MicroRNAs (miRNAs) are a new class of non-protein-

coding endogenous small RNAs that are important regulatory

molecules. It regulates gene expression post-transcriptionally

through translational repression, mRNA splicing and mRNA

decay initiated by rapidly dying genes. miRNAs silence the

expression of most eukaryotic transcriptomes and regulate a

wide range of biological processes, including cell growth,

division and differentiation, as well as metabolism and

development (122–124). At the molecular level, miRNA bases

are incompletely paired with the 3’ untranslated region of the

target mRNA and bind to the Argonute (Ago) protein in its

induced silencing complex (miRISC) to inhibit translation or

trigger degradation of the mRNA.

TNRC6A, TNRC6B and TNRC6C are members of the

GW182 protein family and components of the miRNA-

induced silencing complex (125, 126). the TNRC6-PABPC1

interaction is required for effective miRNA-mediated silencing

(127). the carboxy-terminal structural domain of the GW182

protein, called the silencing structural domain, includes

intermediate and terminal sub-structural domains (128). The

intermediate structural domain can be further subdivided into

M1 and M2 regions flanked by poly(A)-binding PAM2.

PABPC1 assembles the miRISC complex by recruiting GW182

and bringing the death enzyme complex in close proximity to

the mRNA. In contrast, TNRC6 promotes the separation of

PABPC1 from mRNA thereby exposing its tail end to promote

deadenylation, reducing translation efficiency and causing

mRNA decapitation and 5’-3’ exonuclease nucleic acid

degradation in somatic cells (129).
PABPC1 and virus replication

Viruses do not have a specific apparatus to encode their own

protein synthesis, but rather compete with the host to translate

their own viral mRNA, where the most important mechanism of

interference is to disrupt translation initiation on polyadenylate

mRNA. Active modification of PABPC1 allows viruses to block

translation initiation in the host. Depending on the structure of

viral mRNA, different RNA and DNA viruses have different

mechanisms to manipulate PABPC1 (130–134).

Lentiviruses (HIV-1 and HIV-2), microRNA viruses and

cuplaviruses infect cells and cleave PABPC1 into fragments at

several predetermined positions between its RNA binding domain

and C-terminal structural domain, limiting the translation of host

mRNA. In contrast, rotavirus NSP3 displaces and expels PABPC1
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in interaction with eIF4G to mediate translation termination

(135). It was shown that members of the herpesviridae,

eutheroviridae and bunyaviridae relocate PABPC1 to the

nucleus after infection (136). In contrast, specific viral proteins

for PABPC1 relocalization were also identified in Kaposi’s

sarcoma-associated herpesviruses and rotaviruses (45, 137–139).
PABPC1 and immunoglobulin secretion

There is growing evidence that selective processing of

mRNAs, including selective splicing, 3’ selective polyadenylation

and mRNA stability/translational regulation, is a major

mechanism that promotes protein diversification (140–143).

Selective splicing and polyadenylation in eukaryotic cells

generate multiple mRNA types with different 3’UTR lengths

from the same gene (144, 145). PABPN1 has been identified as

a key molecule regulating selective splicing and polyadenylation,

and deep sequencing after siRNA knockdown has shown that

PABPC1 enhances selective poly(A) at the distal end of pre-

mRNA. A site use (146).

Plasma cells are terminally differentiated B cells that produce

large amounts of secretory immunoglobulins. And the first

identified example of selective polyadenylation is that the 3’

end of immunoglobulin heavy chain (IgH) mRNA is processed

in a cell type-specific manner during B-cell differentiation (147,

148). Switching between mIg and sIg is a tightly controlled

process regulated by mRNA selective splicing and selectable

polyadenylation. Peng et al. reported that hnRNPLL specifically

binds to PABPC1 in T cells and plasma cells, and that PABPC1

facilitates the binding of hnRNPLL to immunoglobulin mRNA

and regulates the switch from mIgH to sIgH in plasma cells

(149). Further protein truncation and mutation experiments

demonstrated that RRM1 is the key structural domain mediating

the interaction of PABPC1 with hnRNPLL.
PABPC1 in cancer development

Human and mouse heart cells proliferate immediately after

birth, during which PABPC1 expression is enhanced (13, 54).

After they grow, cell proliferation is inhibited and PABPC1

expression is reduced. Dengue viruses use PABPC1 in their host

cells to transcribe viral mRNA, which leads to viral proliferation.

PABPC1 similarly accumulates in cytomegalovirus-infected cells.

The expression of PABPC1 in 31 tumor specimens was

analyzed using the Tumor Genome Atlas (TCGA) and Tissue

Genotype Expression (GTEx) datasets in comparison to normal

tissues. Elevated levels were found in acute myeloid leukemia

(LAML), esophageal cancer (ESCA), bladder uroepithelial

carcinoma (BLCA), gastric cancer (STAD), ovarian cancer

(OV), rectal adenocarcinoma (READ), testicular cancer

(TGCT), and COAD (colon cancer). High PABPC1 expression
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was also found in diffuse large B-cell lymphoma (DLBC), head

and neck squamous cell carcinoma (HNSC), lung squamous

carcinoma (LUSC), prostate cancer (PRAD), and uterine

sarcoma (UCS), suggesting that the progression of the above

tumors requires high PABPC1 expression (Figure 2).
PABPC1 in liver tumor

Hepatocellular liver cancer is the major malignancy of the

liver and is the fifth most common and third deadliest cancer in

the world (150, 151). Currently, despite the advances in liver

transplantation and surgery in the treatment of liver cancer, the

high recurrence and metastasis rates also make the prognosis of

liver cancer still poor (152). Therefore, it is crucial to search for

the underlying mechanisms of hepatocarcinogenesis and

identify new therapeutic targets (153).
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Zhu et al. screened gene modules highly correlated with HCC

prognosis by WGCNA and constructed PPI networks for the

genes in the modules (27). 8 genes were screened using MCODE

software and survival analysis was performed using Kaplan-Meier

mapping database, showing that PABPC1 was significantly

associated with liver cancer prognosis. Further studies

confirmed that mRNA and protein levels of PABPC1 were

significantly upregulated in HCC patients. GSEA analysis also

showed that the P53 signaling pathway, WNT signaling pathway

and cell cycle were highly positively correlated with PABPC1

expression. the P53 pathway is one of the classical pathways

controlling cell cycle progression and Wnt/b-catenin signaling is

involved in a variety of processes including embryogenesis, The

P53 pathway is one of the classical pathways controlling cell cycle

progression and Wnt/b-catenin signaling plays a key role in the

regulation of various processes such as embryogenesis,

differentiation and tumorigenesis.
FIGURE 2

PABPC1 is involved in various aspects of tumor malignant biological behavior as an RNA binding protein. NPM1mA, SNHG14, Sp1 and p300
significantly induce upregulation of PABPC1 expression by increasing acetylation of PABPC1 promoter H3K27 and H2K37; Inactivated MKRN3
reduces PABPC1 ubiquitination, promotes its binding to 3’ poly(A) tails of mRNAs, and thereby accelerates global protein synthesis and promotes
cancer proliferation and progression. PABPC1 regulates the generation and stability of tumor-associated RNAs, and the intracellular tumorigenic
miR-19a-3p, miR-21-5p, lnc-BDNF-AS, and lnc-PAGBC levels are elevated, along with increased translation of CCNB1, PEG10, SLC7A11, and
IFI27, and elevated protein levels. PABPC1 enhances miR-19a-3p, miR-21-5p loading in tumor cell-derived exosomes, target vascular
endothelial cells to induce angiogenesis, and CD8+ T cells to impair the immune function.
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MicroRNAs are involved in hepatocellular carcinoma

development and metastasis as a tumor-associated regulator.

miRNA-induced RNA-induced silencing complex (RISC)

promotes mRNA degradation or translation inhibition. Zhang

et al. purified RISC-interacting proteins using anti-AGO2

antibody and identified 12 AGO2-binding proteins by mass

spectrometry (28). PABPC1 was found to be highly expressed

in hepatocellular carcinoma, especially in high-grade

hepatocellular carcinoma. PABPC1 acts as an oncogene in

hepatocellular carcinoma, accelerating cell proliferation and

promoting anchorage-independent growth by promoting cell

entry into S and G2/M phases. The specific mechanism is that

PABPC1 interacts with AGO2 in the cytoplasm of hepatocellular

carcinoma cells, and this interaction increases the recruitment of

mRNA to RISC and represses multiple oncogenes. For miRNA-

targeted genes, PABPC1 increases the efficiency of miRNA

repression, and this efficiency is higher in cancer cells than in

normal cells. For miRNA non-target genes, PABPC1 interacted

with eIF4G to inhibit the decay of mRNA, making translation

higher in cancer cells than in normal cells and thus increasing

cellular activity.

Long non-coding RNAs (lncRNAs) play important roles in

various biological processes at epigenetic, transcriptional and

post-transcriptional levels, and are of increasing interest for

their critical role in tumorigenesis and progression (154–158).

Small nucleolar RNA host genes (SNHG) long non-coding RNAs

are frequently dysregulated in various types of cancers and are

involved in tumorigenesis and progression. Studies have shown

that SNHG14 upregulates PABPC1 expression in hepatocellular

carcinoma cells via H3K27 acetylation (29), and PABPC1

silencing Zhaattenuates SNHG14-induced proliferation and

angiogenesis in Hep3B cells, while PABPC1 overexpression

abrogates the effect of sh-SNHG14 on HepG2 cell proliferation

and angiogenesis. sh-SNHG14/PABPC1 effects on cell

proliferation and angiogenesis was regulated by inhibition of

PTEN signaling, a tumor suppressor involved in cell

proliferation or angiogenesis through negative regulation of

PI3K/Akt signaling or VEGF expression, respectively.

Hepatoblastoma is the most common type of liver tumor in

children and arises from embryonic parenchymal hepatocytes or

hepatoblasts (159, 160). It has a better prognosis compared to

hepatocellular carcinoma, but the overall prognosis remains poor

for patients who cannot be surgically resected or are

chemotherapy resistant (161). m6-methyladenosine (m6A) is

considered to be the most abundant mRNA modification in

eukaryotic cells and occurs at the N6 position of adenosine

(162, 163). As a reversible mRNA modification, it is involved in

regulating various aspects of RNA metabolism and also in the

oncogenic process. Recent studies have shown that m6A-

containing mRNAs exhibit accelerated deadenylation mediated

by direct recruitment of the CCR4-NOT complex through

YTHDF2 (41, 164). YTHDF2 is has been reported to act as a

reader of m6A recognizing and binding specific m6A
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modifications that also include IGF2BP1-3, YTHDF3 and

YTHDC2, among others (165). The study showed that in

hepatoblastoma, IGF2BP1 similarly acts as readers to recognize

and bind m6A modifications in SLC7A11 mRNA, stabilize it and

upregulate its expression in an m6A-dependent manner (26). the

CCR4-NOT complex mediates the deadenylation of SLC7A11

mRNA, and IGF2BP1 competitively binds PABPC1 to block

BTG2/CCR4-NOT complex recruitment, thereby inhibiting the

deadenylation of SLC7A11 mRNA and enhancing SLC7A11

mRNA stability and expression. In contrast, SLC7A11 acts as an

oncogene that promotes hepatoblastoma proliferation and

enhances ferroptosis resistance in tumor cells.
PABPC1 in esophageal cancer

Esophageal cancer, the sixth most common cause of cancer-

related death worldwide (166), is an aggressive malignancy, of

which esophageal squamous cell carcinoma is the predominant

histologic subtype, accounting for more than 70% of total cases.

Esophageal cancer exhibits local infiltration and lymph node

metastasis at advanced or even initial diagnosis, thus leading to

poor prognosis and lower survival rates.

Zhang et al. used their own cohort and public database

TCGA sample analysis to conclude that PABPC1 expression is

upregulated in esophageal squamous cancer tissues and its

elevated expression is associated with tumor cell differentiation

and poor prognosis in patients (167). Pabpc1 promotes

esophageal squamous cancer cell proliferation, migration and

invasion and inhibits apoptosis. The IFN pathway was identified

by RNA-seq as a key mediator of esophageal squamous

carcinoma progression exerted by PABPC1. IFN27 is a key

regulator in the IFN-a signaling pathway (168–170) and its

upregulation was one of the most significant alterations in DEGs

upregulated by PABPC1. The investigators further observed a

significant decrease in 5-ethynyluridine (EU)-tagged IFI27

mRNA after PABPC1 knockdown, suggesting that PABPC1

regulates IFI27 expression at the post-transcriptional level.

Further construction of RNA-binding structural domain

RRM1-deficient plasmids demonstrated that PABPC1 interacts

with eukaryotic initiation factor protein 4G (eIF4G) to enhance

the stability of IFI27 mRNA by extending its half-life.

In eukaryotic cells, RNA exosomes are essential for the

degradation and processing of target RNAs, and the RNA

exosome core contains barrel-like structures (composed of

EXOSC4-9) and cap-like structures (composed of EXOSC1-3).

EXOSC2 is an important catalytic part of the RNA exosome

complex, and EXOSC2 knockdown severely reduced RNA

exosome function (171, 172). The investigators rescued the

decrease in IFI27mRNA stability by EXOSC2 knockdown and

EXOSC2 knockdown increased PABPC1 binding to IFI27mRNA,

similar to how PABPC1 knockdown increased the binding affinity

of EXOSC2 to IFI27mRNA, all suggesting that PABPC1 competes
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with the RNA exosome to prevent degradation of IFI27mRNA

(167). Various miRNAs from exosomes are major inducers of

angiogenesis by activating signal transduction pathways that

trigger the promotion of endothelial cell growth and migration.

PABPC1 increases miR-21-5p expression in esophageal squamous

cancer cells and encapsulates miR-21-5p in ESCC cell-derived

exosomes via ACUGAUG sequences to target vascular CXCL10

inhibition in endothelial cells to induce angiogenesis.
PABPC1 in leukemia

Tumor-derived exosomes can shuttle between tumor cells

and immune cells and participate in tumor immune escape.

Exosomal miRNAs contribute to the reprogramming of immune

target cell functions. Targeted export of miRNAs to exosomes

may require specific mechanisms. Recent studies have shown

that RBPs are involved in the specific loading of miRNAs into

exosomes. For example, hnRNPA2B1 was shown to enhance the

export of miRNA exosomes from T cells. The relevant functions

of Ago2 and Y-box in miRNA transport were demonstrated in

colon cancer cells and HEK293T cells, respectively. The

proteomics of two different populations of exosomes isolated

from human seminal plasma showed that PABPC1 could

promote RNA loading of exosomes.

Acute myeloid leukemia (AML) is a heterogeneous disease

that possesses multiple cytogenetic and molecular abnormalities

with an extremely poor prognosis (173). Mutations in the

nuclear phosphoprotein gene, particularly the type A NPM1

mutation, are among the most common and clinically relevant

genetic alterations. It accounts for approximately 30% of all

AML cases (174, 175). As with other malignant diseases,

leukemia uses a variety of mechanisms to evade killing by

immune cells. T cells play a central role in mediating and

coordinating the immune response against cancer, and many

strategies aim to harness the potential of t cells to recognize and

kill cancer cells in a targeted manner (176, 177). The study found

that serum from AML patients with NPM1 mutations and

leukemia cells in a co-culture system impaired the immune

function of CD8+ T cells (142). Mechanistically, leukemic cells

secrete miR-19a-3p into the tumor microenvironment via small

extracellular vesicles (sEVs), which are controlled by the NPM1

mutant protein/CTCF/PABPC1 signaling axis. SEV-related

miR-19a-3p is internalized by CD8+ T cells, directly inhibiting

solute carrier family 6 member 8 (SLC6A8)-mediated of creatine

import and reduces ATP production to enhance immune escape

of leukemic cells. To investigate the specific process of miR-19a-

3p specific packaging in sEVs, the investigators found that

knockdown of PABPC1 expression significantly reduced miR-

19a-3p levels in OCI/AML3-sEV and Blasts/mut-sEV, while

miR-19a-3p levels in OCI/AML3 cells and Blasts/mut cells

were almost unchanged, and the interaction between PABPC1

and miR-19a-3p in OCI/AML3 and Blasts/mut cells was further
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verified by miRNA pull-down and RIP assays, which indicated

that PABPC1 plays a key role in miR-19a-3p encapsulation

into sEVs.

Homeostatic regulation of protein synthesis plays a crucial

role in hematopoietic stem cell differentiation and cellular

transformation, and a major clinical challenge in the treatment

of patients with HR-MDS is the progression to AML, which is

driven by developmentally abnormal hematopoietic stem and

progenitor cells with different metabolic changes (178). Trans-

transport RNA-derived fragments (tRFs) are small emerging

non-coding RNAs that are commonly altered in tumors (179).

Studies have shown that stem cell-enriched pseudouridylation

(Y) of tRF isoform 2 (mini-tRF containing 5’ terminal

oligopurine (mTOG)) selectively inhibits abnormal protein

synthesis programs, thereby promoting implantation and

differentiation of hematopoietic stem and progenitor cells in

patients with myelodysplastic syndromes. On the basis of

mTOG-Y targeting PABPC1, the interaction of mTOG and

PABPC1 impeded the recruitment of PAPI1 as revealed using

isotope exchange proteomics. The translation of the transcript

sharing pyrimidine-rich sequence (PES) and the 5’ terminal

oligopyrimidine bundle (TOB) encoding the mechanical

component of the protein was strongly inhibited in the 5’

untranslated region, while mTOG dysregulation resulted in

increased aberrant translation of 5′ PES mRNA in malignant

MDS-HSPC, which was clinically associated with leukemic

transformation and reduced patient survival (68, 180, 181).
PABPC1 in lung tumor

Lung cancer has the second highest cancer incidence and the

second highest cancer-related mortality rate worldwide, with

approximately 85% of lung cancer cases being non-small cell lung

cancer, and non-small cell lung cancer consisting primarily of lung

adenocarcinoma and squamous cell carcinoma of the lung (21,

182). Although tyrosinase inhibitors and immunotherapy have

shown significant survival benefits for some patients, their 5-year

overall survival rate is less than 15%. Researchers have recently

identified that the MKRN3-PABPC1 pathway plays an important

role in lung cancer pathogenesis (183). Germline mutations in the

makorin ring finger protein 3(MKRN3) gene cause central

precocious puberty (CPP), which is epidemiologically associated

with various diseases in adulthood, including cancer (31–33) (184).

Li et al. analyzed public data from cancer genomics studies and

found recurrent inactivation of genomic MKRN3 aberrations in

non-small cell lung cancer (183). low levels of MKRN3 expression

were associated with poor patient survival, and in both in vivo and

ex vivo, MKRN3 reduced cell growth and proliferation. Further

proteomic screening by mass spectrometry identified PABPC1 as

the major substrate of MKRN3. the tumor suppressive function of

MKRN3 is dependent on its E3 ubiquitin ligase activity, and

MKRN3 missense mutations were found to impair MKRN3-
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mediated PABPC1 ubiquitination in patients. the A203/F206/P208

of MKRN3 is a key interaction residue mediating PABPC1

ubiquitination, and the second RRM in PABPC1 is required for

PABPC1 ubiquitination. Non-protein hydrolytic ubiquitination

attenuates its binding to mRNA3’ poly(a), thereby inhibiting total

protein synthesis and maintaining lung cancer cells with limited

proliferative capacity. MKRN3 restoration induces cell cycle arrest

in the G2/M phase, an effect also due to less PABPC1 binding to the

poly(a) tail of CCNB1 mRNA, downregulating its protein levels.

binding, downregulating its protein levels. This study contributes to

the understanding of the genetic drivers of PABPC1 ubiquitination

in non-small cell lung cancer.
PABPC1 in other cancers

In addition to the above mentioned tumors, PABPC1 has

clinical and prognostic relevance to other tumors. For example,

Eisermann et al. reported that PABPC1 is a novel AR co-regulator

that regulates AR function and subcellular localization in prostate

cancer cells (185). knockdown of PABPC1 inhibited the

proliferation of AR-positive prostate cancer cells. An et al.

demonstrated that PABPC1 was upregulated in gastric cancer

and its high expression was significantly associated with poorer

overall and disease-free survival (25). et al. further demonstrated

that PABPC1 knockdown induced apoptosis in gastric cancer cells

through upregulation of pro-apoptotic and downregulation of anti-

apoptotic proteins, and that miR-34c was a target of PABPC1.

PABPC1 acts as an oncogene promoting the growth and invasion of

ovarian cancer cells in ovarian cancer partly through regulation of

the EMT process (23).
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Histone acetylation modification is one of the major types of

histone modifications for chromatin structural remodeling and

transcriptional regulation. Acetylation neutralizes the positive

charge of lysine and unfolds chromatin structure, thereby

attenuating DNA-histone interactions and enhancing

transcriptional activity. Dong et al. found that SNHG14

regulates the expression of PABPC1 through H3K27ac8, which

activates the Nrf2 signaling pathway and promotes breast

carcinogenesis and resistance to trastuzumab (24). et al.

demonstrated by microarray that H3K27ac was enriched in the

PABPC1 promoter region of hepatocellular carcinoma cells and

that SNHG14 regulated PABPC1 expression in hepatocellular

carcinoma cells through H3K27ac. The study showed that

PABPC1 interacted with BDNF-AS and increased its expression

by stabilizing the expression of BDNF-AS, and overexpression of

both inhibited proliferation, migration and invasion of

glioblastoma and promoted apoptosis (30). PABPC1 interacts

with lncRNA-PAGBC in gallbladder cancer (186), enhancing

the stability of the latter, while lncRNA-PAGBC competitively

binds miR-133b and miR-511 and activates the AKT/mTOR

pathway to promote tumor growth and metastasis.

Further study of the relationship between PABPC1 and

other tumors is important for understanding the mechanisms

by which PABPC1 promotes tumor development and its

potential role in tumor therapy (Table 2).
Conclusions

The central dogma of molecular biology has guided scientists’

research for a long time, and the targets of tumor research have
TABLE 2 The expression and role of PABPC1 in multiple tumors.

Cancer type Aberrant
expression

Role Associated clinical feature Biological function Target

Ovarian cancer Up Oncogenic OS viability, invasion and migration,
EMT

Gastric cancer Up Oncogenic OS, DFS, Depth of invasion, Lymph node
metastasis, pTNM, Vessel invasion

viability miR-34c

Esophageal
squamous cell
carcinoma

Up Oncogenic lymph node metastasis, pathological
stage, tumor recurrence, outcome, OS

proliferation, apoptosis, invasion,
migration, angiogenesis

eIF4G, IFN/IFI27, miR-21-5p,
CXCL10

Hepatocellular
cancer

Up Oncogenic Tumor number, OS, AFP, TNM stage proliferation, angiogenesis AGO2, miR-183, miR-124,
SNHG14, PTEN/PI3K/Akt, PTEN/
VEGF

Prostate cancer Up Oncogenic Recurrence proliferation AR

Glioblastoma Down Tumor
suppressor

proliferation, migration, invasion,
apoptosis

lncRNA-BDNF-AS/RAX2/DLG5,
Hippo

Endometrial cancer proliferation IGF2BP1, PEG10

Breast cancer trastuzumab resistance,
proliferation, apoptosis, invasion,
migration

lncRNA-SNHG14, Nfr2, HO-1

Non–small cell lung
cancer

cell cycle, apoptosis, proliferation MKRN3, eIF4G, CCNB1
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focused on the final protein function. As scientific research

continues, scientists have discovered that the translation process

from mRNA to protein also plays an important role in tumor

progression and drug resistance. Changes in mRNA translation in

tumors are more extensive than those in transcription

downstream of aberrant signaling pathways, and in response to

oncogenic signaling or microenvironmental stressors, alterations

in intracellular mRNA translation allow rapid changes in the

proteome, increasing cancer cell adaptation, leading to tumor

formation, spread metastasis and treatment resistance (15).There

is no doubt that PABPC1 plays an important role in mRNA

translation and stability as an RNA binding protein. Over the past

two decades, The issue surrounding the importance of PABPC1

and poly(A) in translation has been controversial. Through

exhaustive experiments in different cell types and cell

conditions, researchers have demonstrated that poly(A) tail

length and translation efficiency are coupled by PABPC1 at

early stages of embryonic development, while at later stages, this

relationship shifts to promote mRNA stability (53).

Most past studies on PABPC1 in tumors have focused on

detecting gene copy number and/or protein expression of

PABPC1 in different types of tumor tissues or cells, and its high

expression in some solid tumors is associated with poorer patient

prognosis (23–30, 142, 161, 183, 185–190). PABPC1 selectively

regulates transcripts by interacting with non-coding RNAs such as

long-stranded non-coding RNAs, microRNAs specific translation

and expression of specific oncogenic proteomes, enhancing cancer

cell plasticity and thus promoting therapeutic evasion of cancer

progression (24, 28–30, 167, 186).

Studies of PABPC1 initially revealed its broad function as a

tumor and metastasis-promoting protein, and PABPC1 gene

overexpression was associated with abnormalities in tumor cell

proliferation, apoptosis, invasion and distant metastasis. The

effect of PABPC1 on cell proliferation and migration was verified

by knocking down and overexpressing PABPC1 in ovarian

cancer cell lines, and the deletion of PABPC1 significantly

inhibited the viability and invasiveness of SKOV3 cells, while

the upregulation of PABPC1 in A2780 cells showed the opposite

result (23). Similarly, PABPC1 depletion in gastric cancer cells

BGC823, MKN-45 and MGC803 reduced cell proliferation rate

and colony-forming activity, and tumor xenografting assays

suggested that PABPC1 knockdown significantly inhibited

gastric cancer growth in vivo (191). Similar studies include

metastatic duodenal cancer (192), glioblastoma (30), and

hepatocellular carcinoma (27–29). All these data provide

evidence supporting the possible involvement of PABPC1 in

tumorigenesis as an oncogene.

These current findings are far from sufficient, and more

features and biological functions of PABPC1 protein remain to

be explored. Further studies are urgently needed to demonstrate

the molecular and cellular mechanisms by which PABPC1 plays
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a role in the development of different tumor cells, and to

elaborate the tumor-promoting effects of PABPC1, which may

pave the way for the development of inhibitors or agonists and

the treatment of tumor patients with abnormal expression

of PABPC1.
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